Расчет молниезащиты. расчетные формулы молниеотводов

Активная и пассивная молниезащита

Разные типы внешней молниезащиты представляют собой систему, состоящую из токопроводящих конструкций, часть которых устанавливается в верхней части объектов. Они перехватывают разряд молнии, а затем отводят в землю ее высокую энергию. Эффект от подобной защиты зависит от количества компонентов и плотности покрытия опасной зоны, от архитектурных особенностей конкретного здания. Все процессы здесь происходят естественным путем, поэтому такие стандартные системы представляют собой пассивную молниезащиту.

Как правило, она включает в себя следующие компоненты:

  • Молниеприемник. Притягивает к себе и принимает электростатический атмосферный разряд. Конструктивно варианты исполнения бывают в виде металлических стержней, тросов, натянутых между опорами или приемной сетки с установленным шагом ячейки. Последний вариант используется в основном на плоских крышах с большими площадями.
  • Токоотводы. Находятся вроде бы на второстепенных ролях, однако без них совершенно невозможно отведение высоких токов, попавших в молниеприемник. Они изготавливаются из толстой стальной проволоки, диаметром от 8 мм и более. Такое сечение обеспечивает безопасное прохождение большого потенциала в течение короткого промежутка времени.
  • Заземление и молниезащита. Используются в совместном виде и состоят из отдельных заземлителей или целой системы, объединяющей сразу несколько электродов в единый контур заземления. Токоотводы могут подключаться к уже действующему заземлению, но для этого в цепь потребуется подключить специальные разрядники.

Активная защита определяется ГОСТ и существенно отличается от пассивной, в первую очередь наличием в ней активного молниеприемника, представляющего собой не стержень, а специальное электронное устройство с возможностью самостоятельной активации непосредственно перед наступлением грозы. Поля статического электричества, возникающие во время грозы, воздействуют на головку приемника и способствуют возникновению импульсов высокого напряжения. Под их влиянием в окружающем воздушном пространстве создается обратная ионизация, вызывающая эффект притягивания электрических разрядов.

Монтаж активного компонента осуществляется на металлическом стержне, превышающем наиболее высокую точку здания не менее чем на 1 метр. Все остальные компоненты устанавливаются и работают практически одинаково, как и на пассивной защите.

Устройство заземления молниезащиты

Заземляющие контуры располагаются на расстоянии не менее 1 метра от самого объекта, дорожек и прочих мест частого появления людей. Данное требование позволяет избежать шагового напряжения, возникающего в процессе растекания заряда по грунту.

При наличии у объекта массивного железобетонного фундамента, заземление должно располагаться еще дальше, а внутри здания устанавливаются грозоразрядники, защищающие электронную аппаратуру. Это требование обязательно для выполнения, поскольку часть заряда молнии попадает на фундамент и другие элементы, контактирующие с ним – инженерные сети, корпуса оборудования.

Основным показателем заземления является его сопротивление. Если используются два отдельных контура, они соединяются между собой стальными проводниками при помощи сварки. Показатель сопротивления контура должен быть минимальным, чтобы ток мог легко уходить в землю. Если удельное сопротивление грунта 500 Ом, то нормативное сопротивление заземлителя составит 10 Ом. При более высоких сопротивлениях грунта для вычислений применяется формула: Rз = 10 + 0,0022 (ρ – 500) Ом, где Rз – сопротивление заземлителя, ρ – показатель удельного сопротивления грунта.

Нормативные значения можно получить путем замены грунта. Старый грунт убирается, а в яму или траншею закладывается земля с другими параметрами и характеристиками. После этого в обновленном грунте выполняется монтаж заземления. В другом случае в грунт добавляются химические реагенты, способные изменить его показатели в нужную сторону.

После того как заземление установлено, в дальнейшем проводятся регулярные замеры его сопротивления. Если его показатели выходят за пределы нормативного диапазона, следует выполнить установку дополнительного штыря или заменить несоответствующий элемент

Особое внимание обращается на соединения между всеми компонентами заземляющего устройства

Расчет элементов заземляющего устройства

Определение параметров проводников, используемых в конструкции любого заземлителя, проводится с учетом следующих соображений:

  • Длина металлических стержней или штырей в значительной мере определяет эффективность всей системы защитного заземления.
  • Большое значение имеет и протяженность элементов металлических связей.
  • От линейных размеров этих конструктивных составляющих зависят расход материала, а также суммарные затраты на обустройство ЗУ.
  • Сопротивление вертикально забиваемых электродов в первую очередь определяется длиной.
  • Их поперечные размеры не оказывают существенного влияния на качество и эффективность обустраиваемой защиты.

