Пусковые режимы асинхронных электродвигателей

Содержание

Практическое применение

Силовые приводы будут эксплуатироваться правильно только в том случае, если при их выборе были учтены пусковые характеристики.

Ток пуска может повредить не только сам мотор, но и другое электрооборудование, установленное с ним на одной линии. Для решения поставленной задачи можно использовать следующие методы:

  • Производить запуск силового агрегата на холостом ходу – нагрузка прикладывается только после перехода мотора в рабочий режим.
  • При подключении использовать схему треугольник-звезда.
  • Применять автотрансформаторный пуск – напряжение на двигатель подается через автотрансформатор, что позволяет добиться плавного повышения силы тока.
  • Использовать пусковые резисторы.
  • Применение частотных регуляторов и тиристорных устройств плавного запуска.

С помощью устройств плавного пуска, основанных на тиристорах, можно снизить показатель электротока пуска в два раза. При этом они могут работать как с асинхронными, так и синхронными электромоторами. В случае с трехфазными асинхронными двигателями, широкое распространение получили преобразователи частоты. Они позволяют изменять частоту электротока, обеспечивая не только плавный старт мотора, но и частоту вращения его ротора. Это эффективные устройства, но с высокой стоимостью. Следует помнить, что частотные преобразователи создают в сети помехи, устранить которые поможет сетевой фильтр.

Также можно использовать схему пуска силового агрегата с переключением обмоток со звезды на треугольник.

Например, этот метод не применяется при подключении асинхронных электромоторов, рассчитанных на напряжение 220-380 В.

Сейчас на рынке появились более современные устройства – софт-стартеры. Они основаны на микропроцессорах и весьма эффективны. Единственным недостатком этих устройств может считаться лишь высокая стоимость.

Сравниваем характеристики пускового тока автомобильных аккумуляторов


Знаете ли вы, отчего зависит запуск двигателя в лютый мороз? Вопреки распространенному мнению, уверенный старт обеспечивает не емкость АКБ, которая влияет лишь на количество попыток завода. А важнейшей характеристикой, отвечающей именно за мощность прокрутки, является пусковой ток.

Что это такое? В соответствии с официальным определением, под данным термином принято понимать максимальный ток, отдаваемый аккумуляторной батареей в течение нескольких секунд для запуска двигателя. Под заданным временем подразумевается интервал от 3 до 30 секунд, который варьируется в зависимости от методики испытаний батарей, принятой в том или ином регионе.

Отметим, что пусковой ток – это относительная величина. Это обусловлено тем, что в новом и старом аккумуляторе данный параметр будет сильно отличаться по причине снижения емкости. Поэтому, выбирая батарею для своего авто, покупайте аккумулятор со значительным запасом пускового тока – так, чтобы даже через 3-5 лет не испытывать проблем с пуском мотора даже в самую лютую зиму.

Каким образом подобрать оптимальный стартерный ток? Приведем пример: предположим, для прокрутки стартера автомобиля необходимо 250 ампер. Это значит, что покупать нужно такой аккумулятор, который на выходе даст не менее 350 ампер. В противном случае преждевременная замена АКБ будет практически неизбежной.

Обратите внимание на то, что пусковым током называется параметр, подразумевающий краткосрочную подачу тока на стартер, которая не должна превышать полуминуты. Если пытаться завести двигатель дольше 30 секунд, можно столкнуться с перегревом АКБ и выходом ее из строя

От теории к практике

Если вы посмотрите на крышку автомобильного аккумулятора, то увидите маркировку, в которой помимо прочих параметров, указывается и ток холодной прокрутки. Для примера возьмем батарею со следующей надписью «250 А (DIN)». Это значит, что данный аккумулятор дает 250 ампер тока при температуре окружающей среды 18 градусов Цельсия и кратковременной разрядке в соответствии со стандартами DIN, принятыми в Германии. Другими словами, на первой секунде напряжение составляет 12 вольт, через полминуты – 9 вольт, а по прошествии двух минут и тридцати секунд — 6 вольт. Измерения по данной технологии проводятся, исходя из требований Германского промышленного стандарта или так называемого DIN 43539. Также они соответствуют нормативам отечественного ГОСТ 959-91.

