Гост 9680-77трансформаторы силовые мощностью 0,01 кв· а и более. ряд номинальных мощностей

Как устроен и работает автотрансформатор

Среди трансформаторных устройств особой популярностью пользуются упрощенные конструкции, использующие в работе не две разные отдельно выполненные обмотки, а одну общую, разделенную на секции. Их называют автотрансформаторами.

Схема устройства автотрансформатора

Принцип работы трансформатора такой схемы практически остался прежним. Происходит преобразование входной электромагнитной энергии в выходную. По виткам обмотки W1 протекают первичные токи I1, а по W2 — вторичные I2. Магнитопровод обеспечивает путь движения для магнитного потока Ф.

У автотрансформатора имеется гальванически связь между входными и выходными цепями. Так как преобразованию подвергается не вся приложенная мощность источника, а только часть ее, то создается более высокий КПД, чем у обычного трансформатора.

Такие конструкции позволяют экономить на материалах: стали для магнитопровода, меди для обмоток. Они обладают меньшим весом и стоимостью. Поэтому их эффективно используют в системе энергетики от 110 кВ и выше.

Особых отличий в режимах работы трансформатора и автотрансформатора практически нет.

Устройство РПН: принцип работы

Как отмечалось выше, регулировка анцапфы трансформатора может выполнять через РПН. Особый тип переключений предполагает постоянную корректировку напряжения в зависимости от времени суток и нагрузки. Регулирование осуществляется в пределах от +/- 10 до 16%. В некоторых случаях устанавливается полностью автоматических механизм, который поддерживает нужный режим работ самостоятельно. Прочие варианты зависят от оперативного управления из диспетчерского пункта или ОПУ.

Что касается принципа работы, то он выполнен следующим образом:

  1. Имеется анцапфа, которая путем выкручивания пружины меняет число обмоток. При обычных условиях 33 оборота предполагает изменение количества витков на 1 единицу. Мера регулирования во многом определяется отстройкой шага.
  2. Для автоматизации процесса подключается механический мотор, который отстроен для выполнения ровно одной операции. Из ОПУ подается сигнал на электродвигатель, после чего происходит регулирование.
  3. Для более быстрого реагирования необходимо задействовать телемеханику, которая обеспечивает процесс из диспетчерского пункта.

Вопросы об устройстве трансформатора

-Почему зазор между катушками делается минимальным? Это делается для лучшего контакта магнитных полей. Если зазор будет большим — то и эффективность трансформатора будет низкая.

-А можно ли сделать трансформатор без сердечника аналогичный мощности с сердечником? Да, но тогда придется увеличивать количество витков, чтобы увеличить магнитный поток. Например, с сердечником у обмоток витки могут быть по несколько тысяч. А без сердечника придется увеличивать магнитный поток за счет витков. И количество витков будет по несколько десяток тысяч. Это не только увеличивает размеры катушек, но и снижает их эффективность и увеличивает шансы перегрева.

-Можно ли подключить понижающий трансформатор как повышающий? Если у вас есть трансформатор. который понижает сетевое напряжение с 220 В в 12 В, то его можно подключить как повышающий. То есть, вы можете подать на него переменное напряжение 12 В на вторичную обмотку и получить повышенное на первичной 220 В.

-А что будет, если на вторичную обмотку понижающего трансфоратора подать сетевое напряжение? Тогда обмотка сгорит. Ее сопротивление, количество витков и сечение провода не рассчитаны на такие напряжения.

-Можно ли сделать трансформатор самостоятельно своими руками в домашних условия? Да, это вполне реально. И многие радиолюбители и электронщики этим занимаются. А некоторые еще и зарабатывают. продавая готовую продукцию. Но стоит помнить о том, что это долгий, сложный и непростой труд. Нужны качественные материалы. Это трансформаторное железо, эмалированные медные провода различного сечения, изоляционные материалы. Все материалы должны быть высокого качества. Если медный провод будет с плохой изоляцией, то возможно межвитковое замыкание, которое неминуемо приведет к перегреву. А для начала нужно рассчитать все параметры будущего трансформатора. Это можно сделать с помощью различных программ, которые доступны в сети. Далее, это долгие часы сборки. Особенно если вы решили намотать тороидальные трансформатор. Нужно плотно и равномерно наматывать витки, записывать каждый десяток, чтобы не запутаться и не изменить характеристики будущего преобразователя.

