Приемники и передатчики

Содержание

Супергетеродин.

Супергетеродин, приемник с преобразованием частоты — это наиболее распостраненная схема.
Она содержит в себе маломощный генератор колебаний
промежуточной частоты — гетеродин.

Частота генерации гетеродина меняется одновременно с изменением настройки входной частоты.
Для этого применяется двухсекционный конденсатор переменной емкости — одна секция использована
в входном колебательном контуре, вторая — в контуре гетеродина.

Причем, гетеродин настроен так, что разница между собственной его частотой и частотой
радиосигнала остается примерно неизменной на протяжении всего перестраевомого диапазона.
Это и есть промежуточная частота, которая выделяется в смесителе — каскаде где
обе частоты встречаются.
Причем, полученная таким образом промежуточная частота оказывается промодулированой полезным
сигналом.

Далее, происходит усиление промежуточной частоты каскадами усилителя промежуточной частоты.
Такие каскады имеют повышенный коэффициент усиления только на этой частоте, что исключает
самовозбуждение усилителя.
После усиления промежуточной частоты, происходит детектирование и окончательное усиление полезного сигнала.
Супергетеродин обеспечивает высокую селективность и достаточную чувствительность для работы
во всех радиовещательных диапазонах.

Кроме того, появляется возможность приема и детектирования частотно — модулированных сигналов
на частотах УКВ, что значительно улушает качество воспроизведения звука.
Самая распостраненная схема частотного детектора — балансная, содержит в себе два контура,
настроенных на несущую частоту с некоторым отклонением — слегка рассогласоваными.
Частота первого из них настраивается несколько выше, а второго — несколько ниже промежуточной
частоты.

Модулированная промежуточная частота отклоняясь от своего среднего значения наводит
колебания(может быть — звуковые) полезного сигнала выделяемые на резисторах R1 и R2.

Принципиальная схема простого трансмиттера

Это устройство для трансляции звука я использовал, чтобы можно было слушать нужную мне музыку находясь на небольшом расстоянии от дома, например в гараже, и принимать сигнал на обыкновенное FM радио. Печатная плата формата lay есть — скачать .

Аналогом импортного кремниевого биполярного n-p-n транзистора bc547

является отечественныйкт3102 . Чем выше коэффициент усиления транзисторов, тем мощнее будет аудио-передатчик. Если хотите сделать устройство миниатюрным, применяйте транзисторы в корпусе sot-23:BC847 . На картинке ниже видно расположение базы, коллектора и эмиттера.

Лучшим, на мой взгляд, питанием для схемы будут служить две батарейки AA

по 1,5 В соединённые последовательно. Вместе они будут давать напряжение три вольта. Время работы зависит от тока потребления, а также от ёмкости батареек. Обычно чем выше их стоимость, тем они лучше. К примеру, если использовать достаточно дорогие батарейкиGP Ultra Alkaline , с заявленной производителем ёмкостью 3,1 A при токе в цепи 8 mA данное устройство сможет без перерыва проработать, грубо говоря 387 часов. Проблема в том, что “высосать” весь заряд батареи очень сложно. Поэтому реально схема проработает без выключения и со стабильной передачей сигнала приблизительно 150 часов, или почти 7 дней .

Катушка имеет шесть витков медного изолированного провода сечением 0,3-0,5 мм. Эту катушку мотаем на пасте от ручки.

При испытаниях устройства ток в цепи составил почти 10 mA.

Поймать частоту трансмиттера очень просто крутя подстрочный конденсатор и “играя” катушкой, сдвигая и раздвигая её витки. Я “поймал” свой трансивер на частоте 89,90 МГц.

Данную схему собрал на smd деталях, только транзисторы взял в корпусе TO92. Антенна — кусок медного провода, чем больше — тем лучше. Если просто дотрагиваться до провода антенны, то частота не уходит, а если взять в руки — начинаются шумы в наушниках приёмника.

