Преобразование тепловой энергии в электрическую
Непосредственное преобразование тепловой энергии в электрическую можно осуществить, используя явления в контакте двух металлов или полупроводников, где действуют сторонние силы, которыми обусловлена диффузия заряженных частиц.
Принцип преобразования тепловой энергии в электрическую.
Величина контактной разности потенциалов зависит не только от свойств контактирующих материалов, но и от температуры контакта, так как с температурой связаны энергия свободных электронов и их концентрация.
Рассматривая замкнутую цепь из двух разных металлов (рис. 1а), можно убедиться в том, что при одинаковой температуре контактов 1 и 2 электрический ток в цепи не получится, так как контактные разности потенциалов, определяемые формулой
Uk = (A1 – A2) : e0
в обоих контактах одинаковы, но направлены в противоположные стороны по цепи:
Uk1 — Uk2 = (A1 – A2) + (A2 — A1) : e0 = 0
Если один из контактов, например 1, нагреть (t1 > t2), то равновесие нарушится — в контакте 1 появится дополнительный скачок потенциала, связанный с нагревом. В этом случае Uk1 > UK2. В цепи образуется термоэлектродвижущая сила (термо-э. д. с.), абсолютное значение которой пропорционально разности температур контактов:
Eт = UKl — UK2 = E0(t 1- t2),
где Е0 — величина, зависящая от свойств металлов, образующих контакт.
Рисунок 1 . а) замкнутая цепь из двух разных металлов, б) цепь с измерителем термо-э. д. с.
Таким образом, термо-э. д. с. возникает в цепи, состоящей из разных металлов, при разной температуре мест соединения.
Термо-э. д. с. в рассматриваемой цепи поддерживается благодаря нагреванию спая 1, т. е. при постоянном расходе тепловой энергии. В свою очередь, термо-э. д. с. является причиной электрического тока.
Однако концентрация свободных электронов в металлах велика и при переходе из одного металла в другой меняется очень мало. В связи с этим контактная разность потенциалов оказывается незначительной и мало зависит от температуры. По этой причине металлические термоэлементы имеют очень малые э. д. с. (в спае платины и железа — 1,9 мВ при разности температур горячего и холодного спаев 100° С), а к. п. д. их не превышает 0,5%. Такие термоэлементы применяют для измерения температур (термопары).
Для этого в цепь термопары включается измеритель термо-э. д. с. — милливольтметр (рис. 1, 6). Термопара в этом случае является источником электрической энергии, а измерительный прибор — приемником.
Кроме контакта 1 основных металлов термопары между собой образуются контакты их с соединительными проводами (Рис. 1 — 2, 3). В этих контактах тоже имеются контактные разности потенциалов, но они не изменяют термо-э. д. с., если их температура поддерживается одинаковой.
При наличии произвольного числа контактов разных металлов сумма контактных разностей потенциалов в замкнутой цепи остается равной нулю, если все контакты имеют одинаковую температуру. В этом можно убедиться, составив уравнение, аналогичное вышеприведенному. Независимо от числа контактов, термо-э. д. с. пропорциональна разности температур более нагретого контакта и всех других контактов, находящихся при одинаковой температуре.
Рисунок 2. n,p- полупроводники.
В отличие от металлов, в полупроводниках при увеличении температуры сильно увеличиваются концентрации свободных электронов и дырок. Это свойство полупроводников позволяет получить более высокие термо-э. д. с. (до 1 мВ на 1° С разности температур) и к. п. д. термоэлементов до 7%.