Виды РПН

Существует несколько видов регулировки под напряжением, среди которых выделяется:

  1. РПН с токоограничительными реакторами. Это анцапфа трансформатора старого образца, которая предполагает наличие двух контакторов и реактора. При проведении операции два контакта замыкаются накоротко до перехода на другое положение. Для ограничения негативного воздействия используется реактор.
  2. РПН с ограничительными резисторами. Применяется на новых трансформаторных подстанциях. В методе задействован триггерный контактор, что предполагает изменение количества витков через пружину. Это сокращает время трансформирования уровня напряжения и негативный эффект для оборудования.

Выбор числа трансформаторов

Однотрансформаторные подстанции используются в двух случаях. Во-первых, для объектов III категории электроснабжения. Во-вторых, для потребителей, имеющих возможность резервирования электроснабжения с помощью АВР (автоматического включения резерва) с другого источника питания.

При питании потребителей I и II категории в аварийном режиме на двухтрансформаторной подстанции после срабатывания АВР целый трансформатор принимает на себя нагрузку неисправного. Поэтому его перегрузочной способности должно хватить на время замены вышедшего из строя трансформатора. В нормальном режиме трансформаторы работают недогруженными, что экономически нецелесообразно. Поэтому при аварийной ситуации некоторые потребители III категории электроснабжения отключают от сети.

Перерыв питания объектов II категории ограничен временем в одни сутки. Для восстановления схемы необходим стратегический складской резерв оборудования необходимого для ликвидации аварии. При этом мощность нового трансформатора должна быть идентична заменяемому. Таким образом, сокращается количество резервного оборудования.

Выбор мощности трансформатора

Типовые мощности трансформаторов стандартизированы.

Стандартные мощности трансформаторов
25 40 60 100 160 250 400 630 1000

Для расчета присоединенной к трансформатору мощности собираются и анализируются данные о подключенных к нему мощностях потребителей. Однозначно цифры сложить не получится, нужны данные о распределении нагрузок по времени. Потребление электроэнергии многоквартирным домом варьируется не только в течение суток, но и по временам года: зимой в квартирах работают электрообогреватели, летом – вентиляторы и кондиционеры. Типовые графики нагрузок и величины потребляемых мощностей для многоквартирных домов определяются из справочников.

Для расчета мощностей на промышленных предприятиях требуется знание принципов работы их технологического оборудования, порядок его включения в работу. Определяется режим максимальной загрузки, когда в работу включено наибольшее число потребителей (Sмакс). Но все потребители одновременно включиться не могут никогда. Но при расчетах требуется учитывать и возможное расширение производственных мощностей, а также – вероятность в дальнейшем подключения дополнительных потребителей к трансформатору.

Учитывая число трансформаторов на подстанции (N) мощность каждого рассчитывают по формуле, затем выбирают из таблицы ближайшее большее значение:

В этой формуле Кз – коэффициент загрузки трансформатора. Это отношение потребляемой мощности в максимальном режиме к номинальной мощности аппарата. Работа с необоснованно пониженным коэффициентом загрузки экономически не выгодна. Для потребителей, в зависимости от категории бесперебойности электроснабжения, рекомендуются коэффициенты:

Категория потребителей Коэффициент загрузки
I 0,65-0,7
II 0,7-0,8
II 0,9-0,95

Из таблицы видно, что коэффициент загрузки учитывает взятия одним трансформатором дополнительной нагрузки, переходящей к нему при выходе из строя другого трансформатора или его питающей линии. Но он ограничивает перегрузку трансформатора, оставляя по мощности некоторый запас.