Отметим, что в Соединенных Штатах Америки стандарты DIN и ГОСТ не применяются. Здесь действуют нормы SAE, принятые Обществом Автомобильных Инженеров. Они максимально приближены к стандартам (ЕС ЕN 60095-1) и новым нормативам, действующим сегодня в России (ГОСТ 959-2002). Разумеется, из-за этого возникает определенная путаница. То есть, покупая аккумулятор, изготовленный в США, мы должны соотнести параметры с европейскими нормами. Именно для этого создана таблица, размещенная ниже. Она поможет найти характеристик по токам холодной прокрутки, исходя из различных методик испытания.

ЕN 60095-1 (ряд Европейских стран и новый российский ГОСТ 959-2002) DIN 43539 (Германия) и

ГОСТ 959-91 (Россия)

SAE (США)
280 170 300
330 200 350
360 225 400
420 255 450
480 280 500
520 310 550
540 335 600
600 365 650
640 395 700
680 420 750
760 450 800
790 480 850
860 505 900
900 535 950
940 560 1000
1000 590 1050
1040 620 1100
1080 645 1150
1150 675 1200
1170 700 1250

Располагая предоставленной выше информацией, не составляет труда провести простой сравнительный анализ автомобильных аккумуляторов различных марок, исходя из пусковых параметров. Так, к примеру, если на аккумуляторе американского бренда обозначен ток 900 А (SAE), то этой батарее по своим характеристикам идентичны АКБ с токами 860 А (EN) или 505 А (DIN) – см. таблицу.

На аккумулятор надейся, а сам не плошай!

Не забывайте: чем сильнее ток холодной прокрутки, тем более уверенно батарея будет крутить маховик в холодное время хода. Но! Слишком большая сила тока негативно отражается на ресурсе щеточно-коллекторной части стартера. Если же при новом аккумуляторе запуск двигателя все равно затруднен, это может свидетельствовать о неисправностях системы зажигания, генератора, неправильном выборе моторного масла (по вязкости) и пр.

Примеры номинальной мощности и мощности при запуске бытовой техники

Тип техники Номинальная мощность, Вт Продолжительность пусковых токов, с Коэффициент во время начала работы Пример модели стабилизатора, ВА Пример модели ИБП
Холодильник 4 3 «Штиль» R1200 / Progress 1500T N-Power Pro-Vision Black M 3000 LT
Стиральная машина 2500 Progress 3000T
Микроволновая печь 1600 2 «Штиль» R2000
Кондиционер Progress 5000L
Пылесос 1500 2 Progress 3000T
Кухонный комбайн 7 Progress 2000T
Посудомоечная машина 2200 3 Progress 3000L
Погружные скважинные насосы, глубинные насосы 2 Progress 3000L ДПК-1/1-3-220-М
Циркуляционные насосы «Штиль» R 600 ST Inelt Intelligent 500LT2
Лампа накаливания 100 0,15 высокоточная серия L

В таблице не отражены точные значения электрических приборов, предоставлены лишь ориентировочные цифры для понимания алгоритма выбора стабилизатора напряжения и ИБП.

Как правильно выбрать электромагнитный пускатель?

Электромагнитный пускатель (контактор) – один из самых распространенных аппаратов для коммутации и управления электрической нагрузкой. При наличии двигателей и насосов без электромагнитных пускателей обойтись практически невозможно.

Я уже писал про выбор электромагнитных пускателей. Там в основном рассматривал различные схемы построения пускателей и сколько это стоит. Этой заметкой хотелось бы дополнить и завершить тему выбора электромагнитных пускателей.

Сейчас я расскажу более подробно, на какие факторы следует обращать внимание при выборе электромагнитного пускателя или контактора. 1 Определяемся с производителем

1 Определяемся с производителем.

Для наших целей обычно достаточно пускателей ПМЛ, КМИ, КТИ (никогда не применял). По своему опыту могу сказать, что около 90% применяемых пускателей -на ток до 25А, поэтому с КТИ как-то не пришлось еще поработать. Если по каким-либо причинам вы не можете указать производителя, можно перечислить все параметры. Все электромагнитные пускатели взаимозаменяемые.

2 Определяем номинальный ток пускателя.

