Нарушение электроизоляции
Электрический пробой часто связан с выходом из строя твердых или жидких изоляционных материалов, используемых внутри высокого напряжения. трансформаторы или же конденсаторы в распределение электроэнергии сетка, обычно приводящая к короткое замыкание или перегоревший предохранитель. Электрический пробой может также произойти через изоляторы, которые подвешивают подвесные потолки. линии электропередачвнутри подземных силовых кабелей или линий, идущих к ближайшим ветвям деревьев.
Пробой диэлектрика также важен при проектировании интегральные схемы и другие твердотельные электронные устройства. Изоляционные слои в таких устройствах спроектированы так, чтобы выдерживать нормальные рабочие напряжения, но более высокое напряжение, такое как статическое электричество, может разрушить эти слои, сделав устройство бесполезным. Диэлектрическая прочность конденсаторы ограничивает количество хранимой энергии и безопасное рабочее напряжение устройства.
Пробой диэлектрика
Помните мы в данной статье уже говорили о том, что у каждого диэлектрика есть свой предел и что нельзя однозначно называть вещество диэлектриком и нужно рассматривать его в динамике. Так вот, давайте вернемся к этой теме и немного углубимся в нее. Знаете ли вы, что происходит при поляризации?
Дело в том, что при этом явлении начинается такое состояние, называемое стационарным или же квазистанционырным, если воздействие напряжения извне переменное. Такое состояние отличается от обычного тем, что значения поляризации могут очень долго держаться на одном уровне. Вместе с ними стабилизируется и электропроводность.
Если сразу же начать увеличивать напряженность в таком поле, то можно будет очень точно определить тот предел, при котором эта самая стабильность будет резко нарушаться. Сразу же увеличиться ток, электропроводность, а это уже прямой путь из диэлектрика в проводники. Действительно, после этого вещество уже нельзя охарактеризовать, как диэлектрик. Такой процесс перехода диэлектрика в проводники называется пробоем диэлектрика.
Когда мы поняли, что такое пробой, давайте теперь поймем, как можно легко определить, в какой момент пробой диэлектрика происходит
Как мы можем понять, временной порог пробоя может зависеть от температуры, агрегатного состояния вещества и многих других факторов, тут важно другое. Давайте разберем основные случаи пробоя, их всего лишь два, поэтому не пугайтесь:
- тепловые явления, при которых возрастающая электропроводность обуславливается тем, что диэлектрик очень быстро нагревается, из-за чего стационарным тепловое состояние уже быть не может
- электрические явления, которые происходят из-за увеличения количества свободных электронов и ионов. Это тоже происходит в двух случаях. Либо появление свободных зарядов обусловлено сбитием их другими движущимися зарядами, либо сбитием полем.
Подрывные устройства
Пробой диэлектрика в твердом изоляторе может навсегда изменить его внешний вид и свойства. Как показано в этом Фигура Лихтенберга
А подрывное устройство[нужна цитата] предназначен для электрического перенапряжения диэлектрик за его диэлектрическая прочность так, чтобы намеренно вызвать электрическую поломку устройства. Нарушение вызывает внезапный переход части диэлектрика из изолирующего состояния в сильно проводящий государственный. Этот переход характеризуется образованием электрическая искра или же плазма канал, возможно, за которым следует электрическая дуга через часть диэлектрического материала.
Если диэлектрик является твердым, постоянные физические и химические изменения на пути разряда значительно снизят диэлектрическую прочность материала, и устройство можно использовать только один раз. Однако, если диэлектрический материал представляет собой жидкость или газ, диэлектрик может полностью восстановить свои изолирующие свойства после того, как ток через плазменный канал будет прерван извне.
Коммерческий искровые разрядники используйте это свойство для резкого переключения высокого напряжения в импульсная мощность системы, чтобы обеспечить всплеск защита для телекоммуникации и электричество систем и воспламенять топливо через Свечи зажигания в двигатель внутреннего сгорания. Датчики искрового разрядника использовались в ранних системах радиотелеграфа.