Систематические перегрузки трансформаторов возможны, но их время и величина ограничиваются требованиями заводов-изготовителей этих устройств. По правилам ПТЭЭП длительная перегрузка трансформаторов с масляным или синтетическим диэлектриком ограничивается до 5%.

Отдельно ПТЭЭП определяется длительность аварийных перегрузок в зависимости от их величины.

Для масляных трансформаторов:

Величина перегрузки, % 30 45 60 75 100
Длительность, мин 120 80 45 20 10

Для сухих трансформаторов:

Величина перегрузки, % 20 30 40 50 60
Длительность, мин 60 45 32 18 5

Из таблиц видно, что сухие трансформаторы к перегрузкам более критичны.

Подписка на рассылку

Для осуществления максимальной токовой защиты применяются различные схемы подключения трансформаторов тока (ТТ). Какая из схем будет использоваться, зависит от того, где именно применяются ТТ. Так например, в городских сетях может использоваться схема «полной звезды», а в сельских – «неполной звезды». В дифференциальных и других защитах трансформаторы могут включать в треугольник, а реле — в звезду.


Полная звезда

Схема подключения трансформаторов тока «полная звезда» (рис.1), при которой ТТ устанавливают во всех трёх фазах, а нулевые точки вторичных обмоток последовательно соединены одним нулевым проводником. При таком подключении в реле тока (обозначены на рисунке I, II и III) протекают токи равные токам проходящие через первичные обмоток ТТ, делённые на коэффициент трансформации nT. В нулевом же проводе протекает геометрическая сумма всех токов Iн.п., которая в случае равенства этих трёх токов равна нулю.

Коэффициент схемы Ксх, представляющий собой отношение тока в реле к току в фазе, равен 1, поскольку ток в каждом из трёх реле равен току в соответствующей фазе.

Неполная звезда

На рис. 2 показана схема «неполная звезда». Отличием данной схемы от предыдущей является то, что ТТ установлены только на дух фазах из трех. В остальном же схема аналогична: обмотки реле (I и III) и вторичные обмотки ТТ установлены так же, как в полной звезде. В нулевом проводе протекает геометрическая сумма токов тех двух фаз, к которым подключены трансформаторы.

Также, как и для предыдущей схемы коэффициент Ксх = 1.

Треугольник

На рис. 3 показана схема подключения устройств максимальной токовой защиты в «треугольник». При такой схеме подключения вторичные обмотки ТТ соединены последовательно с противоположными выводами, образуя треугольник. Таким образом, в каждом из реле протекает ток, равный геометрической разнице тока в соответствующей фазе и тока в фазе, следующей за ней:

При этом Ксх = , поскольку ток в каждом из реле в раз больше, чем ток соответствующей фазе.

«Восьмёрка» («неполный треугольник»)

На рис. 4 показано подключение ТТ по схеме «восьмёрка» (неполный треугольник). В данной схеме трансформаторы установлены только в двух фазах, а вторичные обмотки соединены друг с другом противоположными выводами. Ток в реле равен разнице токов двух фаз, в которых установлены трансформаторы. При такой схеме подключения Ксх = 2.

Последовательное и параллельное включение трансформаторов тока

На рис.5 представлена схема последовательного соединения трансформаторов тока. При таком соединении вторичных обмоток ТТ с одинаковым коэффициентом трансформации сила тока такая же, как при включении в цепь только одного из трансформаторов, при этом нагрузка распределяется поровну по двум. Такая схема может применяться при использовании трансформаторов малой мощности.

При соединении трансформаторов тока по схеме указанной на рисунке 6 ток в реле равен сумме токов во вторичных обмотках каждого из трансформаторов. Обычно, данная схема используется для получения нестандартных коэффициентов трансформации.

Источник

Рабочие режимы трансформатора

При эксплуатации любой трансформатор может находиться в одном из состояний:

Режим вывода из работы

Для его создания достаточно снять питающее напряжение источника электроэнергии с первичной обмотки и этим исключить прохождение электрического тока по ней, что и делают всегда в обязательном порядке с подобными устройствами.