Звук пробовал передавать как с компьютера, так и с телефона. Слишком громкий сигнал передаётся с многочисленными шумами и хрипами, оптимальную силу звука настраивается подстрочным резистором. В общем, качество передачи аудио-звука довольно неплохая. Принимал на чёрно-белый телефон Nokia, а звук слушал в наушниках. Никаких больших проблем приёма не возникло.

Видео работы передатчика звука ниже. Песня: bwb — мои пацаны

Стерео-передатчик своими руками схема

Схема радио-стереопередатчика звука

Для стереопередатчиков существует специализированная микросхема, BA1404.О собенностью передатчика на BA1404 является высокое качество звука и улучшенное звуковое разделение стерео. Это достигнуто использованием кварцевого резонатора на 38 кГц, который обеспечивает частоту пилот тона для кодера стереосигнала.

Применяться стерео-передатчик может как в быту, так и в автомобиле, для передачи звука с носителя(телефон,плеер и др), так как обладает не передачей стереозвука.

Такой небольшой стереопередатчик станет неплохой заменой фм тюнера.

Детекторный приемник.

Детекторный приемник самое простое устройство, позволяющее произвести прием радиовещательных
радиостанций, использующих амплитудную модуляцию.
Классический детекторный приемник рассчитанный на прием в диапазоне длинных и средних волн
состоит из колебательного контура, амплитудного детектора, собранного на одном диоде и высокоомных
головных телефонов (наушников, говоря по-просту).
Рисунок иллюстрирующий принцип работы амплитудного детектора

На рисунке диод «обрезает» отрицательную составляющую радиосигнала.
Затем, фильтрующая емкость производит выделение огибающей выпрямленного сигнала высокой
частоты — получается сигнал низкой частоты.

Вот так, может выглядеть схема реального детектороного приемника.

В качестве колебательного контура можно использовать конденсатор переменной емкости(C1),
от любого неисправного промышленного приемника и магнитную антенну от него же.

Наушники — старинные головные телефоны ТОН-2.

Настройка передатчика

Настройка антенны также с помощью подстройки ёмкости контура. Катушки и разъем с серебряным покрытием. Коробка из фольгированного стеклотекстолита обеспечивает лёгкую обработку и хорошее экранирование. Размеры передатчика получились всего 9x4x6 см. Мощность при сетевом питании 2 Вт при напряжении 240 В. В принципе можно её повысить до 3 Вт через коррекцию сеточных резисторов и резистора, питающего генератор. В плане запуска не было никаких проблем — стартанул сразу. Мощность потребления 20 мА при 250 В, то есть 5 Вт.

Для этого FM передатчика позже планируется сделать также очень маленький блок питания с преобразователем от литиевых батарей и стабилизацией напряжения.

Однополосные передатчики

Как известно, при амплитудной модуляции передаются несущая частота, разностные верхняя и нижняя боковые полосы (рис. 5). Частота верхней боковой полосы равна сумме частоты несущей и частоты полезного модулирующего сигнала, тогда как частота нижней боковой полосы равна разности частоты несущей и частоты полезного модулирующего сигнала. Передатчик с одной боковой полосой, или SSB-передатчик (single-sideband modulation), отличается от классического АМ-передатчика тем, что передает только одну полосу частот — верхнюю или нижнюю боковую, а не обе. Таким образом, SSB-передатчик использует меньшую полосу частот, чем передатчик с АМ, но его преимущества заключаются не только в этом.

Рис. 5. Спектр АМ-сигнала

Основное преимущество однополосной амплитудной модуляции заключается в том, что при амплитудной модуляции 70% мощности передатчика расходуются на излучение сигнала несущей частоты, который не содержит полезной информации. Остальные 30% делятся поровну между боковыми частотными полосами, представляющими собой зеркальное отображение друг друга. Таким образом, без всякого ущерба для передаваемой информации можно исключить из спектра сигнала несущую и одну из боковых полос, расходуя всю мощность передатчика для излучения только полезного сигнала.

Недостатками технологии SSB являются жесткие требования к фильтрам, стабильности и точности опорных генераторов не только передатчика, но и приемника. В случае невыполнения этих требований возникают искажения сигнала. Из-за этого SSB-технология не применяется в аналоговом радиовещании.