Естественные причины старения изоляции
Естественное старение материала, приводящее к ухудшению технических характеристик ПВХ изоляции и в конечном итоге к выходу из строя электрического кабеля, состоит в постепенном уменьшении концентрации пластификаторов в составе пластиката с течением времени эксплуатации. В результате материал теряет пластичность, растрескивается и уплотняется.
При этом происходит его усадка, уменьшение внешнего диаметра изолированных жил, что приводит к снижению диэлектрических свойств изоляции. Появление микротрещин способствует увеличению токов утечки, перегреву проводов и в конечном итоге короткому замыканию между фазной и нулевой жилой.
Другим естественным фактором, уменьшающим срок службы кабеля, является действие солнечной радиации, которая значительно ускоряет процесс усыхания материала и его естественного старения. Особенно губительно действует на ПВХ пластикат ультрафиолетовая часть спектра солнечного света.
Атмосферные осадки, сопровождаемые резким понижением температуры, также способствуют быстрому растрескиванию поливинилхлоридного пластиката. Низкие температуры приводят к разным изменениям линейных размеров металлических проводов и изоляционной оболочки, вызывая между ними дополнительные механические напряжения.
Как не путать проводники и диэлектрики
До этого мы с вами очень подробно рассмотрели диэлектрики, узнали, как они работают, как устроены внутри. Теперь же давайте узнаем, как они используются в реальной жизни и как не спутать их с проводниками.
Где применяются диэлектрики
Диэлектрики применяются во многих сферах жизни, а именно в тех, где нужен электрический ток.
Особенно активно их используют в сельском хозяйстве, промышленности и приборостроении.
Твердые диэлектрики
Диэлектрики бывают разные. Например, твердые диэлектрики могут обеспечивать безопасность приборов, работающий на электричестве. Они являются хорошими изоляторами тока, а значит очень сильно влияют на долговечность этих приборов. Одним из примеров можно назвать диэлектрические перчатки.
Жидкие диэлектрики
А вот диэлектрики жидкие нужны немного для другого. Они то используются в конденсаторах, кабелях, системах охлаждения с циркуляцией воздуха и во многих других приборах.
Газообразные диэлектрики
Также существуют и газообразные диэлектрики, хоть они и не так популярны в наши дни. Эти диэлектрики создала сама природа. Например, водород используется для мощных генераторов, у которых просто запредельная теплоемкость, а вот азот помогает по максимуму сократить окислительные процессы. Самым же простым примером газообразного диэлектрика мы считаем воздух. Да-да, это тоже диэлектрик, причем еще и тепло может отводить.
Газы и вакуум
В стандартных условиях при атмосферном давлении, воздух служит отличным изолятором, что требует применения значительного напряжения 3,0 кВ / мм до разрыва вниз (например, молнии или искрения через обкладками , или электродами свечи зажигания ) . В частичном вакууме этот потенциал пробоя может уменьшиться до такой степени, что две неизолированные поверхности с разными потенциалами могут вызвать электрический пробой окружающего газа. Это может привести к повреждению устройства, так как поломка аналогична короткому замыканию.
В газе напряжение пробоя можно определить по закону Пашена .
Напряжение пробоя в частичном вакууме представлено как
- Vбзнак равноBпdпер(Апd)-перпер(1+1γsе){\ displaystyle V _ {\ mathrm {b}} = {\ frac {B \, p \, d} {\ ln \ left (A \, p \, d \ right) — \ ln \ left }}}
где — потенциал пробоя в вольтах постоянного тока , а — константы, которые зависят от окружающего газа, представляют давление окружающего газа, представляют расстояние в сантиметрах между электродами и представляют собой коэффициент эмиссии вторичных электронов .
Vб{\ Displaystyle V _ {\ mathrm {b}}}А{\ displaystyle A}B{\ displaystyle B}п{\ displaystyle p}d{\ displaystyle d}γsе{\ displaystyle \ gamma _ {\ mathrm {se}}}
Подробный вывод и некоторая справочная информация приведены в статье о законе Пашена .
Устройство разрядника
Разрядник состоит из двух основных частей: электродов и дугогасительного устройства.
Устройство разрядника в зависимости от его вида бывает разным.