Однако на практике при работе со сложными трансформаторными конструкциями такая мера не обеспечивает полностью меры безопасности: на обмотках может оставаться напряжение и приносить вред оборудованию, подвергать опасности обслуживающий персонал за счет случайного воздействия разрядов тока.

Как это может произойти?

У малогабаритных трансформаторов, которые работают в качестве блока питания, как показано на верхней фотографии, постороннее напряжение никакого вреда не причинит. Ему там просто неоткуда взяться. А на энергетическом оборудовании его обязательно следует учитывать. Разберём две часто встречающиеся причины:

Подключение постороннего источника электроэнергии

На сложных трансформаторах работает не одна, а несколько обмоток, которые используются в разных цепях. Со всех их необходимо отключать напряжение.

Кроме того, на подстанциях, эксплуатируемой в автоматическом режиме без постоянного оперативного персонала к шинам силовых трансформаторов подключают дополнительные трансформаторы, обеспечивающие собственные нужды подстанции электроэнергией 0,4 кВ. Они предназначены для питания защит, устройств автоматики, освещения, отопления и других целей.

Их так и называют — ТСН или трансформаторы собственных нужд. Если со входа силового трансформатора снято напряжение и его вторичные цепи разомкнуты, а на ТСН проводятся работы, то существует вероятность обратной трансформации, когда напряжение 220 вольт с низкой стороны проникнет на высокую по подключенным шинам питания. Поэтому их необходимо обязательно отключать.

Действие наведенного напряжения

Если около шин отключенного трансформатора проходит высоковольтная линия, находящаяся под напряжением, то токи, протекающие по ней, способны наводить напряжение на шинах. Необходимо применять меры для его снятия.

Номинальный режим работы

Это обычное состояние трансформатора во время его эксплуатации для которого он и создан. Токи в обмотках и приложенные к ним напряжения соответствуют расчетным значениям.

Трансформатор в режиме номинальной нагрузки потребляет и преобразует мощности, соответствующие проектным значениям в течение всего предусмотренного ему ресурса.

Режим холостого хода

Он создается в том случае, когда на трансформатор подано напряжение от источника питания, а на выводах выходной обмотки отключена нагрузка, то есть разомкнута цепь. Этим исключается протекание тока по вторичной обмотке.

Трансформатор в режиме холостого хода потребляет минимально возможную мощность, определяемую его конструкторскими особенностями.

Режим короткого замыкания

Так называют ситуацию, когда нагрузка, подключенная к трансформатору оказывается закороченной, наглухо зашунтированной цепочками с очень малыми электрическими сопротивлениями и на нее действует вся мощность питания источника напряжения.

В этом режиме протекание огромных токов КЗ ни чем практически не ограничивается. Они обладают огромной тепловой энергией и способны сжечь провода или оборудование. Причем действуют до тех пор, пока схема питания через вторичную или первичную обмотку не выгорит, разорвавшись в наиболее слабом месте.

Это самый опасный режим, который способен возникнуть при работе трансформатора, причем, в любой, самый неожиданный момент времени. Его появление можно предвидеть, а развитие следует ограничивать. С этой целью используют защиты, которые отслеживают превышение допустимых токов на нагрузке и максимально быстро их отключают.

Режим перенапряжения

Обмотки трансформатора покрыты слоем изоляции, который создается для работы под определенным напряжением. При эксплуатации возможно его превышение по различным причинам, возникающим как внутри электрической системы, так и в результате воздействия атмосферных явлений.

В заводских условиях определяется величина допустимого превышения напряжения, которое может действовать на изоляцию до нескольких часов и кратковременных перенапряжений, создаваемых переходными процессами при коммутациях оборудования.

Для предотвращения их воздействия создают защиты от повышения напряжения, которые при возникновении аварийной ситуации отключают питание со схемы в автоматическом режиме или ограничивают импульсы разрядов.