Номинальный ток пускателя — максимальный ток, который может пропустить через контактную группу электромагнитный пускатель. Здесь существует классификация пускателей до 16А (первая величина), 25А (вторая величина), 40А (третья величина), 63А (четвертая величина). Есть пускатели и на большие токи, но они применяются в наших проектах очень редко. Следует иметь ввиду, что чем больше пускатель, тем у него больше габаритные размеры.

Онлайн расчет пускателя (контактора) для электродвигателя

Данный онлайн калькулятор позволяет произвести расчет номинального тока пускателя (контактора) для однофазного либо трехфазного электродвигателя по мощности.Примечание: Расчет производится для пускателей с категорией применения АС-3.

Инструкция по использованию калькулятора расчета пускателя (контактора):

  1. Выбираем тип электродвигателя: однофазный — подключаемый в сеть 220 Вольт, либо трехфазный — подключаемый в сеть 380 Вольт.
  2. Вводим значение номинальной мощности электродвигателя в килоВаттах для которого производится выбор пускателя (контактора). Данное значение принимается из паспортных данных электродвигателя или определяется расчетным путем.
  3. Указываем способ запуска: «Легкий пуск» — в случае если запуск электродвигателя производится без нагрузки либо с незначительной нагрузкой (например: вентилятор, наждак и т.п.); «Тяжелый пуск» — в случае если в момент запуска на валу электродвигателя уже находится значительная нагрузка.
  4. Нажимаем кнопку «Рассчитать» после чего калькулятор определит номинальный ток электродвигателя и выберет ближайшее большее стандартное значение номинального тока пускателя.

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Источник

Что собой представляет пусковой ток?

Что такое пусковой ток? Данный параметр характеризует особенности тока, который протекает во время пуска в автотранспортном стартере. Его величина зависит от численности электродов, входящих в состав «банок» аккумуляторной батареи.

Иными словами, пусковой ток акб – это отдаваемое за установленный временной промежуток электрическое усилие.

Ток холодной прокрутки – это величина стартовой нагрузки, которая требуется для запуска мотора зимой. Определяется этот параметр ГОСТом.

Особенности определения и расчета

Компания-производитель определяет оптимальный показатель силы тока, которым обладает автомобильный источник питания. При этом емкость аккумулятора может быть одинаковой, а пусковой ток отличаться. Разность составляет от 20 до 40%.

Сила тока зависит от типа АКБ. Сегодня автотранспорт комплектуют необслуживаемыми источниками. Ведь он выделяется продолжительным периодом использования.

Какой пусковой ток, определяет собственник автотранспорта. При определении учитываются:

  • Особенности климата.
  • Параметры мотора.
  • Мощность.

Соответствующие указания прописаны в руководстве по использованию, которое прилагается к машине.

Пусковой ток аккумулятора автомобиля прописан в таблицах. Здесь приведены зависимости емкости и объема мотора. Данные параметры могут варьироваться в зависимости от того, что входит в электролитический состав. Влияет и то, какая методика изготовления использована.

  • Классическая технология. Пусковая сила тока больше емкости номинальной в 3–5 раз.
  • AGM-технология. Они применяются с увеличенным пусковым током.

Для различных источников питания, которые выпускаются отечественными, европейскими и американскими компаниями, применяются соответствующие стандарты. Установленные параметры нередко отличаются от реальных на 1–5%.

Факторы, влияющие на стартовую нагрузку

  1. Использование свинца, который прошел предварительную очистку, способствует повышению данного параметра.
  2. Увеличение численности пластин, электролитического состава.
  3. При повышении пористости пластин скапливается больше заряда.
  4. Герметичность корпуса. Если электролит не испаряется, то и уровень заряда поддерживается.
  5. Качество сборки. От этого зависит, как быстро произойдет запуск мотора.

Как влияет стартовая нагрузка на мощность источника питания?