Разрядник имеет прочный герметичный корпус, который предохраняет его от внешних механических повреждений. Промежуток между электродами называется искровым промежутком. Один из электродов присоединяется к защищаемому элементу электрической цепи, а другой обязательно заземляется. Без заземления разрядник бесполезен.
Важно то, что дугогасительное устройство несёт большее значение в работе разрядника, в ином случае разрядник не сможет предотвратить от фазного пробоя. Фазный пробой повлечет за собой короткое замыкание (КЗ)
Рис 2. Устройство трубчатого разрядника
Пробивное напряжение – это одна из главных характеристик разрядника, которая показывает напряжение, при котором в разряднике, между его электродами возникает искры, то есть разрядник пробивается. Полярность подключение к электродам 2 и 3 не имеет существенной разницы, если это разрядник переменной сети.
Дугогасительное устройство в данном случае представляет из себя корпус, который выделяет газ. Современные методы производства позволяют создавать разрядники различных характеристик.
Разрядники 6 КВ, 10 КВ, 35кВ, 110 кВ, 220 кВ
Основные характеристики разрядников 6-220 кВ приведены в таблицах 2 и 3.
Таблица 2 – Технические характеристики разрядников 6 кВ, 10 кВ
Параметр | Единица измерения | РВО-6 Н | РВО-10 Н |
Класс напряжения сети | кВ | 6 | 10 |
Наибольшее допустимое напряжение | кВ | 7,5 | 12,7 |
Пробивное напряжение при частоте 50 Гц в сухом состоянии и под дождём: | |||
не менее | кВ | 16 | 26 |
не более | кВ | 19 | 30,5 |
Импульсное пробивное напряжение при предразрядном времени от 2 до 20 мкс, не более | кВ | 32 | 48 |
Остающееся напряжение при волне 8 мкс, не более: | |||
с амплитудой тока 3000А | кВ | 25 | 43 |
с амплитудой тока 5000А | кВ | 27 | 45 |
Ток утечки, не более | мкА | 6 | 6 |
Токовая пропускная способность: | |||
20 импульсов тока волной 16/40 мкс | кА | 5,0 | 5,0 |
20 импульсов тока прямоугольной волной длительностью 2000 мкс | А | 75 | 75 |
Длина пути утечки внешней изоляции, не менее | см | 18 | 26 |
Допустимое натяжение проводов, не менее | Н | 300 | 300 |
Высота, не более | мм | 294 | 411 |
Масса, не более | кг | 3,1 | 4,2 |
Таблица 3 – Технические характеристики разрядников 35кВ, 110 кВ, 220 кВ
Параметр | Единица измерения | РВС-35 РВС-35 Т1 | РВС-110М РВС-110М Т1 | РВС-220М РВС-220М Т1 |
Класс напряжения сети | кВ | 35 | 110 | 220 |
Наибольшее допустимое напряжение | кВ | 40,5 | ||
Пробивное напряжение при частоте 50 Гц в сухом состоянии и под дождём: | ||||
не менее | кВ | 78 | 200 | 400 |
не более | кВ | 98 | 250 | 500 |
Импульсное пробивное напряжение при предразрядном времени от 2 до 20 мкс, не более | кВ | 125 | 285 | 530 |
Остающееся напряжение при волне 8 мкс, не более: | ||||
с амплитудой тока 3000А | кВ | 125 | 315 | 630 |
с амплитудой тока 5000А | кВ | 130 | 335 | 670 |
Ток утечки, не более | мкА | 143 | 367 | 734 |
Токовая пропускная способность: | ||||
20 импульсов тока волной 16/40 мкс | кА | 10,0 | 10,0 | 10,0 |
20 импульсов тока прямоугольной волной длительностью 2000 мкс | А | 150 | 150 | 150 |
Длина пути утечки внешней изоляции, не менее | см | 115 | 345 | 690 |
Допустимое натяжение проводов, не менее | Н | 300 | 500 | 500 |
Высота, не более | мм | 1280 | 3100 | 4620 |
Масса, не более | кг | 73 | 175 | 497 |
Физический смысл
Напряженность электрического поля возрастает с увеличением напряжения между проводниками, это могут быть пластины конденсатора или жилы кабеля (в индивидуальной обмотке), в определенный момент возникает пробой изоляции. Величина, характеризующая напряженность в момент пробоя называется электрическая прочность и определяется по формуле:
здесь: U – напряжение между проводниками, d – толщина диэлектрика.