КЛАССИФИКАЦИЯ И КОНСТРУКТИВНОЕ ИСПОЛНЕНИЕ ТРАНСФОРМАТОРОВ НАПРЯЖЕНИЯ

Конструктивное исполнение ТН зависит от того, для работы в каких электрических сетях он предназначен, где его предполагается устанавливать и какие приборы будут к нему подключены.

Классификация трансформаторов напряжения может производиться по следующим признакам:

  • класс напряжения, на которое рассчитана первичная обмотка;
  • однофазное или трёхфазное исполнение;
  • величина U вторичного;
  • общее число обмоток — двухобмоточные или трёхобмоточные;
  • класс точности, значение которого может быть 0.1, 0.2, 0.5, 1, 3, 3Р, 6Р;
  • тип изоляции — сухие, литые, маслонаполненные;
    место предполагаемого монтажа — наружной либо внутренней установки.

Вторичное значение U в ТН унифицировано, его величина зависит от схемы подключения первичной обмотки. Трёхфазные и однофазные трансформаторы, подключаемые к фазам первичной сети, на выходе выдают 100 вольт. Однофазные ТН, при включении их на фазное напряжение имеют на низкой стороне 100/√3 вольт.

Вид исполнения изоляции и способ охлаждения тепла при изготовлении ТН выбирается так же, как для силовых трансформаторов.

Сухая либо литая изоляция может применяться в устройствах до 35 кВ, в остальных случаях используются только маслонаполненные конструкции.

Обмотки и магнитная система маслонаполненного ТН помещены в стальной бак, заполненный трансформаторным маслом. Масло в данном случае играет роль изолятора и осуществляет отвод тепла к стенкам бака и в окружающее пространство.

Чаще всего бак имеет форму цилиндра, на верхнем торце которого установлены фарфоровые изоляторы проходного типа. Изоляторы являются вводами ТН.

Трансформатор напряжения принцип работы

Для непосредственного включения на высокое напряжение потребовались бы очень громоздкие приборы и реле вследствие необходимости их выполнения с высоковольтной изоляцией. Изготовление и применение такой аппаратуры практически неосуществимо, особенно при напряжении 35 кВ и выше.

Применение трансформаторов напряжения позволяет использовать для измерения на высоком напряжении стандартные измерительные приборы, расширяя их пределы измерения; обмотки реле, включаемых через трансформаторы напряжения, также могут иметь стандартные исполнения.

Кроме того, трансформатор напряжения изолирует (отделяет) измерительные приборы и реле от высокого напряжения, благодаря чего он обеспечивает безопасность их обслуживания на подстанции.

В то же время, если силовые трансформаторы предназначены для передачи транспортируемой мощности с минимальными потерями, то измерительные трансформаторы напряжения конструируются с целью высокоточного повторения в масштабе векторов первичного напряжения.

измерительный трансформатор напряжения

Принципы работы трансформатора напряжения

Конструкцию трансформатора напряжения, как и трансформатора тока, можно представить магнитопроводом с намотанными вокруг него двумя обмотками:

  • первичной;
  • вторичной.

Специальные сорта стали для магнитопровода, а также металл их обмоток и слой изоляции подбираются для максимально точного преобразования напряжения с наименьшими потерями. Число витков первичной и вторичной катушек рассчитывается таким образом, чтобы номинальное значение высоковольтного линейного напряжения сети, подаваемое на первичную обмотку, всегда воспроизводилось вторичной величиной 100 вольт с тем же направлением вектора для систем, собранных с заземленной нейтралью.

Если же первичная схема передачи энергии создана с изолированной нейтралью, то на выходе измерительной обмотки будет присутствовать 100/√3 вольт.

Для создания разных способов моделирования первичных напряжений на магнитопроводе может располагаться не одна, а несколько вторичных обмоток.