Помимо этого всегда нужно помнить о «золотом» правиле, согласно которому чем больше металлических заготовок предусмотрено в схеме – тем лучше характеристики безопасности контура.

Схема установки одиночного вертикального заземлителя

Также следует учесть, что мероприятия по организации заземления нельзя назвать легким занятием. При большом количестве составляющих системы увеличиваются объемы земляных работ. А решение вопроса о том, каким конкретно способом улучшать качество заземления (за счет длины или количества электродов) остается за самим исполнителем.

В любом случае при обустройстве ЗУ произвольного типа рекомендуется придерживаться следующих правил:

  1. стержни необходимо вбивать до отметки, находящейся ниже уровня промерзания почвы минимум на 50 сантиметров;
  2. такое их расположение позволит учесть сезонные факторы и исключить их влияние на работоспособность защитной системы;
  3. расстояние между вертикально вбитыми элементами зависит от формы выбранной конструкции и длины самих стержней.

Для корректного выбора этого показателя рекомендуется воспользоваться справочными таблицами.

Таблица определения параметров заземлителей

С целью сокращения объема предстоящих расчетов (их упрощения) сначала желательно определить величину сопротивления стеканию токов КЗ для одиночного стержня.

С учетом влияния, оказываемого на искомую величину горизонтальными элементами конструкции, сопротивление для вертикальных штырей вычисляется по следующей формуле:

Если монтируемое ЗУ обустраивается в разнородном грунте (другое его название – двухслойный), удельное сопротивление можно определить так:

где Ψ – это так называемый «сезонный» коэффициент;

ρ1 и ρ2– удельные сопротивления слоев почвы (верхней и нижней прослойки соответственно), учитываемые при расчетах в Омах на•метр;

Н – толщина слоя грунта в метрах, расположенного в верхней части земляного покрова;

t – заглубление вертикальных штырей или стержней (оно соответствует глубине подготовленной траншеи), равное 0,7 метрам.

Достаточное для получения эффективного заземления число стержней (горизонтальные составляющие пока не учитываются) определяется так:

где Rн – это нормируемое ПТЭЭП сопротивление растеканию.

С учетом горизонтальных элементов ЗУ формула для определения количества вертикальных штырей принимает такой вид:

где под ηв понимается коэффициент использования конструкции, указывающий на взаимное влияние токов стекания различных единичных элементов друг на друга.

При уменьшении шага монтажа этих элементов защитного контура его общее сопротивление растеканию тока заметно увеличивается. Число элементов заземляющего сооружения, полученное по результатам описанных выкладок, следует округлить до большего значения.

Расчеты заземления онлайн удается автоматизировать, если воспользоваться разработанным для этого специальным онлайн калькулятором на нашем ресурсе.

Когда необходимо выполнять проект молниезащиты и заземления?

Строго говоря для этого нам придется обратиться к статье 49 Градостроительного кодекса РФ, в которой определен перечень объектов, требующих проведение экспертизы проектной документации. Этот и будет тот список, проекты объектов которого в теории должны в обязательном порядке содержать раздел «Молниезащита» (или «Молниезащита и заземление», так эти системы соседствуют друг с другом). Он включается наряду с подразделами ЭС (наружные электросети), ЭН (наружное освещение) в состав раздела ЭОМ (системы внутреннего электроосвещения и силового оборудования) под аббревиатурой ЭГ (проекты молниезащиты и заземления).

Итак, что же это за объекты:

  1. Индивидуальные жилые дома с этажностью более 3-х этажей
  2. Многоквартирные дома более 3-х этажей и с количеством блочных секций более 4-х
  3. Объекты капитального строительства с этажностью более 2 и общей площадью более 1500 кв. м, не предназначенные для производственных нужд или проживания людей
  4. Производственные здания и сооружения с этажностью более 2 и общей площадью более 1500 кв. м, а также все объекты до 2-х этажей и менее 1500 кв. м, для которых необходимо установление санитарно-защитных зон
  5. Любые объекты, которые в соответствии с статьей 48.1 того же кодекса признаются особо опасными, сложными с технической точки зрения или уникальными (например, газохранилища, гидротехнические сооружения или памятники архитектуры)
  6. Любые объекты, которые планируется строить или реконструировать в пределах границ зон охраны трубопроводной инфраструктуры