Полупроводниковый термоэлемент состоит из двух полупроводников (п и р на рис. 2). Один из них имеет электронную, а другой дырочную электропроводность. При нагревании полупроводников в месте соединения их металлической пластинкой сильно увеличивается концентрация свободных носителей заряда. Поэтому в полупроводниках возникает диффузия их от горячего конца к холодному. В полупроводнике с электронной электропроводностью к холодному концу перемещаются электроны, в результате чего этот конец заряжается отрицательно. В другом полупроводнике к холодному концу перемещаются дырки, образуя положительный заряд. Возникшая разность потенциалов противодействует диффузии, и при некотором значении ее устанавливается равновесие сил электрического поля и сторонних сил, под действием которых идет процесс диффузии носителей заряда. Эта разность потенциалов и является термо-э. д. с. полупроводникового термоэлемента.
https://youtube.com/watch?v=hW2vlC1-_cE
Если к холодным концам полупроводников подключить токопроводящий элемент, например, резистор, то образуется замкнутая цепь и электрический ток в ней.
Поделитесь полезной статьей:
Приливная энергетика
Используетсяэнергия приливов и отливов Мировогоокеана.
Двараза в сутки уровень в океане топоднимается, то опускается. Это происходитпод действием гравитационных сил солнцаи луны, которые притягивают к себе водыокеана.
Уберега разность уровней воды приливаи отлива достигают более 10 метров. Еслив заливе на берегу моря, в устье реки сделать плотину, то в таком водохранилищеможно создать запасы воды во времяприливов. А при отливе воду пропускаютчерез гидротурбины, в результате энергияпреобразуется в электрическую.
Недостатки:
Дороговизна строительстваНеравномерность выработки электроэнергии
Принцип работы тепловой электростанции
Основной принцип работы тепловой электростанции заключается в производстве тепловой энергии из органического топлива, которая в дальнейшем используется для выработки электрического тока.
Понятия ТЭС и ТЭЦ существенно различаются между собой. Первые установки относятся к так называемым чистым электростанциям, вырабатывающим только электрический ток. Каждая из них известна еще и как конденсационная электростанция – КЭС. ТЭЦ расшифровывается как теплоэлектроцентраль и является разновидностью ТЭС. Данные установки не только генерируют электричество, но и являются тепловыми, то есть дают тепло в системы отопления и горячего водоснабжения. Такое комбинированное использование требует специальных паровых турбин с противодавлением или системой промежуточного отбора пара.
Несмотря на разнообразие конструкций, работа всех ТЭС осуществляется по общей схеме. В котел постоянно подается топливо в виде угля, газа, торфа, мазута или горючих сланцев. На многих электростанциях используется заранее приготовленная угольная пыль. Вместе с топливом поступает воздух в подогретом виде, выполняющий функцию окислителя.
В процессе горения топлива создается тепло, нагревающее воду в паровом котле. Происходит образование насыщенного пара, подаваемого в паровую турбину через паропровод. Далее тепловая энергия становится механической.
Вал и остальные движущиеся части турбины связаны между собой и представляют единое целое. Струя пара под высоким давлением и при высокой температуре выходит из сопел и воздействует на лопатки турбины. Закрепленные на диске, они начинают вращаться и приводят в движение вал, соединенный с генератором. В результате вращения происходит преобразование механической энергии в электрический ток.
Пройдя через паровую турбину, пар снижает свою температуру и давление. Далее он попадает в конденсатор и прокачивается по трубкам, охлаждаемым водой. Здесь пар окончательно превращается в воду и поступает в деаэратор для очистки от растворенных газов. Очищенная вода с помощью насоса подается в котельную установку через подогреватель.