Мощность аккумуляторной батареи зависит от напряжения, разрядной нагрузки. Расчет должен быть произведен в установленные временные промежутки. Ток холодной прокрутки возрастает при запуске стартера, силового узла

Поэтому важно понимать, какое напряжение будет выдавать АКБ во время пуска

Определение мощности электродвигателя без бирки

При отсутствии техпаспорта или бирки на двигателе возникает вопрос: как узнать мощность электродвигателя без таблички или технической документации? Самые распространенные и быстрые способы, о которых мы расскажем в статье:

  • По диаметру и длине вала
  • По габаритам и крепежным размерам
  • По сопротивлению обмоток
  • По току холостого хода
  • По току в клеммной коробке
  • С помощью индукционного счетчика (для бытовых электродвигателей)

Определение мощности двигателя по диаметру вала и длине

Простейшие способы определения мощности и марки двигателя – габаритные размеры – вал или крепежные отверстия. В таблице указаны длины и диаметры валов (D1) и длина (L1) для каждой модели асинхронного промышленного трехфазного мотора. Перейти к подробным габаритным размерам электродвигателей АИР

При замене сломанного советского электродвигателя на новый, часто оказывается, что на нем нет шильдика. Нам часто задают вопросы: как узнать мощность электродвигателя? Как определить обороты двигателя? В этой статье мы рассмотрим, как определить параметры электродвигателя без бирки — по диаметру вала, размерам, току. Заказать новый электродвигатель по телефону

Iн = Pн/(√3Uн х сosφ), кА

где Pн — номинальная мощность двигателя, кВт, Uн — напряжение в сети, кВ (0,38 кВ). Коэффициент мощности (сosφ) — паспортные значения двигателя.

Рис. 1. Паспорт электрического двигателя.

Если не известен коэффициент мощности двигателя, то номинальный его ток с малой погрешностью определяется по отношению «два ампера на киловатт», т.е. если номинальная мощность двигателя 10 кВт, то потребляемый им из сети ток будет приблизительно равен 20 А.

Для упомянутого на рисунке двигателя это отношение также выполняется (3,4 А ≈ 2 х 1,5). Более верные величины тока при применении данного отношения получаются при мощностях электродвигателей от 3 кВт.

При холостом ходе электродвигателя из сети потребляется маленький ток (ток холостого хода). При увеличении нагрузки увеличивается и ток. С увеличением тока повышается нагрев обмоток. Большая перегрузка приводит к перегреву обмоток двигателя, и возникает опасность выхода из строя электродвигателя.

При пуске из сети электрическим двигателем потребляется пусковой ток Iпуск, который в 3 — 8 раз выше номинального. Характеристика изменения тока представлена на графике (рис. 2, а).

Рис. 2. Характеристика изменения тока, потребляемого электродвигателем из сети (а), и влияние большого тока на колебания напряжения в сети (б)

Подлинную величину пускового тока для электродвигателя определяют зная величину кратности пускового тока — Iпуск/Iном. Кратность пускового тока — техническая характеристика двигателя, ее известна из каталогов. Пусковой ток рассчитывается согласно формуле: I пуск = Iх. х (Iпуск/Iном).

Понимание истинной величины пускового тока необходимо для подбора плавких предохранителей, проверки включения электромагнитных расцепителей во время пуска двигателя, при подборе автоматических выключателей и для высчитывания величины падения напряжения в сети при пуске.

Большой пусковой ток вызывает значительное падение напряжения в сети (рис. 2, б).

Если взять электросопротивление проводов, проложенных от источника до электродвигателя, равным 0,5 Ом, номинальный ток Iн=15 А, а пусковой ток Iп равным пятикратному от номинального, потери напряжения в проводах во время пуска составят 0,5 х 75 + 0,5 х 75 = 75 В.

На клеммах электродвигателя, а также и на клеммах рядом работающих электродвигателей напряжение будет 220 — 75 = 145 В. Это понижение напряжения вызывает торможение работающих электродвигателей, что влечет за собой еще большее повышение тока в сети и выход из строя предохранителей.

В электрических лампах в моменты запуска электродвигателей уменьшается накал (лампы «мигают»). Поэтому при включении электродвигателей стремятся уменьшить пусковые токи .

Для понижения пускового тока используется схема пуска электродвигателя с переключением обмоток статора со звезды на треугольник.

Рис. 3. Схема пуска электрического электродвигателя с переключением обмоток статора со звезды на треугольник.

Имеет принципиальное значение то, что далеко не каждый двигатель возможно включать по этой схеме. Широко распространенные асинхронные двигатели с рабочим напряжением 220/380 В, в том числе и двигатель, показанный на рисунке 1 при включении по этой схеме выйдут из строя.