Электрическая прочность измеряется в кВ/мм (кВ/см). Эта формула справедлива для плоских проводников (в виде лент или пластин) с равномерным слоем изоляции между ними, как, например, в бумажном конденсаторе.
Короткие замыкания в электрических аппаратах и кабелях происходят как раз именно из-за пробоя изоляции, в этот момент возникает электрическая дуга. Поэтому электрическая прочность одна из важнейших характеристик изоляции. Требования к электрической прочности изоляции электрооборудования и электроустановок напряжение 1 – 750 кВ изложены в ГОСТ 55195-2012 и ГОСТ 55192-2012 (методы испытаний электрической прочности на месте установки).
Виды пробоя
У однородных диэлектриков различают несколько видов пробоя — электрический и тепловой. Также существует еще ионизационный пробой, который является следствием ионизации газовых включений в твердом диэлектрике. Электрическая прочность диэлектриков, во многом, зависит от неоднородности поля и возникновения процессов ионизации газа (интенсивности и характера) или иных химических изменений материала. Это приводит к тому, что пробой в одном и том же материале возникает при разном напряжении. Поэтому пробивное напряжение определяется средним значением по результатам многочисленных испытаний. Зависимость электрической прочности газа от плотности (давления) и толщины газового слоя выражается законом Пашена: Uпр= f (pA)
Электрические диэлектрики. Какие они?
Как нас учили в школе, некоторые вещества плохо проводят электрический ток, а некоторые хорошо. Например, дерево очень плохо проводит, а вот алюминий проводит в разы лучше. Так вот, если вспомнить терминологию, то вещества, проводящие электричество хорошо, называются проводниками, а те, что его проводят плохо, называются… Ну как же их? Ах да, они называются электрическими диэлектриками.
Конечно мы не говорим о том, что они совсем ток не проводят, нет. Они, конечно же являются проводниками, просто сравнительно довольно плохими. Диэлектрики с другой стороны еще и вещества, которые могут довольно долго хранить в себе электрическое поле, причем на это не нужна будет внешняя энергия.
Теоретические сведения
Среди различных газов наибольшее техническое применение как диэлектрик имеет воздух, т. к. он является естественной изоляцией в большинстве электрических конструкций: трансформаторов, конденсаторов, воздушных выключателях, линий электропередачи. Как диэлектрик воздух имеет положительные свойства: быстро восстанавливает свою электрическую прочность после пробоя, незначительно изменяет диэлектрическую проницаемость, его диэлектрические потери очень малы (tgδ=10). Отрицательные свойства воздуха как диэлектрика: Низкая теплопроводность 0.00025-0.00036 вт/см*С, невысокая электрическая прочность, по сравнению с твёрдыми и жидкими диэлектриками, способность увлажняться, образовывать оксиды, поддерживать горение. Электрическая прочность воздуха не является постоянной и зависит от ряда факторов: Давления, влажности, формы поля между электродами, температуры, химического состава газа.
Наиболее важными являются:
1) форма электродов и схема включения их в цепь, определяющая характер поля в промежутке между электродами;
2) плотность и влажность воздуха;
3) род приложенного напряжения (постоянное, переменное промышленной частоты, высокой частоты и импульсное).
Механизм пробоя газа в равномерном поле.
Газы при небольших значениях напряжённости электрического поля обладают исключительно малой проводимостью, т. к. количество носителей электрических зарядов в атмосферном воздухе и поэтому при приложении малой разности потенциалов к воздушному промежутку в нём потечёт ток, практически незаметный и не влияющий на изолирующую способность воздуха.
Небольшое количество содержащихся в газе положительных и отрицательных ионов и электронов, находящихся, как и нейтральные молекулы газа, в беспорядочном тепловом движении, при воздействии поля получает некоторую добавочную скорость и начинает в зависимости от знака заряда перемещаться в направлении поля или против. При этом заряженная частица получает энергию.