ВНИМАНИЕ! Очень часто владельцам зданий и сооружений, а также частным домовладельцам сотрудники надзорных ведомств, в особенности пожарный надзор и газовая служба, предъявляют необоснованные требования касательно наличия молниезащиты, в том числе проекта, паспорта или протоколов проверки заземляющих устройств. Если у Вас возник подобный вопрос, в нашей компании готовы оказать бесплатную консультацию, звоните на наш многоканальный телефон +7 495 6451212

Особенности устройства

Как и у любой системы, у активной молниезащиты можно выделить ряд особенностей. В числе характерных преимуществ:

  1. Большая зона охвата. Монтаж активной молниезащиты позволяет защитить большую территорию по сравнению с аналогом, функционирующим по пассивному принципу. Дело в том, что, несмотря на присутствие молниеприемника (пассивного) на крыше, молния может ударить, например, в расположенный во дворе столб линии электропередач или иной возвышающийся объект. Подобное исключается в случае использования активного молниеприемника, так как элемент сам провоцирует разряд.
  2. Компактность. Несмотря на усложненное устройство активного приемника молний, его габариты остаются достаточно компактными, что не только упрощает процесс установки системы и снижает нагрузку на несущие конструкции, но и практически не привлекает внимания. Это позволяет устанавливать систему на любых строениях, вне зависимости от их архитектурного стиля.
  3. Эффективность. Активный молниеотвод обеспечивает более высокий уровень защиты не только строения, но и близлежащих территорий.

Важным преимуществом выступает и полная автономность системы. Активный молниеприемник не требует подключения к электросети, поэтому может использоваться для защиты локально расположенных объектов вроде газовых подстанций.

Что касается недостатков системы, здесь выделяют лишь сравнительно высокую цену оборудования и то, что некоторые ученые не подтверждают существенного повышения уровня защиты объекта от использования системы. К слову, первое частично компенсируется за счет того, что в силу большего охвата территории для защиты крупных объектов и территорий потребуется меньшее количество приемников, чем в случае с пассивными аналогами.

Нужен ли громоотвод на крыше частного дома?

С точки зрения безопасности, громоотвод нужен всегда — даже если вероятность попадания молнии мизерная, молниезащита и заземление снизят ее еще больше. То есть хуже точно не будет. Вот только цена молниеотвода с монтажом начинается от 30 000 рублей, и далеко не каждый готов потратить эти деньги на снижение вероятности удара молнии на тысячные доли процента. Поэтому обычно отдельно говорят о ситуациях, в которых устройство молниезащиты обязательно, а отдельно — о случаях, когда установка громоотвода — всего лишь рекомендация.

Молниезащита кровли обязательно нужна:

  • когда дом находится в коттеджном поселке, деревне, городском частном секторе или стоит обособлено и вблизи нет высотных зданий;
  • при перекрытии кровли любыми видами металлических покрытий, включая профнастил и металлочерепицу;
  • когда дом построен на возвышенности или под ним есть грунтовые воды неглубокого залегания;
  • если в здании много работающей электроники или установлено мощное оборудование.

При выполнении любого из этих условий необходимость монтажа молниезащиты — не вопрос для обсуждений, поскольку риск довольно велик. И он тем выше, чем южнее построен дом: в южных регионах грозы бывают значительно чаще, чем в северных, следовательно, и вероятность попадания молнии в дом возрастает. На карте ниже хорошо видно, как количество дней с грозами при движении на юг увеличивается с несколькими очагами возле горных хребтов.

Конечно, заставить вас установить громоотвод на доме никто не может — это могут официально требовать только для общественных, многоквартирных, коммерческих и производственных зданий. Если речь идет о частном доме, молниезащиту оставляют на усмотрение владельца. Но не сделать громоотвод в частном доме в такой ситуации все равно, что не обработать огнезащитой деревянный брус для каркасного дома и сделать в нем закрытую проводку.

Совсем другое дело, когда ваш дом:

  1. Находится в непосредственной близости от господствующей высоты: вышки сотовой связи, водонапорной башни, высотных зданий. Но учитывайте, что непосредственная близость — это не километр и даже не 500 метров. Это когда самая дальняя точка дома расположена не более чем в 1,2×h от высотного объекта, где h — его высота. То есть при высоте базовой станции в 100 м, каждый уголок вашего дома должен попадать в конус с вершиной в самой высокой точке вышки и с основанием радиусом 120 м.
  2. Построен в лесу с высокими деревьями. Радиуса защиты от одного дерева, если это не секвойя, не хватит, чтобы перекрыть весь дом, но деревьев в лесу очень много. Иногда для лучшей защиты на вершину самого высокого дерева вблизи дома крепят громоотвод.
  3. Расположен в районе, где грозы бывают редко. Если в числах, то это районы со средней за год продолжительностью гроз до 20 часов. На карте выше это красная и розовая зона.