Тепловое действие тока
Электрический ток, проходя через любой проводник, сообщает ему некоторое количество энергии. В результате этого проводник нагревается. Передача энергии происходит на молекулярном уровне, т. е., электроны взаимодействуют с атомами или ионами проводника и отдают часть своей энергии.В результате этого, ионы и атомы проводника начинают двигаться быстрей, соответственно можно сказать, что внутренняя энергия увеличивается и переходит в тепловую энергию.Данное явление подтверждается различными опытами, которые говорят о том, что вся работа, которую совершает ток, переходит во внутреннюю энергию проводника, она в свою очередь увеличивается. После этого уже проводник начинает отдавать её окружающим телам в виде тепла. Здесь уже в дело вступает процесс теплопередачи, но сам проводник нагревается. Этот процесс рассчитывается по формуле: А=U·I·tА – это работа тока, которую он совершает, протекая через проводник. Можно также высчитать количество теплоты, выделяемое при этом, ведь это значение равно работе тока. Правда, это касается, лишь неподвижных металлических проводников, однако, такие проводники встречаются чаще всего. Таким образом, количество теплоты, также будет высчитываться по той же форме: Q=U·I·t.История открытия явленияВ своё время свойства проводника, через который протекает электрический тока, изучали многие учёные. Особенно среди них были заметны англичанин Джеймс Джоуль и русский учёный Эмилий Христианович Ленц. Каждый из них проводил свои собственные опыты, а вывод они смогли сделать независимо друг от друга. На основе своих исследований, они смогли вывести закон, который позволяет дать количественную оценку выделяемого тепла в результате воздействия электрического тока на проводник. Данный закон получил название «Закон Джоуля-Ленца». Джеймс Джоуль установил его в 1842 году, а примерно через год Эмиль Ленц пришёл к тому же выводу, при этом их исследования и проводимые опыты никак не были связаны друг с другом.Применение свойств теплового действия токаИсследования теплового воздействия тока и открытия закона Джоуля-Ленца позволили сделать вывод, подтолкнувший развитие электротехники и расширить возможности применения электричества. Простейшим примером применения данных свойства является простая лампочка накаливания. Устройство её заключается в том, что в ней применяется обычная нить накаливания, сделанная из вольфрамовой проволоки. Этот металл был выбран не случайно: тугоплавкий, он имеет довольно высокое удельное сопротивление. Электрический ток проходит через эту проволоку и нагревает её, т. е. передаёт ей свою энергию. Энергия проводника начинает переходить в тепловую энергию, а спираль разогревается до такой температуры, что начинает светиться. Главным недостатком такой конструкции, конечно, является то, что происходят большие потери энергии, ведь только небольшая часть энергии преобразуется в свет, а остальная уходит в тепло.Для этого вводится такое понятие в техники, как КПД, показывающее эффективность работы и преобразования электрической энергии. Такие понятия как КПД и тепловое воздействие тока применяются повсеместно, так как существует огромное количество приборов основанных подобном принципе. Это в первую очередь касается нагревательных приборов: кипятильников, обогревателей, электроплит и т. д.Как правило, в конструкциях перечисленных приборах присутствует некая металлическая спираль, которая и производит нагревание. В приборах для нагревания воды она изолирована, в них устанавливается баланс между потребляемой из сети энергией (в виде электрического тока) и тепловым обменом с окружающей средой.В связи с этим, перед учёными стоит нелёгкая задача по снижению потерь энергии, главной целью является поиск наиболее оптимальной и эффективной схемы. В данном случае тепловое воздействие тока является даже нежелательным, так как именно оно и ведёт к потерям энергии. Самым простым вариантом является повышение напряжения при передаче энергии. В результате снижается сила тока, но это приводит к снижению безопасности линий электропередач.Другое направление исследований – это выбор проводов, ведь от свойств проводника зависят и тепловые потери и прочие показатели. С другой стороны, различные нагревательные приборы требуют большого выделения энергии на определённом участке. Для этих целей изготавливают спирали из специальных сплавов. Для повышения защиты и безопасности электрических цепей применяются специальные предохранители. В случае чрезмерного повышения тока сечение проводника в предохранителе не выдерживает, и он плавится, размыкая цепь, защищая, таким образом, её от токовых перегрузок.
Электрическое отопление в ряду обогревательных систем
Электро-отопители наибольшей популярностью стали пользоваться в последние годы. Это связано с тенденцией к выравниванию цен на энергоносители. Если раньше электричество стоило намного дороже, чем тот же газ, то сейчас его цена приближается к этому ископаемому энергоресурсу.