Для понижения пускового тока электродвигателей энергично употребляют специальные процессорные устройства плавного пуска (софт-стартеры).

Проблема высоких пусковых токов: решение

Высокий пусковой ток может спровоцировать резкое, хотя и кратковременное падение напряжения, при котором прочие подключенные к сети устройства испытают недостаток энергии. Это нежелательно, поскольку негативно влияет на безопасность работы и долговечность оборудования.

Для решения задачи предусмотрены специальные дополнительные устройства, установка которых в процессе подключения и наладки двигателей позволяет:

  • максимально уменьшить значение пускового тока;
  • повысить плавность запуска;
  • снизить затраты на запуск агрегата, так как становится возможным применение менее мощных дизельных электростанций, стабилизаторов, проводов с меньшим сечением и пр.

Наибольшей эффективностью отличаются такие современные устройства, как частотные преобразователи и софтстартеры. Они обеспечивают высокую (более минуты) продолжительность поддержания пускового тока.

Пусковой ток и его кратность

Чтобы тронуть с места (пустить) двигатель, нужен громадный пусковой ток (Iп). Громадный – по сравнению с номинальным (рабочим) током Iн на установившейся скорости. В статьях обычно указывают, что пусковой ток превышает рабочий в 5-8 раз. Это число называется “Кратность пускового тока” и обозначается как коэффициент Кп = Iп / Iн.

Пусковой ток – это ток, который потребляет электродвигатель во время пуска. Узнать пусковой ток можно, зная номинальный ток и коэффициент Кп:

Iп = Кп · Iн

Номинальный ток всегда указан на шильдике двигателя:

Номинальный ток двигателя для разных напряжений и схем включения

Кп – рабочий параметр, который указан в характеристиках двигателя, но на корпусе двигателя он никогда не указывается.

Кратность пускового тока . На шильдике его обычно нет, а в документации и на сайтах производителей он присутствует:

Параметры двигателей. Кратность пускового тока

Судя по каталогам (их можно будет скачать в конце статьи, как обычно у меня), пусковой ток превышает номинальный в пределах от 3,5 до 8,5 раз.

Кратность пускового тока зависит прежде всего от мощности двигателя и от количества пар полюсов. Чем меньше мощность, тем меньше пусковой ток. А чем меньше пар полюсов (больше номинальные обороты) – тем больше пусковой ток.

Так происходит потому, что потребляемый ток и момент инерции при пуске зависит от конструкции двигателя и способа намотки. Мало полюсов – низкое сопротивление обмоток. Низкое сопротивление – большой ток. Кроме того, высокооборотистым движкам для полной раскрутки требуется больше времени, а это опять же тяжелый пуск.

Если объяснить более научным языком, то дело происходит так. Когда двигатель стоит, его степень скольжения S = 1. При раскручивании (или, как любят говорить спецы, разворачивании) S стремится к нулю, но никогда его не достигает – на то двигатель и называют асинхронным, ведь вращение ротора никогда не догонит вращение поля статора из-за потерь. Одновременно сердечник ротора насыщается магнитным полем, увеличивается ЭДС самоиндукции и индукционное сопротивление. А значит, уменьшается ток.

На самом деле не так всё просто, начинаем копать глубже.

Пускатель магнитный

Сегодня мы с вами в очередной раз поговорим про оборудование для коммутации путей розеточного монстра. Также обсудим как запустить двигатель в обратную сторону, и ещё много интересных вопросов. Как говорится, не спешите закрывать окно в браузере. Мы начинаем.

Электричество штука сложная, и многие из его свойств до сих пор не изучены. Но многое уже известно, и со всем этим нужно существовать и взаимодействовать. Существует масса мест и ситуаций на нашей планете, которые абсолютно немыслимы без электричества. Например, вы вряд ли даже задумаетесь о том, чтобы купить квартиру, в розетках которой не прописался монстр. Кстати, для тех кто не в курсе, кто такой монстр и с чем его есть не стоит, можете почитать здесь. После прочтения этой статьи многие шутки в этом блоге станут вам намного понятнее, да и вообще стоит прочитать все от корки до корки. Это очень интересно и увлекательно. Но вернёмся обратно к теме. Вы и думать не можете про то, как жить без электричества. Но не каждый из вас задумывается о тех процессах и устройствах, которые находятся по ту сторону баррикад. Вот вы же, вызывая лифт, не задумываетесь как происходит процесс? Или вы не думаете как включается лампа? Вы просто нажимаете кнопку или выключатель и получаете результат. Но мир электричества намного больше кнопок и выключателей. И сегодня мы поговорим про магнитные пускатели.