На рис. 6 показана одна из возможных реализаций SSB-передатчика. В его состав входит генератор, обеспечивающий несущий сигнал, который перед поступлением в балансный модулятор усиливается до требуемого уровня. Кроме того, усиливается и полезный сигнал, например аудиосигнал. Еще до поступления на вход балансного модулятора полезный сигнал обрабатывается голосовым процессором — сжимается по динамическому диапазону. Это необходимо для того, чтобы избежать перемодуляции. Сигнал также ограничивается по спектру, что упрощает фильтрацию для выделения боковой полосы.

Рис. 6. Структурная схема SSB-передатчика с выделением боковой полосы фильтром

Затем сигнал с выхода балансного модулятора поступает в фильтр выделения боковой полосы. На практике при использовании этого SSB-метода применяются весьма сложные лестничные фильтры на кварцевых резонаторах или электромеханические фильтры. Фильтры позволяют выделить требуемую боковую полосу и подавить нежелательную. После фильтрации сигнал поступает в смеситель вместе с сигналом местного гетеродина. На выходе смесителя появляется высокочастотный сигнал необходимой частоты, который усиливается до необходимого уровня и излучается в эфир.

Подключение приемника

При приобретении приемника (он может носить название вроде MX-RM-5V или XD-RF-5V) обращайте внимание на длину выводов — мне как-то попалась целая партия с укороченными штырьками, отчего из стандартного разъема PBS приемник вываливался при малейшем перекосе и его приходилось к плате специально крепить. У приемника схема гораздо сложнее (я ее не буду воспроизводить, но можете ознакомиться, например, тут)

Она должна принять и усилить высокочастотный сигнал, отфильтровать частоту 433 МГц, выделить всплески и преобразовать их в логические уровни. Приемник имеет подстроечный дроссель (посередине платы), но без точных приборов для измерения амплитудно-частотной характеристики я его крутить не советую — скорее всего, вы ничего не улучшите, а только испортите.

Так как уже на небольшом расстоянии сигнал будет гораздо меньше помехи, понятно, что мы с помехами должны бороться по всем фронтам: и схемотехническими и программными методами. Последнее за нас делают библиотеки, но какая бы математика не применялась в программной обработке, желательно сначала сделать все для того, чтобы логическая единица на выходе появлялась только при всплеске полезного сигнала и не появлялась при наличии помехи. Иными словами, классно было бы от помех при приеме отстроиться заранее по максимуму.

Стандартный метод снижения помех, известный в мои времена каждому школьнику, собравшему хоть один радиоприемник или усилитель, заключается в том, что для чувствительных к помехам узлов необходимо делать отдельное питание, по максимуму изолированное от остальных схем. Можно его делать разными методами: когда-то ставили отдельный стабилитрон, сейчас часто изолируют питание проблемного узла LC-фильтром (так рекомендуется поступать, например, для АЦП, посмотрите даташиты на AVR-контроллеры). Но в наших условиях, когда современные компоненты невелики и дешевы, проще просто поставить на приемник отдельный от всего остального стабилизатор.

Стабилизатор, например, типа LP2950-5.0 плюс два необходимых конденсатора к нему в самом дешевом варианте (когда оба конденсатора — керамические, в диапазоне 1–3,3 мкФ) добавит к стоимости вашей схемы рублей шестьдесят максимум. Но я предпочитаю не экономить: на выходе ставлю обычный керамический, а на входе электролит (10–100 мкФ), причем твердотельный (полимерный) или танталовый. Обойтись керамическими конденсаторами и там и там можно, если входное напряжение 7-12 вольт поступает с батареек-аккумуляторов или с другого аналогового стабилизатора. Импульсные стабилизированные источники и простейшие нестабилизированные выпрямители требуют дополнительной фильтрации. Можно использовать дешевый алюминиевый электролит, если ставить параллельно ему керамический 0,1 мкФ, еще лучше поставить на входе последовательную индуктивность в несколько долей или единиц миллигенри.

