Вольтметр с выключателем
Еще один простой и надежный способ – монтаж измерительного прибора со встроенным выключателем. Установить такой вольтметр на мотоцикл предельно просто:
- фиксируем прибор в удобном и хорошо просматриваемом месте (обычно с помощью хомута на спице руля);
- прокладываем провода от прибора до аккумулятора;
- подключаем их к батарее (красный к «+», черный к «–»);
- в разрез красного провода устанавливаем предохранитель 0,5÷1,0 А (если такового нет в комплекте поставки);
- закрепляем провода с помощью пластиковых хомутов.
Это интересно: Как снять и покрасить щетки стеклоочистителя
Внимание! После того как вы заглушили двигатель, не забудьте отключить вольтметр с помощью переключателя. За время продолжительной стоянки прибор может довольно существенно «посадить» аккумулятор
Модель DigiTOP
Этот цифровой вольтметр-амперметр постоянного тока выпускается с опорными диодами. Счетчик в нем предусмотрен двухразрядного типа. Проводимость компаратора находится на отметке в 3.5 мк. Микроконтроллер применяется с выпрямителем. Чувствительность тока у него довольно высокая. Источником питания выступает обычная батарейка.
Резисторы используются в приборе коммутируемого типа. Стабилизатор в данном случае не предусмотрен. Триод установлен только один. Непосредственно преобразование тока происходит довольно быстро. Для бытового использования этот прибор подходит хорошо. Фильтры для увеличения точности измерения предусмотрены.
Если говорить про параметры вольтметра–амперметра, то важно отметить, что рабочее напряжение находится на уровне 12 В. Потребление тока в данном случае равняется 0.5 А
Минимальное разрешение представленного прибора составляет 1 мА. Сопротивление шунта располагается на отметке в 2 Ом.
Коэффициент деления вольтметра-амперметра только 0.7. Максимальное разрешение указанной модели составляет 15 мА. Непосредственно процесс преобразования тока занимает не более 340 мс. Допустимая ошибка указанного прибора располагается на уровне в 0.1 %. Минимальное давление система выдерживает в 12 кПа.
Измерение тока. Амперметр.
И начнем мы с измерения тока. Прибор, используемый для этих целей, называется амперметр и в цепь он включается последовательно. Рассмотрим небольшой примерчик:
Как видите, здесь источник питания подключен напрямую к резистору. Кроме того, в цепи присутствует амперметр, включенный последовательно с резистором. По закону Ома сила тока в данной цепи должна быть равна:
I = \frac{U}{R} = \frac{12}{100} = 0.12
Получили величину, равную 0.12 А, что в точности совпадает с практическим результатом, который демонстрирует амперметр в цепи
Важным параметром этого прибора является его внутреннее сопротивление r_А
Почему это так важно? Смотрите сами – при отсутствии амперметра ток определяется по закону Ома, как мы и рассчитывали чуть выше. Но при наличии амперметра в цепи ток изменится, поскольку изменится сопротивление, и мы получим следующее значение:. I = \frac{U}{R_1+r_А}
I = \frac{U}{R_1+r_А}
Если бы амперметр был абсолютно идеальным, и его сопротивление равнялось нулю, то он бы не оказал никакого влияния на работу электрической цепи, параметры которой необходимо измерить, но на практике все не совсем так, и сопротивление прибора не равно 0. Конечно, сопротивление амперметра достаточно мало (поскольку производители стремятся максимально его уменьшить), поэтому во многих примерах и задачах им пренебрегают, но не стоит забывать, что оно все-таки и есть и оно ненулевое.
При разговоре об измерении силы тока невозможно не упомянуть о способе, который позволяет расширить пределы, в которых может работать амперметр. Этот метод заключается в том, что параллельно амперметру включается шунт (резистор), имеющий определенное сопротивление:
R = \frac{r_А}{n\medspace-\medspace 1}
В этой формуле n – это коэффициент шунтирования – число, которое показывает во сколько раз будут увеличены пределы, в рамках которых амперметр может производить свои измерения. Возможно это все может показаться не совсем понятным и логичным, поэтому сейчас мы рассмотрим практический пример, который позволит во всем разобраться.