Что же такое магнитный пускатель? В первую очередь, это электромагнитное или электромеханическое комбинированное устройство. Служит оно для пуска и поддержания непрерывной работы электродвигателей, их защиты. Это хитрое устройство занимается распределением электричества и его управлением. Оно даже способно заставить электродвигатель работать в обратном направлении, но об этом позже. Итак, в своём арсенале пускатель магнитный имеет немало аксессуаров. Некоторые пускатели оснащены функцией аварийного отключения, при обрыве одной из фаз трехфазного электричества. Стоит отметить, что магнитный пускатель это очень умное устройство, которое бережёт двигатели и продлевает их срок службы. Делает он это посредством переключения фаз по схемам “звезда” и “треугольник”, но это целая тема для отдельной статьи. Так что об этом, в другой раз. Из нескольких магнитных пускателей обычно собирают схемы сложного управления. Схемы бывает как обычные, так и реверсивные. Реверсивные схемы — те, которые запускают обратное нормальному движению. Самым распространённым применением схем обоих типов является самый обычный лифт. Ведь если вдуматься, то он ездит вверх и вниз, а это значит, что двигатель постоянно крутится в разные стороны.

Вроде с функциями пускателя разобрались. Теперь давайте про аксессуары. Поверьте, они во многом похожи на аксессуары от модульных контакторов. Здесь в ассортиментной матрице будут присутствовать те же тепловые реле, реле времени и дополнительные контакты. Тепловые реле работают в зависимости от температуры. Например, предельная температура работы двигателя, ну скажем, градусов двести. Так вот, как только температура двигателя перевалит за эту отметку, реле сработает и пускатель разомкнет контакты. Примерно по такому же принципу работает реле времени. Ну а дополнительные контакты, это просто дополнительные вводы для проводов, для подсоединения чего бы то ни было.

Теперь давайте поговорим о том, как правильно выбрать магнитный пускатель. В следующий раз мы поговорим про магнитный контактор. Разница в данном случае в том, что пускатель рассчитан на в разы большую мощность. Ну все, переходим к выбору магнитных пускателей

И первым, на что стоит обратить внимание, это номинальный ток. Как вы помните из многих предыдущих статей измеряется эта характеристика в такой величине, как амперы

Для самых стандартных магнитных пускателей это значение обычно в пределах от ста до пятисот ампер. Тот, кто внимательно читает наш блог, помнит, как перевести амперы в киловатты и получить мощность. Так будет понятнее. Ну а те кто не помнит или не знает, милости просим на страницы блога, там все есть.

Вторые несколько характеристик связаны непосредственно с напряжением. Первая — номинальное напряжение. Если кто не в курсе, то это напряжение сети, к которой можно подключить пускатель. Как правило магнитные пускатели универсальны, и рассчитаны на напряжение от 220 до 660 вольт. И во всех стандартных сетях они работают хорошо. Второе напряжение — максимальное напряжение по изоляции. Ну тут все совсем просто. Эта характеристика показывает максимальное напряжение, при котором будет себя корректно вести госпожа изоляция. С понятными простым людям характеристиками на этом все.

Климатические исполнения электродвигателей

При выборе электродвигателя учитываются не только его технические характеристики, но и условия окружающей среды, в которых он будет эксплуатироваться.

Современные электроприводы выпускаются в разных климатических исполнениях. Категории маркируются соответствующими буквами и цифрами:

  • У — модели для эксплуатации в умеренном климате;
  • ХЛ — электродвигатели, адаптированные к холодному климату;
  • ТС — исполнения для сухого тропического климата;
  • ТВ — исполнения для влажного тропического климата;
  • Т — универсальные исполнения для тропического климата;
  • О — электродвигатели для эксплуатации на суше;
  • М — двигатели для работы в морском климате (холодном и умеренном);
  • В — модели, которые могут использоваться в любых зонах на суше и на море.