W=q*Uλ
Магнитное поле
Где q — заряд, Uλ — разность потенциалов на длинне свободного пробега.
Если поле достаточно, то можно считать, что
Uλ=E*l,
Где Е — напряжённость поля, l-среднее расстояние, пройденное заряженной частицей без столкновения, то есть, длинна свободного пробега – λ.
Отсюда
Газ и изоляция
Казалось бы, как связана ионизация газов и изоляция электрооборудования? Газ и электричество связаны самым тесным образом, ведь он является отличным диэлектриком. И поэтому для изоляции высоковольтного оборудования используется газовая среда.
В качестве диэлектрика используются: воздух, азот и элегаз. Элегаз – это гексафторид серы, наиболее перспективный, в плане электроизоляции материал. Для распределения и приема электроэнергии высокого напряжения, более 100 кВ (отвод электростанций, прием электричества в крупных городах и так далее), используются комплектные распределительные устройства (КРУЭ).
Основной областью применения элегаза как раз и являются КРУЭ. Газ помимо использования в качестве электроизоляции, может возникать в процессе эксплуатации маслонаполненных кабелей (или кабелей с пропитанной бумажной изоляцией). Так как происходят цикличный нагрев и охлаждение кабеля в результате прохождения напряжения разной величины.
К кабелям с пропитанной бумажной изоляцией применим термин «термическая деструкция». В результате пиролиза целлюлозы возникают водород, метан, углекислый и угарный газы. В процессе старения изоляции, возникающие газовые образования (при повышенном напряжении) вызывают ионизационный пробой изоляции. Как раз по причине ионизационных явлений силовые кабели с изоляцией из пропитанной маслом бумаги (с вязкой пропиткой) применяются в силовых линиях напряжением до 35 кВ и все реже применяются в современной энергетике.
А откуда берется низкая электропроводность?
Как мы знаем из базовой программы по физике, все вещества состоят из атомов. И эти атомы очень активно взаимодействуют друг с другом. У каждого из них есть свой заряд, и благодаря зарядам атомы так или иначе взаимодействуют.
Однако, как же создается такая низкая электропроводность? Вроде же есть атомы, они как-то там взаимодействуют и ток по ним мог бы идти, но не все так просто. Залогом того, чтобы проводимость вещества была низкой, выступает очень важный факт.
Если при наложении поля электроны, ионы и другие частицы не смогут свободно перемещаться или будут это делать очень плохо, то и электропроводность будет низкая, ведь все будет стоять на своих местах и свободным электронам будет просто некуда деться.
Классификация
По агрегатному состоянию все электроизоляционные материалы подразделяют на жидкие, газообразные, твердые. Самой масштабной является последняя группа диэлектриков. К ним относятся пластмассы, керамические изделия, высокополимерные материалы.
В зависимости от химического состава, электроизоляционные материалы подразделяют на неорганические и органические.
В качестве основного химического элемента в органических изоляторах выступает углерод. Максимальные температуры выдерживают неорганические материалы: керамика, слюда.
В зависимости от способа получения диэлектрики принято разделять на синтетические и природные (естественные). Каждый из видов имеет определенные особенности. В настоящее время многочисленной группой являются синтетические вещества.
Твердые диэлектрические материалы дополнительно подразделяют на отдельные подкатегории по структуре, составу, технологическим характеристикам материалов. Например, существуют воскообразные, керамические, минеральные, пленочные изоляторы.
Для всех этих материалов характерна электрическая проводимость. С течением времени у подобных веществ наблюдается изменение значения тока из-за снижения тока абсорбции. С определенного момента в электроизоляционном материале существует только ток проводимости, от величины которого и зависят свойства данного материала.
Напряжение пробоя воздуха.