Раньше обогрев электроприборами использовался в основном в тех в регионах, где не было централизованного газоснабжения. В каком случае электрические системы отопления были единственным максимально удобным и доступным вариантом обогрева своего жилья. Но эта система требовала больших затрат на свою эксплуатацию. Даже в сравнении с оборудование на твердом топливе, электросистемы в большинстве случаев дороже. Но они удобнее и не требуют затрат времени на организацию функционирования отопления дровами или углем.
Для понимания места систем электрического отопления в общей массе оборудования для обогрева рассмотрим вообще какие виды используется. В общем, по виду теплоносителя обогревательные системы бывают:
- газовые;
- электрические;
- на твердом и жидком топливе;
- гелиосистемы (на энергии солнца)
- тепловые насосы.
В современных условиях самыми экономичными являются газовые, так как природный газ — доступный и достаточно недорогой источник тепла. Электричество практически во всех случаях дороже, а затраты на твердое и жидкое топливо зависит от их доступности и региона. По поводу тепловых насосов: сейчас оборудование для него достаточно дорогое, но оно одно из самых экономичных среди рассматриваемых. Хотя эти системы выделены в отдельную группу, для своей работы они используют электрику, так что их можно спокойно отнести к автономному электроотоплению.
Как превратить создаваемое ЦОД тепло в электричество? — Новости рынка ЦОД, обзор инженерных решений Дата-Центров
Инженеры стартапа Alphabet Energy ведут разработку передовой системы рекуперации тепловой энергии и превращения ее в электричество. В основе системы лежит технология термоэлектрических генераторов. Представители стартапа отмечают, что изначально продукты вендора будут поставляться горнодобывающим и нефтегазовым компаниям, ведущим разработку месторождений вдалеке от очагов цивилизации, а также в условиях отсутствия доступа к ЛЭП. Если системы будут пользоваться успехом, специалисты вендора готовы подвергнуть их небольшой адаптации и выпустить на рынок ЦОД.
Развиваемая инженерами калифорнийской компании Alphabet Energy концепция предполагает агрегирование выделяемого промышленным, серверным или другим нагревающимся электронным, механическим или электро-механическим оборудованием тепла для последующей генерации с его помощью электрической энергии путем применения специальных металлов.
Следует отметить, что до последнего времени производство системы термоэлектрической генерации электричества промышленного класса было слишком затратным. Но специалистами стартапа удалось создать высокоэффективный термоэлектрический материал, получать который можно с минимальными затратами. Их генератор, созданный с использованием нового материала и получивший название Е1, в 20 раз больше, чем любое подобное устройство из созданных ранее. При этом устройство поставляется в отдельном грузовом контейнере.
Как это работает?
Принцип функционирования термоэлектрических генераторов сводится к тому, что передающееся между двумя разнородными проводниками тепло индуцирует напряжение. Другими словами, напряжение возникает, когда тепло перемещает электроны с горячей стороны биметаллического термоэлектрического вещества на холодную сторону.
Это своего рода электродвижущая сила. Происходящее называется эффектом Зеебека или Пельтье (эти ученые по отдельности работали над данной технологией в 19-ом веке).
Проблемы
Одной из ключевых проблем, препятствовавших создаю генерирующих установок с высоким КПД на базе этой технологии, всегда было то, что поддерживать постоянно низкую температуру холодной части биметаллического термоэлектрического вещества очень непросто, так как она периодически нагревается, что прерывает процесс выработки электричества. Если электроны будут двигаться непостоянно, электрический ток создать не удастся. Так вот электроны перестают двигаться, если та часть рабочего материала, которая, как предполагается, должна быть холодной, становится теплой или даже горячей. Решением этой проблемы уже давно занимаются специалисты в области материаловедения.