Цифры в номенклатуре модели указывают на тип ее размещения:

  • 1 — возможность эксплуатации на открытых площадках;
  • 2 — установка в помещениях со свободным доступом воздуха;
  • 3 — эксплуатация в закрытых цехах и помещениях;
  • 4 — использование в производственных и других помещениях с возможностью регулирования климатических условий (наличие вентиляции, отопления);
  • 5 — исполнения, разработанные для эксплуатации в зонах повышенной влажности, с высоким образованием конденсата.

Определение мощности по потребляемому току

Мощность двигателя можно определить по потребляемому им току. Для измерения силы тока будем использовать токоизмерительные клещи. Перед началом измерений предварительно отключаем подачу напряжения на электродвигатель. После этого снимаем крышку с клеммной коробки и расправляем токопроводящие жилы, чтобы обеспечить удобный доступ к ним. Затем подаем напряжение на двигатель и даем поработать в режиме номинальной нагрузки в течение нескольких минут. Устанавливаем предел измерений на значение «200 А» и токовыми клещами выполняем измерение потребляемого тока на одной из фаз. Далее замеряем напряжение на обмотках с помощью щупов, входящих в комплект токоизмерительных клещей. Колесо выбора режимов и пределов измерений устанавливаем в позицию для измерения переменного напряжения с пределом в 750 В. Щуп красного цвета присоединяем к гнезду для измерения напряжения, сопротивления и силы тока до десяти Ампер, а черного – к гнезду «COM». Замеры выполняем между клеммами «U1-V1» или «V1-W1» или «U1-W1». Расчет мощности электродвигателя выполняем по формуле: S=1.73×I×U, где S – полная мощность (кВА), I – сила тока (А), U – значение линейного напряжения (кВ)

Замеряем ток на одной из фаз, а также напряжение и подставляем полученные значения в формулу (например, при замере мы получили ток равный 15,2А, а напряжение – 220В): S=1.73×15.2×0.22=5.78 кВА Важно отметить, что мощность эл. двигателя не зависит от схемы соединения обмоток статора

В этом можно убедиться, выполнив измерения на этом же двигателе, но с обмотками статора, соединенными по схеме «звезда»: измеренный ток будет равен 8,8А, напряжение – 380В. Также подставляем значения в формулу: S=1.73×8,8×0.38=5.78 кВА По этой формуле мы определили мощность электродвигателя, потребляемую из электрической сети. Чтобы узнать мощность двигателя на валу, нужно полученное значение умножить на коэффициент мощности двигателя и на коэффициент его полезного действия. Таким образом, формула мощности двигателя выглядит так: P=S×сosφ×(η÷100), где P – мощность двигателя на валу; S – полная мощность двигателя; сosφ – коэффициент мощности асинхронного электродвигателя; η – КПД двигателя. Поскольку мы не располагаем точными данными, подставим в формулу средние значения cosφ и КПД двигателя: P=5,78×0,8×0,85=3,93≈4кВт Таким образом, мы определили мощность электродвигателя, которая равна 4 кВт. Мы рассказали о самых надежных методах определения мощности электродвигателя. Вы также можете посмотреть наше видео, в котором подробно показано, как определить мощность электродвигателя.

Источник

Пример определения тока самозапуска двигателей 6 кВ

Определить ток самозапуска ответственных двигателей, питающихся от трансформатора с расщепленными обмотками.

Расчетная схема, схема замещения и данные трансформатора приведены на рис.1 и 2.

Рис.1 — Расчетная схема

Рис.2 — Схема замещения и данные трансформатора

Расчет производится в следующем порядке.

1. Определяется суммарный пусковой ток электродвигателей Iпуск.сумм. для каждой секции 6 кВ. Расчет приведен в таблице 1 и 2.
Таблица 1 — Характеристики электродвигателей