Страница 1 из 2 | На страницу 1 , 2 След. |
JLCPCB, всего $2 за прототип печатной платы! Цвет — любой! Зарегистрируйтесь и получите два купона по 5$ каждый:https://jlcpcb.com/cwc
Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет Обобщив богатый опыт и ноу-хау в сфере силовой электроники, компания Infineon представляет CoolSiC MOSFET. Мы сделали подборку статей о технологии CoolSiC, которая поможет вам вывести КПД и надёжность ваших устройств силовой электроники на высочайший уровень! SoC BlueNRG-LP — новая микросхема от STMicroelectronics со встроенным микроконтроллером Cortex-M0+ и приемопередатчиком BLE. В данной статье мы рассмотрели режимы пониженного потребления и программную поддержку пониженного энергопотребления в программном пакете BlueNRG-LP DK, процедуру обновления прошивки по эфиру с помощью специального BLE-сервиса, особенности работы UART-загрузчика с функцией защиты памяти, и другое. Последний раз редактировалось Yarik9610 Пн фев 20, 2012 18:34:12, всего редактировалось 1 раз.ПРИСТ расширяет ассортимент Думаю, что различные авторы измеряли данное значение разными косвенными методами: измеряли напряжение пробоя при фиксированном расстоянии между электродами (или наоборот) в различных условиях. Затем напряжение делили на расстояние, получали якобы искомую напряженность пробоя, совершенно забывая, что на требуемую разность потенциалов электродов влияет не только расстояние между электродами, но и их форма, размеры, материал. Так же напряженность поля в пространстве между электродами разная, равно как и у поверхности электродов в различных местах. Вообще, пробой воздуха довольно сложное явление, какие-либо количественные измерения ещё более сложны. Почитайте о том, какие бывают разновидности электрических разрядов в газах. Это довольно увлекательно и познавательно. _________________ И ты врёшь. Vladisman Там ещё давление воздуха и температура влияют. И если есть желание повторить дома замеры то нужно взять сферические электроды. По справочнику диэлектрическая прочность воздуха 3 МВ/м при зазоре 0,01 м . а вот перевести это в напряжение сложней. нужно указать форму электродов. хотя вот даже таблицы есть между острыми электродами напряжение нужно гораздо меньше. _________________ И ты врёшь. Vladisman в электрике, принято грубо считать (с запасом) 1 мм = 1 кВольт Часовой пояс: UTC + 3 часа |
Нарушение электроизоляции
Электрический пробой часто связан с выходом из строя твердых или жидких изоляционных материалов, используемых внутри высокого напряжения. трансформаторы или же конденсаторы в распределение электроэнергии сетка, обычно приводящая к короткое замыкание или перегоревший предохранитель. Электрический пробой может также произойти через изоляторы, которые подвешивают подвесные потолки. линии электропередачвнутри подземных силовых кабелей или линий, идущих к ближайшим ветвям деревьев.
Пробой диэлектрика также важен при проектировании интегральные схемы и другие твердотельные электронные устройства. Изоляционные слои в таких устройствах спроектированы так, чтобы выдерживать нормальные рабочие напряжения, но более высокое напряжение, такое как статическое электричество, может разрушить эти слои, сделав устройство бесполезным. Диэлектрическая прочность конденсаторы ограничивает количество хранимой энергии и безопасное рабочее напряжение устройства.
Особенности процесса
Если напряженность электрического поля имеет большее значение, чем предел электрической прочности, возникает пробой диэлектрика. Это процесс его разрушения. Он приводит к потере в месте пробоя таким материалом его первоначальных электроизоляционных характеристик.
Пробивное напряжение — это величина, при которой наступает пробой диэлектрика.
Электрическая прочность характеризуется значением напряженности поля.
Пробой твердых диэлектриков является электрическим либо тепловым процессом. В его основе находятся явления, которые приводят к лавинному возрастанию в твердых изоляционных материалах величины электрического тока.
Пробой твердых диэлектриков имеет характерные признаки:
- отсутствие или слабая зависимость от температуры и напряжения величины проводимости;
- электрическая прочность материала в однородном поле независимо от толщины используемого диэлектрического материала;
- узкие пределы механической прочности;
- сначала ток возрастает по экспоненциальному закону, а пробои твердых диэлектриков сопровождаются скачкообразным возрастанием тока;
- в неоднородном поле этот процесс возникает в месте с максимальной напряженностью поля.