Стабилизатор следует устанавливать прямо около приемника, длина проводников должна быть минимальна

Вместо LP2950 можно взять LM2931 или аналогичный с маленьким проходным напряжением (это особенно важно, если схема питается от батареек — для обычного LM78L05 входное напряжение должно быть не менее 7,5, а лучше 8-9 вольт)

Сравнив со случаем питания приемника непосредственно от Arduino, как рекомендуется во всех публикациях (исключений я не встречал), вы поразитесь полученному эффекту — дальность и способность проникать через стенки сразу увеличивается в разы. Приемник вместе со стабилизатором для удобства можно вынести в отдельную маленькую коробочку. Связать его выход с контроллером в основном корпусе можно любым трехжильным проводом (два питания и сигнальный проводник) длиной до 3 метров, а может быть и больше. Удобнее это потому, что еще нужны антенны, и по правилам будет лучше, если они будут параллельны друг другу в пространстве, а большие корпуса не всегда удается разместить так, чтобы антенны торчали в нужной ориентации.

В простейшем варианте в качестве антенн можно обойтись обрезками одножильного провода сечением не меньше 0,5 мм и длиной 17 см ± 1-3 мм. Не следует употреблять многожильный монтажный провод! В продаже имеются более компактные спиральные антенны, но я лично их эффективность не испытывал. Кончик антенны и у передатчика и у приемника запаивается в соответствующее отверстие в углу платы (не ошибитесь в модернизированном варианте передатчика — там слово ANT тоже не на месте, см. рис. выше).

Одноканальный пульт дистанционного управления

Сейчас мы попробуем реализовать 1 канал управления при наличии различных помех. Для этого устанавливаем передатчик в режим генерации симметричных квадратных импульсов, период которого регулируется переменным резистором. Он подключен к PIC входу АЦП и напряжение преобразуется как параметр задержки. Период модулирующего сигнала может быть настроен с шагом в 100 мксек начиная от 500 мксек и до 255х100+500 = 26 мсек, что соответствует полосе модулирующих частот от 2000 Гц до 30 Гц, соответственно.

Схема передатчика на одну команду

Приемник позволяет регулировать чувствительность приема сигнала и настроиться на конкретную частоту модуляции. Он использует аналоговый выход. Напряжение на этом выходе пропорционально уровню сигнала. Когда нет сигнала, постоянное напряжение на этом выходе составляет около 1.1 В. это напряжение поступает на неинвертирующий вход встроенного в микроконтроллер компаратора. Инвертирующий вход этого компаратора подключенный к правому (по схеме) переменнику. Напряжение на этом входе должно быть немного больше, чем на неинвертирующем и оно определяет чувствительность системы. На выходе компаратора считывается код и длительность импульсов на его выходе измеряется в единицах, чье числовое значение задается левым (на схеме) подстроечником. Он соединён с АЦП. Таким образом вся система может быть настроена для реагирования на частоту модуляции, и больше ни на какие другие частоты. Следовательно, он работает как частотный селективный фильтр, настроенный переменным резистором.

Схема приёмника на одну команду

При настройке системы сначала выбирает частоту модуляции в передатчике. После этого настраивают приемник, медленно вращая переменник влево. Обе ручки должны быть в примерно одинаковом положении для синхронизации. Файлы проекта в общем архиве.

Как устроен радиопередатчик?

Основой любого радиопередатчика является — задающий генератор несущей частоты.

Эта схема генератора,сама вполне может служить маломощным передатчиком(при наличии антенны).
Электромагнитные колебания генерируемой им частоты, сами по себе не несут никакой
полезной информации. Что бы появилась возможность ее передачи, необходимо изменить несущую частоту,
промодулировав ее полезным сигналом.

Применяются три вида модуляции — амплитудная, частотная и фазная.
При амплитудной модуляции меняется амплитуда несущей частоты, в такт с
амплитудой информационного сигнала.
Частотная модуляция обуславливает девиацию (отклонения) несущей частоты в такт с амплитудой
полезного сигнала.
При фазной модуляции, подобное происходит соответственно, с фазой колебаний несущей
частоты.