Во всех этих ситуациях риск попадания молнии очень незначителен, поэтому многие владельцы домов не делают молниезащиту, полагаясь на случай. С одной стороны, вероятность действительно низкая. С другой стороны, потери, если «что-то пойдет не так» будут очень велики: даже если дом не загорится, то вся электроника, включая блоки управления котлов отопления, в нем точно сгорит. Насколько такая экономия оправдана, каждый владелец дома решает для себя сам.

Молния непредсказуема, пусть и редко, но она может ударить в здание, защищенное господствующей высотой.

ПУЭ (седьмая редакция)

Отдельными пунктами ПУЭ оговаривается, что РУ и ТП 20-750 кВ открытого типа оборудуются молниеприёмниками в обязательном порядке. Для некоторых видов сооружений допускается отсутствие специальной молниезащиты, но лишь при условии ограниченной продолжительности гроз в течение года (не более 20 часов).

Те же сооружения закрытого типа требуют защиты от молнии лишь в районах с показателем продолжительности гроз более 20.

Заземление

В том случае, когда здания закрытого типа имеют металлическую кровлю – молниезащита осуществляется с помощью заземляющих устройств, подсоединённых непосредственно к покрытию. Если кровельное перекрытие изготовлено из железобетонных плит, то при наличии хорошего контакта между отдельными элементами строения допускается заземление через входящую в их состав арматуру.

Защита зданий РУ и ТП в закрытом исполнении выполняется либо с помощью молниеотводов стержневого типа, либо путём укладки специальной металлической сетки.

Стержневая и сеточная защита


При установке на защищаемом строении типовых стержневых молниеприёмников, от каждого из них в сторону заземлителя прокладывается не менее 2-х токоотводов, расположенных по разным сторонам здания. Особой конструкции молниеприемная сетка, укладываемая поверх кровли на специальных держателях, изготавливается из стальной проволоки диаметром 6-8 миллиметров.

При скрытом монтаже согласно ПУЭ такой молниеотвод кладётся под кровельное покрытие (на слой утеплительного или гидроизоляционного материала с негорючими свойствами).

Выполненная в виде сетки защитная конструкция должна состоять из ячеек площадью не более 12х12 метров, а её узлы рекомендуется фиксировать посредством сварки.

Токоотводы или спуски, используемые для соединения молниеприёмной сетки с ЗУ, должны устраиваться по периметру здания через каждые 25 метров (не реже).

Методика расчета молниезащиты – подготовительный этап

Перед тем, как приступить непосредственно к расчету, необходимо оценить свой объект, и выделить к какой категории он относится. Напомним, что их существует три:

  • Первый класс предусматривает наиболее серьезную молниезащиту и относит к себе помещения, где при нормальном технологическом режиме образуются взрывоопасные концентрации;
  • Ко второму классу относят помещения, в которых возможность взрыва появляется при нарушении технологического режима;
  • К третьему классу относят все остальные случаи, в которых поражение молнией здания приведет к меньшим материальным расходам.

После потребуется выбрать средства молниезащиты, которые вы собираетесь использовать. Конечно, сюда относятся молниеотводы, которые могут быть отдельностоящими, либо располагаться непосредственно на объекте.

Хотим обратить внимание, что для зданий первой категории используют отдельно стоящие молниеотводы, которые обеспечивают растекание тока, минуя помещения. Для второго класса возможны оба варианта

И, наконец, для третьего целесообразным вариантом будет последний.

Типы и виды защиты заземления, молниеотвода

Устройства защиты от перенапряжений обеспечивают отвод прямых ударов молний в 95% случаев Система молниезащиты перенаправляет молнию от здания к земле. При помощи проводников опасный разряд отдаляется от опасных зон, надежно защищая жилье, бытовую технику и электрические приборы, а также здоровье и жизни всех домочадцев. Чтобы обезопасить себя на все 100% нужно устанавливать конструкцию как можно дальше от дома, а также коммуникационных систем. Большую опасность несет столкновение разряда молнии с газопроводом.