Наименование агрегата Тип двигателя Номинальная мощность Рн, кВт Ном. ток Iн, А Кратность пускового тока kпуск Пусковой ток Iпуск=kп*Iн
Дымосос двухскоростной ДАЗО-141410/12А 1500/850 204/118 6,1/5,5 1245 (вторая скорость)
Дутьевой вентилятор двухскоростной ДАЗО-15498/10 630/320 76,5/42,5 5,5/5,7 420 (вторая скорость)
Питательный электронасос АС-4000/6000 4000 445 6,3 2800
Вентилятор первичного дутья ДАЗО-12-55-8 250 31,5 6,2 195
Конденсатный насос АВ-113-4 250 29,4 5,8 170
Элетронасос масляный пусковой А-114-6М 200 23,6 5,8 137
Резервный возбудитель ДАЗ-1810-6 1200 142 10,2 1450
Циркуляционный насос ВДД-213/54-16 1700 215 5,4 1160
Трансформатор 6,3/0,4 кВ, 750 кВА 69 3 207
Трансформатор 6,3/0,4 кВ, 560 кВА 52 3 156

Таблица 2 — Определение суммарных пусковых токов электродвигателей

Наименование агрегата Тип двигателя Распределение по секциям
I секция II секция
Кол.,шт Пусковой ток, А Кол.,шт Пусковой ток, А
Дымосос двухскоростной ДАЗО-141410/12А 1 1245 1 1245
Дутьевой вентилятор двухскоростной ДАЗО-15498/10 1 420 1 420
Питательный электронасос АС-4000/6000 1 2800 2 2*2800=5600
Вентилятор первичного дутья ДАЗО-12-55-8 1 195 1 195
Конденсатный насос АВ-113-4 2 2*170=340 1 170
Элетронасос масляный пусковой А-114-6М 1 137
Резервный возбудитель ДАЗ-1810-6 1 1450
Циркуляционный насос ВДД-213/54-16 1 1160
Трансформатор 6,3/0,4 кВ, 750 кВА 3 3*207=621 5 5*207=1035
Трансформатор 6,3/0,4 кВ, 560 кВА 1 156 1 156
Суммарный пусковой ток: 8525 8820

2. Определяется суммарное эквивалентное сопротивление электродвигателей согласно выражения 3 для каждой секции 6 кВ:

I секция

II секция

3. Определяется сопротивление трансформатора, исходя из напряжения короткого замыкания Uк.вн_нн, отнесенного к мощности расщепленной обмотки равной 16 МВА.

4. Определяется эквивалентное сопротивление самозапуска от ответственных двигателей для каждой секции согласно выражения 2.

I секция: хсам = хтр. + хдв.сум. = 0,286 + 0,423 = 0,709 Ом

II секция: хсам = хтр. + хдв.сум. = 0,286 + 0,413 = 0,699 Ом

5. Определяется максимальный ток самозапуска двигателей обеих секций согласно выражения 1.

I секция

II секция

6. Определяется максимальный ток самозапуска двигателей обеих секций.

Iсам = Iсам1 + Iсам2 = 5150 + 5200 = 10350 A

7. Определяется остаточное напряжение для наиболее нагруженной II секции, согласно выражения 5.

Литература:
1. Библиотека Электромонтера. Байтер И.И. Релейная защита и автоматика питающих элементов собственных нужд тепловых электростанций. 1968 г.

Как уменьшить пусковой ток асинхронного двигателя

Решить проблему большого пускового тока электрически можно двумя путями:

  1. Вначале подавать на двигатель пониженное напряжение, а затем, по мере разгона, напряжение и скорость вращения поднять до номинального значения. Такой способ применяется в электронных устройствах запуска двигателей – софтстартерах (УПП) и преобразователях частоты (частотниках).
  2. Использовать ограничители пускового тока, когда при пуске двигатель питается через мощные резисторы, а потом по таймеру переключается на номинал. Сопротивление резисторов соизмеримо с сопротивлением обмотки стартера (единицы Ом, в зависимости от мощности). Это устройство легко сделать самому (контактор + реле времени).
  3. Сразу подавать полное напряжение, но сначала подключать обмотки так хитро, чтобы двигатель не раскручивался на полную мощность. И только когда в этом режиме двигатель раскрутится насколько это возможно, включать его на полную. Эта схема называется “Звезда – Треугольник”, читайте в следующей статье.

Можно сконструировать какую-то муфту, коробку передач, вариатор – для того чтобы раскрутить двигатель вхолостую, а потом подключить потребителя механического момента.

В современном оборудовании двигатели мощнее 2,2 кВт практически никогда напрямую не включают, поэтому для них пусковые токи рояли не играют. Для уменьшения пускового тока (и не только) в основном применяют преобразователи частоты, о которых будут отдельные статьи.