Процесс модуляции осуществляется с помощью различных электронных схем.
Например, для частотной модуляции необходимо воздействовать на такие параметры задающего
генератора, как емкость или индуктивность его колебательного контура.
Если подать на переход база — эмиттер транзистора переменное напряжение низкой частоты,
это вызовет изменение его емкости, с периодом поданной частоты.
Соответственно, произойдет частотная модуляция задающего генератора.

Если собрать подобную схему, используя самые распостраненные высокочастотные
транзисторы (например кт315), микрофон динамического типа, можно получить простейший радиомикрофон.
С катушкой L1, состоящей из одного витка одножильного провода диаметром 1-1,5 см, он будет
перекрывать радиовещательный диапазон FM.

Сигнал от такого устройства можно принимать на расстоянии от 50, до 150 метров, в зависимости
от чувствительности используемого приемника. Точная подстройка осуществляется конденсатором С5.
Устройства для прослушки — жучки, собирают по схожим схемам.
Если требуется большая дальность передачи, сигнал задающего генератора необходимо дополнительно усилить,
с помощью выходного усилителя мощности и подать на передающую антенну.

Различные радиоволновые диапазоны.

Радиоволны делятся на различные радиодиапазоны, в зависимости от их длины.
Что такое — длина радиоволны? Радиоволны распостраняются со скоростью света(который сам по себе
является одним из диапазонов электромагнитных колебаний). За секунду, они распостраняются
на расстояние около 300000 километров. Разделив это расстояние на частоту электромагнитных
колебаний можно узнать их длину волны.

Например, колебания частотой от 3 до 30 Кгц. порождают радиоволны сверхдлинного диапазона.
Соответственно, длина сверхдлинных радиоволн лежит в пределах от 10 до 100 километров.
Передача информации на большие расстояния, в этом диапазоне возможна, с применением очень больших передающих
антенных устройств(более километра) и очень мощных передатчиков.
Сверхдлинные волны применяют для дальней подводной связи.

Колебания частотой от 30 до 300 Кгц вызывают радиоволны длинноволнового диапазона.
Их длина от 1 до 10 километров. Они способны огибать земную поверхность, за счет явления —
дифракции.
Дифракцией радиоволн называют их способность
огибать в той или иной степени препятствия,
лежащие на пути распостранения — выпуклость
земного шара, горы, строения и. т. д.

Дифракция возникает в результате возбуждения радиоволной
высокочастотных колебаний на поверхности препятствий.
Эти колебания вызывают в свою очередь вторичное
излучение радиоволн, проникающих в области пространства
затененные от передающей антенны радиопередатчика.
Часть энергии радиоволн при этом неизбежно
теряется — на нагрев поверхности.

Передающие антенны длинноволнового диапазона довольно велики, как и мощность передатчика.

Главным достоинством длинных волн, является возможность очень устойчивой связи, на большое расстояние — без ретранслятора.

Частоты от 0,3 до 3Мгц — принадлежат средневолновому диапазону, от 3 до 30Мгц — коротковолновому.
Волны этих диапазонов способны отражаться от различных слоев ионосферы, что
способствует сверхдальней связи, при относительно невысокой мощности передатчика и
небольших размерах передающей антенны.

Распостранение радиоволн на большие расстояния за
счет пространственных волн объясняется отражением
в ионосфере.
Наряду с отражением имеет место частичное поглощение,
возрастающее с увеличением длины волны.

Отражение и поглощение в ионосфере также связано с концентрацией
электронов — величиной непостоянной.
Ее изменения носят циклический характер
— суточные, сезонные и связанные с 11-летним
солнечным циклом, но нередко случаются и внезапные
изменения — из за вспышек на солнце и падения
метеорных потоков.

Частоты от 30Мгц до 3Ггц — радиоволны ультрокороткого(метрового и дециметрового) диапазона.
Радиоволны этого диапазона хорошо поглощаются земной поверхностью и проходят через
ионосферу — устойчивая связь возможна до линии горизонта.
Плюсом здесь является качественная связь, при крайне малой мощности передатчика — и
сответственно,возможности миниатюризации его размеров.