Существует два вида молниезащиты:

  • наружная (внешняя);
  • внутренняя.

Внешнюю систему молниезащиты еще называют пассивной. Представляет сбой несколько рабочих узлов, задача которых перенаправить прямое попадание молнии. Состоит молниезащита из молниеприемника, токоотвода и заземляющего устройства.

Основная задача внутренней защиты – выровнять потенциал на металлических корпусах, приборах в помещении. Происходит это при помощи ОПН и УЗИП.

Чтобы обеспечить полную безопасность, нужно позаботиться о строительстве наружной защиты и организации внутренней. Стоимость двух видов и их установка – дело затратное, однако это позволит в будущем сохранить немалые суммы на восстановление сгоревших приборов и т.д.

Активная система

Активная молниезащита Для проведения расчетов активной молниезащиты требуется за основу брать увеличение радиуса защиты. Система представляет собой специальное оборудование, которое около себя ионизирует воздух, притягивая разряд молнии в определенное место.

Что такое молниезащита зданий и сооружений

Коротко это комплекс действий и мероприятий, а также различные защитные приспособления для предотвращения аварий и возгораний в зданиях и сооружениях жилого и промышленного назначения при попадании в них молний.

Мероприятия по молниезащите подразделяются на внешние и внутренние. Внешняя защита состоит из устройств, которые перехватывают электрозаряд от молнии и направляют его в землю по специальным токоотводным каналам. Такие конструкции, смонтированные в соответствии с обязательными техническими правилами по молниезащите, надежно предохраняют строения и людей внутри них от поражения.

Внешние мероприятия по молниезащите зданий и сооружений делятся на активные и пассивные.

Пассивная защита представлена в следующих вариантах

молниеприемная сетка из стальных прутков или катанки, ее применение разрешают все нормативы по молниезащите, хотя при малых превышениях сетка не в состоянии защитить поверхность кровли достаточно надежно;

Пространственная сетка на крыше здания

  • металлические прутья (от одного до нескольких штук) для приема разрядов молний, специальный кабель связывает их и заземляющие контуры- молниеотводы;
  • молниепринимающие металлические тросы.

Все приспособления внешней молниезащиты имеют один стандарт и состоят из трех основных частей: перехватчика электроразряда из грозового облака – молниеприёмника; конструктивной части, проводящей электричество на заземлители, и заземляющего элемента, который выводит молниевый заряд в почву.

Внутренний комплекс мероприятий по молниезащите направлен на предотвращение вреда, который может получить электрооборудование от резкого скачка напряжения в сети в результате удара молнии. Исполнение внутренней молниезащиты представлено двумя типами: 1 – противостояние прямому удару молнии, 2 – противостояние непрямому удару, прошедшему вблизи зданий/сооружений.

Со вторичным воздействием молниевого разряда в виде высоких потенциалов внутри строений борются с помощью грамотной организации заземления. Электромагнитную индукцию в длинных железных конструкциях снимают с помощью установки перемычек из металла. Занос высоких электропотенциалов через вводы для коммуникаций предотвращают вентильными разрядниками и специальными искровыми прерывателями, которые срабатывают при резком скачке напряжения.

Вентильный разрядник РВН 0,5

Также проблема решается запрещением ввода воздушных линий для некоторых категорий сооружений и заменой их подземными кабельными вводами.

Образец расчета

В качестве образца расчета данных по молниезащите рассмотрим вариант определения ее параметров для частного загородного дома, с установленным на крыше одиночным штыревым молниеприемником.

В соответствии с методическими указаниями в этом случае исходят из необходимости образования особой зоны защиты (воображаемого конуса вокруг мачты со штырем), в пределах которой располагается защищаемый объект.

Радиус защиты Rx такого конуса со штырем, установленным на высоте hx, определяется из следующего соотношения:

где под вторым элементом пропорции (ha) понимается активная высота всей зоны грозозащиты (воображаемого конуса), под hx – высота защищаемой точки данного строения, а просто h – это собственная высота устанавливаемого молниеотвода.

Несмотря на внешнюю простоту приведенной методики расчета молниезащиты, полный обсчет всей системы в целом желательно перепоручить профессионалам, которые в состоянии отметить множество неучтенных дилетантом деталей.

Расчет системы молниезащиты может быть осуществлен и в режиме онлайн, где пользователю предлагается специальная программа для проведения соответствующих операций.

Для получения требуемого результата необходимо ввести в соответствующие графы геометрические размеры защищаемого строения и выбрать нужную географическую зону.