Устройство однофазного трансформатора напряжения

устройство однофазного трансформатора напряжения

Устройство однофазного трансформатора напряжения:

  • а — общий вид трансформатора напряжения;
  • б — выемная часть;
  • 1,5 — проходные изоляторы;
  • 2 — болт для заземления;
  • 3 — сливная пробка;
  • 4 — бак;
  • 6 — обмотка;
  • 7 — сердечник;
  • 8 — винтовая пробка;
  • 9 — контакт высоковольтного ввода

Однофазные трансформаторы напряжения получили наибольшее распространение. Они выпускаются на рабочие напряжения от 380 В до 500 кВ.

Конструктивные размеры и масса ТН определяются не мощностью, как у силовых трансформаторов, а в основном объемом изоляции первичной обмотки и размерами её выводов высокого напряжения.

Трансформаторы напряжения с номинальным напряжением от 380 В до 6 кВ имеют исполнение с сухой изоляцией (обмотки выполняются проводом марки ПЭЛ и пропитываются асфальтовым лаком).

Свердловский завод трансформаторов тока выпускает трансформаторы напряжения на 6, 10, 35 кВ с литой изоляцией.

У трансформаторов напряжением 10 — 500 кВ изоляция масляная (магнитопровод погружен в трансформаторное масло).

Пример назначение и область применение трансформаторов напряжения ЗНОЛ-НТЗ

Трансформаторы предназначены для наружной установки в открытых распределительных устройствах (ОРУ). Трансформаторы обеспечивают передачу сигнала измерительной информации измерительным приборам и устройствам защиты и управления, предназначены для использования в цепях коммерческого учета электроэнергии в электрических установках переменного тока на класс напряжения 35 кВ. Трансформаторы выполнены в виде опорной конструкции.

Корпус трансформаторов выполнен из компаунда на основе гидрофобной циклоалифатической смолы «Huntsman», который одновременно является основной изоляцией и обеспечивает защиту обмоток от механических и климатических воздействий. Рабочее положение трансформаторов в пространстве — вертикальное, высоковольтными выводами вверх.

схема включения обмоток трансформатора напряжения ЗНОЛ-НТЗ

См.  трансформаторы ЗНОЛ, схемы характеристики в таблице

Рекомендуемые файлы

Техническое задание
Инженерия требований и спецификация программного обеспечения
FREE

Маран Программная инженерия
Программаня инженерия
FREE

Учебный план для ИУ3, ИУ4, ИУ5, ИУ6, ИУ7, РК 6, РЛ6, МТ4, МТ8, МТ11, СМ13
Физика
FREE

Рабочая тетрадь по начерту до 18 стр(2019)
Начертательная геометрия
FREE

Э-80
Физика

Э-80
Физика

Из последнего соотношения следует, что если входное напряжение  не изменяется, то и не изменяются ЭДС и магнитный поток , т. е. магнитный поток в сердечнике  и не зависит от токов в первичной и вторичной обмотках.

Напряженность магнитного поля в сердечнике описывается выражением

,                                                    (2.18)

где – токи первичной и вторичной обмоток,

       – число витков в первичной и вторичной обмотках,

      – средняя длина магнитной линии сердечника трансформатора.

В режиме холостого хода напряженность магнитного поля

.                                               (2.19)

Отсюда

      ,       .                                      (2.20)

Это равенство поддерживается в трансформаторе с погрешностью в несколько процентов при изменении тока нагрузки от нуля  до номинального значения.

Векторная диаграмма, иллюстрирующая соотношение (2.20), представлена на рисунке 2.5.

Уравнение равновесия для вторичной обмотки:

,                                                     (2.21)

I2 – ток вторичной обмотки

 – активная и реактивная составляющие сопротивления вторичной обмотки.

Расчет трансформаторных цепей осуществляется графоаналитическим способом: путем составления векторных диаграмм и эквивалентных схем замещения.

Чтобы исключить анализ магнитных процессов, осуществляется операция приведения: реальную обмотку заменяют фиктивной обмоткой (), а все параметры вторичной обмотки перечитывают в фиктивную вторичную обмотку так, чтобы мощности на этих обмотках, потери и фазовые сдвиги были одинаковы.