Сверхвысокочастотный диапазон 3 — 30Ггц(сантиметровый) используется для космической связи.
Электромагнитные колебания такой частоты по своим свойствам вплотную приближаются к свету.
Их можно легко фокусировать с помощью сферических отражателей, для передачи на очень
большие расстояния.

I/Q‑сигналы

Синфазные/квадратурные (I/Q) сигналы составляют основу сложных методов модуляции. Эти сигналы I/Q определяются как пара сигналов, которые отличаются по фазе на 90°. Синфазный (I) сигнал является опорным, а квадратурный (Q) сигнал сдвинут на 90° по фазе от сигнала I.

Косинусоидальная и синусоидальная функции, как известно из тригонометрии, различаются по фазе на 90°. В рассматриваемом случае косинусоидальная функция считается сигналом I, а синусоидальная функция представляет Q‑сигнал

При суммировании косинусоидального и синусоидального сигналов с равными амплитудами получается синусоида, сдвинутая по фазе на 45° от сигнала I. Комбинирование сигналов I и Q является важной концепцией, применяемой в сложных типах модуляции

На рис. 7 представлен пример квадратурной модуляции с фазовой манипуляцией QPSK (quadrature phase shift keying), в которой используются сигналы I/Q, а также несущий радиочастотный сигнал. Эти квадратурные I‑ и Q‑сигналы фактически являются цифровыми битовыми потоками. Из таблицы на рис. 7 видно, что фазовый сдвиг выходного сигнала определяется значениями I и Q. Такой вид QPSK имеет всего четыре состояния.

Рис. 7. Простое представление модуляции QPSK

Существует также много других методов модуляции, но их описание выходит за рамки этой статьи

Однако понятно, что сигнал несущей может модулироваться путем управления амплитудой сигналов I/Q. Это важное обстоятельство в понимании особенностей функционирования многих современных передатчиков

Заметим, что для передачи большего числа битов используется метод квадратурной амплитудной модуляция QAM (quadrature amplitude modulation). Эта разновидность амплитудной модуляции сигнала, как и QPSK, представляет собой сумму двух несущих колебаний одной частоты, сдвинутых по фазе относительно друг друга на 90°. Каждое из них модулировано по амплитуде своим модулирующим сигналом. Число передаваемых битов определяется порядком квадратурной модуляции. В случае QPSK с двумя битами на символ передаются четыре состояния, в 16 QAM (четырех битов на символ) — 16 состояний, в 64 QAM (шесть битов на символ) — 64 состояния. На рис. 8 сравниваются эти виды модуляции для передачи цифровых сигналов.

Рис. 8. Примеры квадратурной модуляции

Стерео-радиопередатчик схема своими руками

Передатчик стерео-радиосигнала своими руками

В автомобиле,когда нет возможности включить музыку с других источников как радио, и при этом хотите слушать не то что предоставляют радиоведущие,а свою музыку-как вариант можно использовать сделанный своими руками FM стерео передатчик .

Радиопередатчик собран в стандартном пластиковом корпусе от какого-то прибора. Передняя панель имеет аудиовход типа Джек и кнопку настройки. На задней поверхности находится разъем питания. Выход фильтра подключен к клемме +12V, поэтому силовой кабель используется в качестве антенны. Печатная плата крепится только одним винтом внутри коробки.

Зарубежные схемы FM трансмиттеров — РАДИОСХЕМЫ

Выкладываю небольшой сборник принципиальных схем радиопередатчиков, собранных из различных зарубежных сайтов. Начиная от маломощных, на несколько милливатт, и до мощных многоваттных усилителей УМВЧ. Работоспособность не проверял, но схемотехника внушает доверие. Все схемы трансмиттеров предназначены для стандартного вещательного УКВ диапазона 88-108 МГц.