5.1. Зона защиты стержневых молниеотводов

Зона защиты одиночного стержневого молниеотвода (рис. 16 и 17) представляет собой в вертикальном сечении конус с образующей в виде ломаной линии.
Построение зоны защиты для молниеотвода высотой h<60 м (рис. 16) производится следующим образом. От основания молниеотвода в противоположные стороны откладываются два отрезка СА’ и СВ’, равные 0,75h, концы полученных точек А’ и В’ соединяют с вершиной О молниеотвода. Далее на молниеотводе на высоте 0,8h находится точка О’, которая соединяется прямой линией с концами

Рис. 17. Зона защиты одиночного стержневого молниеотвода высотой более 60 м Рис. 16. Зона защиты одиночного стержневого молниеотвода высотой до 60 м

Ломаная BDO и является образующей зоны защиты для определения величины радиуса защиты гх, м, на любой высоте hx зоны защиты используют формулы:

Решая приведенные выше формулы относительно h, можно при известных (заданных) значениях гх и hx получить величину оптимальной высоты молниеотвода: Для молниеотводов высотой более 60 м и до 100 м включительно зона защиты определяется исходя из лимитированной величины основания конуса на уровне земли г = 90 м (рис. 125). При этом радиус защиты на высоте hx определяется из соотношений: 5.2. Зона защиты двойного стержневого молниеотвода
Зона защиты двойного стержневого молниеотвода (при расположении двух одинаковых молниеприемников на одном уровне и на определенном расстоянии друг от друга) показана на рис. 18а. Определение очертаний торцевых частей зоны выполняется по расчетным формулам, используемым для построения зоны защиты одиночного молниеотвода.
Расчет предусматривает следующие обязательные условия: высота молниеотвода не должна превышать 60 м, молниеотвод рассматривается как двойной только при соотношении L/h <5.
Рис. 18. Зона защиты двойного стержневого молниеотвода:
а — при расположении молниеприемников на одном уровне; б — при расположении молниеприемников на разных уровнях Верхняя граница зоны защиты представляет собой дугу окружности радиуса R, соединяющую вершины молниеотводов и точку, расположенную на перпендикуляре, идущем из середины расстояния между молниеотводами на высоте h0.
Величина h0, в метрах, вычисляется по эмпирической формуле: Радиус окружности R, дуга которой описывает верхнюю границу зоны, соответственно определяется из выражения: В тех случаях, когда величины h0 и L известны, оптимальную высоту молниеотводов, находят по формуле: При этом в вышеприведенной формуле значение h0 соответствует значению, вычисленному исходя из необходимой (требуемой) ширины зоны защиты, величина которой определяется высотой защищаемого сооружения и его размерами в плоскости, перпендикулярной оси молниеотводов.
Ширина зоны защиты bх, м, на уровне hx вычисляется по формулам: Решая приведенные выше выражения относительно h0, получаем соответственно: 1,5
Зона защиты двойного стержневого молниеотвода (при расположении молниеприемников на разных уровнях) показана на рис. 18б. Принцип построения зоны защиты данного типа молниеотвода сводится к следующему: вначале строится зона защиты молниеотвода большей высоты и торцевая часть зоны защиты второго молниеотвода. Далее от вершины молниеотвода меньшей высоты проводится горизонтальная линия до пересечения с образующей зоны защиты молниеотвода большей высоты. Полученная точка пересечения условно принимается за вершину фиктивного молниеотвода, высота которого соответствует высоте меньшего молниеотвода. Дальнейший ход расчета и построения зоны защиты аналогичен описанному выше для двух молниеотводов одинаковой высоты.
Для определения внешних границ зоны защиты многократных молниеотводов используются те же приемы, что и для одиночного или двойного стержневых молниеотводов. При этом для расчета и построения внешних очертаний зоны молниеотводы берут попарно в определенной последовательности (например, для четырехкратного молниеотвода: 1—2, 2—3, 3—4, 4—1). При применении четырехкратного и более стержневого молниеотвода необходимо выполнение дополнительных условий, а именно:

  1. для зданий и сооружений I и II категорий следует принимать h0 >hx для попарно взятых молниеотводов по диагоналям многоугольника, образованного единичными молниеотводами;
  2. для зданий и сооружений III категории допускается D<5ha (D — длина диагонали многоугольника, составленного единичными молниеотводами).

Для молниеотводов высотой более 30 м величина D должна быть уменьшена путем введения коэффициента р.