Воздействие влаги и масла.
На снижение изоляции может действовать как влажность окружающей среды, так и наличие в ней агрессивных примесей. Одним из наиболее опасных воздействий является забрызгивание маслом обмотки статора. Отмечены случаи увлажнения обмоток статоров у электродвигателей типа АТД-8000, связанные с нарушением герметичности системы водяного охлаждения вследствие образования трещин в стержнях ротора, в охлаждающих элементах статора, появления течей в соединительных трубках. Течь воды приводит к местному увлажнению обмотки. Имел место случай механического (повреждения изоляции верхних стержней обмотки статора из-за нарушения герметичности места пайки трапецеидальной части стержня ротора с наконечником. Такое механическое повреждение изоляции верхних стержней обмотки статора струей воды может иметь место только на выходе из паза на участке длиной 45 мм. iB пазовой части стержень защищен клином, а в лобовой — бандажом ротора. Вероятность повреждения на этом участке увеличивается также из-за наличия в этом месте пайки стержня ротора с наконечником. В электродвигателях типа СДСЗ-2000-100 вода может появиться при течи воздухоохладителя или за счет образования ее на наружных поверхностях трубок воздухоохладителя, вызванного конденсацией при подаче охлаждающей воды в воздухоохладитель с температурой ниже точки росы. При этом вода стекает вниз и, попадая на сердечник статора, вызывает коррозию, а в обмотках статора и ротора увлажнение изоляции.
Замечательный пример инженерной ошибки. О пользе знания физики и применения измерительных приборов.
Замечательный он потому, что, во-первых, от этой ошибки никто не пострадал. Во-вторых, пример очень простой, но показательный — в нем есть полный набор: ошибка в постановке задачи, неправильный выбор модели процесса, расчет и проведение измерений в соответствии с ней. Выставка «Связь-Экпокомм», год примерно 2005 … Мы привезли с собой прибор «Искра» ( история разработкитехническое описание ). На соседнем стенде среди антенн, разветвителей и антенных фильтров – коаксиальный «грозоразрядник», напряжение срабатывания по паспорту — 400 Вольт. «А давайте проверим нашим прибором» — «да проверяйте, конечно». «Грозоразрядник» не пробивается ни на 400 Вольтах, ни на 800 (предел измерения). «Прибор у вас неправильный, у нас точно всё посчитано». Выясняется, что внутри «грозоразрядника» между центральным проводником и корпусом сделан искровой промежуток 0,2 мм и выставлен он «прецизионно».
Неправильно выбранная физическая модель. С этого момента становится уже интересно.
Коллеги исходили из значения электрической прочности (напряжения пробоя) сухого воздуха, которая составляет примерно 2 кВ/мм (см. например, инженерный справочник DVPA
). Следовательно, для того, чтобы получить напряжение пробоя 0,4 кВ, расстояние между электродами должно быть 0,2 мм.
Давайте посмотрим, что есть на эту тему в сети. На первой же странице поиска нашёл два подходящих графика.
Как видим шкала в обеих измерениях линейная и порядок напряжения пробоя действительно составляет порядка 2 кВ/мм, обратите внимание на зависимость его значения от частоты. Понятно, что эти графики относятся к технике высоких напряжениях и высоковольтным электроустановкам (электрические машины, трансформаторы, высоковольтные ЛЭП)
Нас же интересуют гораздо меньшие напряжения и масштабы.
Феномен старения изоляции: причины и способы предотвращения
- Главная
- Все статьи
- Кабель
- Феномен старения изоляции: причины и способы предотвращения
Выделяют несколько видов изоляции силовых кабелей: резиновая, бумажная из ПВХ.
Изоляция любых проводов рано или поздно начинает устаревать, а значит, терять свои эксплуатационные свойства. Она становится хрупкой, местами сильно трескается, то есть перестает обеспечивать по-настоящему надежную защиту изделия: значительно снижается кратковременная электрическая прочность и другие важные характеристики.