FM Transmitter в ручке

Проект ФМ жучка в пишущей ручке очень популярен у начинающих радиолюбителей. В стремлении уменьшить размер этой конструкции, использованы компоненты поверхностного монтажа. Схема имеет низкое энергопотребление, но достаточную выходную мощность для покрытия радиуса 50 — 200 м. Можете поставить сюда часовые батарейки или литий-ионный аккумулятор от системы Блютус.

FM трансмиттер на 5 километров

Предлагаемый передатчик вещательного диапазона действительно очень устойчивый, имеет сложную, но качественную и продуманную схемотехнику, и использует стандартные FM-частоты 88 — 108 МГц. Его радиус действия составляет реальные 5 км. Схема включает в себя стабильный генератор питающийся через стабилизатор LM7809 — это 9 В стабилизированный источник питания, на транзисторе Т1 и элемент перестройки частоты потенциометр 10К. Мощность ВЧ выхода этого передатчика около 1 Вт. Пара варикапов MV2019 функционируют в качестве переменных конденсаторов.

Транзисторы Т2 и Т3 тут в качестве буферного каскада, где Т2 в качестве усилителя напряжения и Т3 — тока. Этот буфер необходим для стабилизации частоты проводя хорошую развязку между генератором и усилителем мощности ВЧ. Транзистор Т4 — предварительный усилитель, что позволяет подвести достаточную мощность к транзистору оконечника Т5. Как показано на схеме, Т4 имеет подстроечный конденсатор в коллекторе, это выставит резонансный контур по минимуму нежелательных гармоник. Катушки L2 и L3 должны быть под углом 90 градусов одна к другой, что позволяет предотвратить паразитные связи.

Заключительный каскад ФМ передатчика — мощный СВЧ транзистор не менее одного ватта мощности. Использовать нужно транзисторы 2N3866, 2N3553, KT920A, 2N3375, 2SC1970 или 2SC1971. Не забывайте поставить эффективный радиатор для транзистора Т5, потому что он при работе становится слегка теплым. Для схемы потребуется 12В/1А источник питания.

Моточные данные катушек:

  • L1 = 5 витков на 4 мм каркасе
  • L2 = 6 витков на 6 мм каркасе
  • L3 = 3 витка на 7 мм каркасе
  • L4 = 6 витков на 6 мм каркасе
  • L5 = 4 витка на 7 мм каркасе

Всё мотается проводом около миллиметра в диаметре. Транзисторы T1 = T2 = T3 = T4 = BF199, T5 = 2N3866 или 2SC1971, BLY81, 2N3553.

15 Вт УВЧ для диапазона 88-108MHz

Усилитель мощности ВЧ усиливает все частоты 88-108МГЦ с входной 1 Вт мощности, полученной от FM передатчика, до 15 Вт. Схема включает в себя многоуровневый фильтр низких частот и имеет высокую эффективность. С хорошей антенной ожидаемый радиус передачи не менее 20 км. Он использует RF транзистор высокой мощности 2SC1972 (175 МГц, 4 А, 25 Вт), который должен быть установлен на радиатор для рассеивания избыточного тепла.

Катушки индуктивности L1-L6 проводом 0.8 мм с диаметром каркаса около 5 мм. Если сюда поставить транзистор C2538 — мощность будет еще больше.

Схема при отладке обязательно должна подключаться с эквивалентом нагрузки, например резистор на 50 Ом 10 Ватт. Мощность источника питания не менее 2,5 ампера, сопротивление антенны строго 50 Ом. Настройку введите только с питающим напряжением сниженным до 9 Вольт, при замере высокочастотного напряжения на антенном выходе не нужно использовать обычный мультиметр — будут ложные показания из-за наводок на микросхемы прибора.

Передатчик УКВ на 300 мВт

Последняя схема также представляет интерес, как довольно продуманная и не заезженная. Хотя в принципе здеь всё как обычно — генератор со стабилизатором питания и усилитель мощности высокой частоты с настраиваемыми контурами подавления гармоник. За счёт 12-вольтового питания и транзистора 2SC2538 удалось получить дальность до километра на небольшую спиральную антенну.

radioskot.ru