,                                                    (2.22)

где ­ – ЭДС в приведенной обмотке,

      – коэффициент трансформации.

Аналогично получаем

            .                                                     (2.23)

Мощности в исходной и приведенной обмотках должны быть одинаковы

                                  ,

где  – токи исходной и приведенной обмотках.

Отсюда

 .                                         (2.24)

Потери  активной и реактивной мощностей в исходной и приведенной обмотках также должны быть одинаковы:

,             .                    (2.25)

Отсюда

, .   (2.26)

Сопротивление нагрузки и приведенное сопротивление нагрузки связаны соотношением  .

При выполнении этих условий первичную и приведенную обмотки можно электрически соединить ( рисунок 2.6).

Если Вам понравилась эта лекция, то понравится и эта — 18.1 Внешняя политика СССР и международные отношения в 1930-е гг.

Уравнения равновесия для первичной и вторичной обмотки:

  .                                  (2.27)

Векторная диаграмма работы трансформатора при индуктивной нагрузке:

Маркировка цепей трансформаторов тока (токовые цепи)

Числа, использующиеся для маркировки токовых цепей, разбивают тоже на группы. Так, первая группа маркируется N (A,B,C,) 4**, для маркировки используют номера с 401-499. Следующая значимая цифра определяет номер конкретного трансформатора тока, третья цифра выбирается, исходя из участка цепи от одной точки к другой.

Если монтажная схема конструктивно включает более девяти трансформаторов тока, то используется следующий тип маркировки A (B,C,N) 5* или: 10ТТ: А 501 – 509.

Описанные способы маркировки схем используются для отдельной монтажной единицы, при этом их принцип может повторяться на различных фидерах, и единообразие в обозначениях схем – приветствуется.

Определение

Напряжение на вторичной намотке зависит от вольтажа на первичной и коэффициента трансформации, оно меняется в каких-то пределах при изменении режима работы, зависящего от загрузки. Если меняется режим работы при неизменном вольтаже на первичной намотке, вместе с напряжением на вторичной меняется электроток. Эта закономерность называется внешней характеристикой.

Основной фактор, влияющий на этот показатель – нагрузочная величина электротока, потребляемого подключенным оборудованием. При повышении мощности подключенного оборудования тока требуется больше, на вторичной намотке преобразователя он повышается, вольтаж снижается. Одновременно с увеличением тока на вторичке увеличивается электроток на первичке, что теоретически должно снизить первичное напряжение. Но оно неизменно, поэтому снижается ЭДС (электродвижущая сила) и электромагнитный поток.

https://youtube.com/watch?v=d_MvNmoBfKE

Допустимые нормы колебаний вторичного напряжения при номинальной нагрузке определены ГОСТом. В некоторых преобразователях предусмотрена возможность увеличение или снижение вольтажа на вторичке коррекцией количества витков на одной из намоток, оснащенных дополнительными выводами.

Описание и назначение устройств

Электроустановки высокой мощности работают с питанием, достигающим несколько сот Вт, при силе тока, превышающей десятки кА. Логично, что произвести измерения величин подобного порядка, обычными приборами, попросту невозможно. Для этого используют трансформаторы тока, выполняющие одновременно несколько функций. Благодаря появлению преобразователей, значительно расширился потенциал измерительных приборов. И открылась возможность передачи энергии по гальванической развязке.

Конструкция аппаратов является их дополнительным преимуществом. К примеру, если бы существовали типовые устройства для измерения напряжения высоковольтных сетей переменного тока, они были бы очень габаритными и дорогостоящими. В отличие от трансформаторов, которые выглядят, относительно, компактно и имеют защиту от неблагоприятных внешних факторов и механических повреждений.

Основная задача трансформаторов тока – преобразовать первичную величину (подаваемого напряжения) до уровня, позволяющего подключить измерительные приборы и системы защиты. Дополнительная функция – обеспечить гальваническую развязку между потребителями низкого и высокого питания, устраняя риски для обслуживающего персонала.