Почему же изоляция довольно быстро приходит к такому состоянию? Этому есть несколько причин, которые, действуя в комплексе или по отдельности, разрушают материал защитной оболочки. К ним относятся частые разряды (обычно появляются при перенапряжении), воздействие тепла и воздуха (окисление) и эксплуатация во влажных помещениях / во влажном климате.
Но перечисленные факторы — лишь основные, тогда как на изоляцию активно действуют еще и побочные. В их числе, к примеру, механические повреждения изделия, большие нагрузки, сильная вибрация, воздействие кислот и других химикатов, электролитические процессы.
Когда изоляция начинает стареть, может развиваться такое явление, как тепловой прибой, основной причиной возникновения которого становятся частичные разряды. Во время каждого такого разряда выделяется энергия, разрушающая молекулы, ионизирующая атомы, сильно нагревающая материал-диэлектрик, а также расходуемая на излучение. Ущерб, приносимый подобного рода разрядами, зависит от того, из какого материала выполнен изолирующий слой. Однако практически во всех случаях в толще последнего образуются многочисленные трещинки, особенно это касается твердых диэлектриков.
Что до изоляции на основе пропитанной маслянистой смесью бумаги, разряды изменяют электрические, физические и химические свойств минерального масла компонентов, а также самой бумаги. Вместе с изменением этих свойств увеличивается проводимость, а значит, возникает серьезная проблема: пробой.
Многочисленное воздействие импульсов на изоляцию ведет к аккумуляции эффекта разрушения. Дестабилизация ее энергетического поля и ускорение процесса старения могут быть вызваны
- ползущим разрядом (явление возникает в системах с маслобарьерной изоляцией);
- частичным критическим разрядом (характерно для систем с бумажной изоляцией в пропитке);
- дендритами (характерно для систем с твердой изоляцией).
Способность изоляции противостоять перечисленным выше типам воздействия известно как «электрическая кратковременная прочность».
К примеру, кабели АПвПуг имеют защищенную от влаги изоляцию.
Подрывные устройства
Пробой диэлектрика в твердом изоляторе может навсегда изменить его внешний вид и свойства. Как показано в этом Фигура Лихтенберга
А подрывное устройство[нужна цитата] предназначен для электрического перенапряжения диэлектрик за его диэлектрическая прочность так, чтобы намеренно вызвать электрическую поломку устройства. Нарушение вызывает внезапный переход части диэлектрика из изолирующего состояния в сильно проводящий государственный. Этот переход характеризуется образованием электрическая искра или же плазма канал, возможно, за которым следует электрическая дуга через часть диэлектрического материала.
Если диэлектрик является твердым, постоянные физические и химические изменения на пути разряда значительно снизят диэлектрическую прочность материала, и устройство можно использовать только один раз. Однако, если диэлектрический материал представляет собой жидкость или газ, диэлектрик может полностью восстановить свои изолирующие свойства после того, как ток через плазменный канал будет прерван извне.
Коммерческий искровые разрядники используйте это свойство для резкого переключения высокого напряжения в импульсная мощность системы, чтобы обеспечить всплеск защита для телекоммуникации и электричество систем и воспламенять топливо через Свечи зажигания в двигатель внутреннего сгорания. Датчики искрового разрядника использовались в ранних системах радиотелеграфа.
Нарушение электроизоляции
Электрический пробой часто связан с выходом из строя твердых или жидких изоляционных материалов, используемых внутри высокого напряжения. трансформаторы или же конденсаторы в распределение электроэнергии сетка, обычно приводящая к короткое замыкание или перегоревший предохранитель. Электрический пробой может также произойти через изоляторы, которые подвешивают подвесные потолки. линии электропередачвнутри подземных силовых кабелей или линий, идущих к ближайшим ветвям деревьев.
Пробой диэлектрика также важен при проектировании интегральные схемы и другие твердотельные электронные устройства. Изоляционные слои в таких устройствах спроектированы так, чтобы выдерживать нормальные рабочие напряжения, но более высокое напряжение, такое как статическое электричество, может разрушить эти слои, сделав устройство бесполезным. Диэлектрическая прочность конденсаторы ограничивает количество хранимой энергии и безопасное рабочее напряжение устройства.