Еще одной немаловажной проблемой было достижение высокой эффективности преобразования тепла в электричество при минимизации стоимости генерирующей установки. Представители Alphabet Energy говорят, что инженерам компании удалось преуспеть в решении обеих проблем благодаря композиту на основе кремния и тетраэдрита (блеклая медная руда или фальэрц)
Эта технология позволяет создавать высокоэффективные термоэлектрические материалы с использованием доступных в плане цены и распространенных базовых ресурсов
Представители Alphabet Energy говорят, что инженерам компании удалось преуспеть в решении обеих проблем благодаря композиту на основе кремния и тетраэдрита (блеклая медная руда или фальэрц). Эта технология позволяет создавать высокоэффективные термоэлектрические материалы с использованием доступных в плане цены и распространенных базовых ресурсов.
Преимущества
Генерирующее устройство лишено каких-либо движущихся частей, которые могут сломаться или требуют периодической смазки.
Так что это весьма интересное решение для использования на удаленных от центров цивилизации объектах, где быстрое техобслуживания довольно проблематично.
Наверное, именно поэтому специалисты Alphabet Energy сконцентрировали усилия на создании генерирующих установок для горнодобывающих и нефтегазовых компаний.
При этом у Alphabet Energy также имеются и амбициозные конкуренты.
К примеру, канадская компания Global Thermoelectric производит электрогенерирующие решения для удаленных промышленных объектов, использующие технологию термоэлектрического генератора и газ в качестве топлива.
Этот вендор активно укрепляет позиции на рынках генерирующих установок для обслуживания нефтяных и газовых трубопроводов, а также оффшорных буровых платформ.
Коротко о главном
Вопрос, в чем измеряется тепловая энергия, возникает, когда необходимо рассчитать систему отопления
Расчет важно выполнить правильно, особенно для обладателей собственного дома. Если в результате ошибки вы приобретете котел малой мощности, то будете тратить электричество для вторичного обогрева жилья
Котел с чрезмерным запасом мощности также будет ошибкой: работая в половину мощности, энергоресурсов он будет потреблять практически столько же.
Наглядная единица для вычисления расхода тепла – гигакалория. Расход вычисляют разными методами, что зависит от типа жилья, многоквартирный это дом или частный. Методики подсчета также различаются; они зависят от особенностей системы, наличия и типа измерительных устройств.
Перспективы
В данное время продолжают ставить опыты, подбирая оптимальные термопары, позволяющие повысить коэффициент полезного действия.
Большая вероятность того, что скоро разработки усовершенствования доброкачественности термических элементов, обретут высший статус производства материала для повышения взаимодействия термопар, с применением высоких технологий:
- нанотехнологий;
- ям квантования и т.п.
Вполне возможен вариант изобретения совсем другого принципа, с применением нестандартных материалов.
Были попытки соединения микроскопических проводников из золота искусственно синтезированной молекулой. Этот опыт в дальнейшем вполне может добиться успеха.
Достоинства и недостатки солнечной энергетики
У каждой отрасли народного хозяйства есть свои положительные и отрицательные стороны. Имеются они и при использовании световых потоков. Плюсы солнечной энергетики заключены в следующем:
— экологичность, ведь она не загрязняет окружающую среду;- доступность основных составляющих – фотоэлементов, которые реализуются не только для промышленного применения, но и для создания личных небольших электростанций;- неисчерпаемость и самовосстанавливаемость источника;- постоянно снижающаяся себестоимость.
Среди недостатков солнечной энергетики можно выделить:
— влияние времени суток и погодных условий на производительность электростанций;- необходимость в аккумулировании энергии;- снижение производительности в зависимости от широты, на которой расположен регион, и от времени года;- большой нагрев воздуха, который имеет место на самой электростанции;- потребность в периодической чистке от загрязнения, в которой нуждается система солнечных батарей, что проблематично в связи с огромными площадями, на которых установлены фотоэлементы;- относительно высокая стоимость оборудования, которая хоть и снижается с каждым годом, но пока еще недоступна для массового потребителя.
Понятие энергии, единицы измерения
Тема 2. Энергия и энергоресурсы
С понятием энергия человек сталкивается постоянно и подчас не задумывается о глубоком смысле. Энергия определяется как общая количественная мера различных форм движения материи. В соответствии с разнообразием форм движения и различают механическую, тепловую, электрическую, ядерную, химическую и другие виды энергии.
В соответствии с законом сохранения, открытым М.В. Ломоносовым, энергия не теряется, а сохраняется и преобразуется в другие виды энергии.
Поэтому энергия является тем стержнем, который связывает воедино все процессы и явления материального мира. Для объектов энергетики энергетический анализ является основным инструментом исследования процессов преобразования энергии с проверкой на каждом этапе технологического процесса выполнения условия баланса энергии. В процессе преобразования часть энергии может изменять свой вид, что часто усложняет количественный учет и проверку баланса.
Именно потребности измерений энергии на заре развития электротехники стимулировали активное обсуждение на международных выставках 1851 года в Лондоне и 1855 года в Париже необходимости введения единой системы мер и весов. На I Международном конгрессе электриков, состоявшемся в 1881 году, был предложен проект полной системы единиц СГС, в основу которой были положены сантиметр как единица длины, грамм как единица массы и секунда как единица времени. Но применение этой системы в инженерных расчетах создавало определенные трудности из-за малости основных единиц. В 1918 году во Франции, а в 1927 году и в СССР была принята система единиц МТС на основе метра, тонны и секунды. Однако и она оказалась неудобной, но уже из-за другой крайности.
В октябре 1960 года XI Генеральная конференция по мерам и весам утвердила проект единой системы единиц, над которым специальная комиссия работала с 1954 года. Эта система стала известна под наименованием Международная система единиц СИ. В 1961 году в СССР был утвержден ГОСТ 9867-61 «Международная система единиц», которым устанавливалось предпочтительное применение единиц СИ во всех областях науки, техники, образования и народного хозяйства.
Основными единицами СИ являются семь следующих единиц: длины – метр, массы – килограмм, времени – секунда, силы электрического тока – ампер, температуры – кельвин, количества вещества – моль, силы света – кандела.
Кроме основных единиц в состав СИ вводится большое число производных величин, определяемых по отраслям науки и техники. Ниже в табл. 3 приведены производные единицы СИ, которые применяются в электротехнике.
Таким образом, несмотря на разнообразие видов энергии все они измеряются в джоулях. Для механической работы, например, один джоуль определяется работой, выполненной единицей силы на пути в один метр, т.е. 1Дж=1Н#903 1м.
Производные единицы системы СИ Таблица 3
Единицы измерения мощности
2.1 Единицы измерения мощности, применяемые в энергетике
- Ватт – Вт – единица мощности в системе СИ, производные – кВт, МВт, ГВт
- Калории в час – кал/ч – внесистемная единица мощности, обычно в энергетике употребляются производные величины – ккал/ч, Мкал/ч, Гкал/ч;
- Тонны пара в час – т/ч – специфическая величина, соответствующая мощности, необходимой для получения пара из 1 тоны воды в час.
2.2. Примеры правильного применения единиц измерения мощности
- Расчетная мощность котла
- Тепловые потери здания
- Максимальный расход тепловой энергии на нагрев горячей воды
- Мощность двигателя
- Среднесуточная мощность потребителей тепловой энергии
2.3. Перевод между единицами измерения мощности
1 МВт = 1,163 Гкал/ч = 1,595 т/ч
1 Гкал/ч = 0,86 МВт = 1,86 т/ч
1 т/ч = 0,627 МВт = 0,539 Гкал/ч
Примечание: При расчете 1 т пара принята энтальпия исходной воды и водяного пара на линии насыщения при t=100 °С