Пусть максимальное значение, которое может измерить амперметр составляет 1 А. А схема, силу тока в которой нам нужно определить имеет следующий вид:
Отличие от предыдущей схемы заключается в том, что напряжение источника питания на этой схеме в 100 раз больше, соответственно, и ток в цепи станет больше и будет равен 12 А. Из-за ограничения на максимальное значение измеряемого тока напрямую использовать наш амперметр мы не сможем. Так вот для таких задач и нужно использовать дополнительный шунт:
В данной задаче нам необходимо измерить ток I. Мы предполагаем, что его значение превысит максимально допустимую величину для используемого амперметра, поэтому добавляем в схему еще один элемент, который будет выполнять роль шунта. Пусть мы хотим увеличить пределы измерения амперметра в 25 раз, это значит, что прибор будет показывать значение, которое в 25 раз меньше, чем величина измеряемого тока. Нам останется только умножить показания прибора на известное нам число и мы получим нужное нам значение. Для реализации нашей задумки мы должны поставить шунт параллельно амперметру, причем сопротивление его должно быть равно значению, которое мы определяем по формуле:
R = \frac{r_А}{n\medspace-\medspace 1}
В данном случае n = 25, но мы проведем все расчеты в общем виде, чтобы показать, что величины могут быть абсолютно любыми, принцип шунтирования будет работать одинаково.
Итак, поскольку напряжения на шунте и на амперметре равны, мы можем записать первое уравнение:
I_А\medspace r_А = I_R\medspace R
Выразим ток шунта через ток амперметра:
I_R = I_А\medspace \frac{r_А}{R}
Измеряемый ток равен:
I = I_R + I_А
Подставим в это уравнение предыдущее выражение для тока шунта:
I = I_А + I_А\medspace \frac{r_А}{R}
Но сопротивление шунта нам также известно (R = \frac{r_А}{n\medspace-\medspace 1}). В итоге мы получаем:
I = I_А\medspace (1 + \frac{r_А\medspace (n\medspace-\medspace 1)}{r_А}\enspace) = I_А\medspace n
Вот мы и получили то, что и хотели. Значение, которое покажет амперметр в данной цепи будет в n раз меньше, чем сила тока, величину которой нам и нужно измерить
С измерениями тока в цепи все понятно, давайте перейдем к следующему вопросу, а именно определению напряжения.
Времяимпульсные вольтметры с двойным интегрированием.
Принцип работы вольтметра подобен принципу работы схемы с времяимпульсным преобразованием, с тем отличием, что здесь в течение цикла измерения Т формируют два временных интервала Т1 и T2. В первом интервале производят интегрирование измеряемого напряжения, а во втором — некоторого опорного напряжения. Длительность цикла измерения Т = Т1+ Т2 заведомо устанавливают кратной периоду воздействующей на входе помехи , что приводит к повышению помехоустойчивости вольтметров.
В ЦВ с двойным интегрированием преобразование «напряжение – временной интервал» (в отличие ЦВ с впемяимпульсным преобразованием) происходит с использованием интегратора. Интегратор – это функциональный блок на операционном усилителе, обеспечивающий связь между входным uвх и выходным uвых напряжениями в виде
Вольтметры двойного интегрирования – наиболее популярная разновидность цифровых вольтметров и мультиметров. Основные их достоинства – простота, высокая помехоустойчивость при достаточной точности.
Структурная схема цифрового вольтметра с двойным интегрированием и временные диаграммы, поясняющие ее работу, представлены на рис. 2.16.
Рисунок 2.16 Цифровой вольтметр с двойным интегрированием:
a — структурная схема; б — временные диаграммы.
Схема содержит входное устройство, двухпозиционный ключ, интегратор, источник образцового напряжения, устройство сравнения, триггер Т, генератор счетных импульсов, управляющее устройство, логическую схему И, счетчик импульсов и цифровое отсчетное устройство.
В начале цикла измерения при t = t0 устройство управления схемы вырабатывает калиброванный импульс UIупр с длительностью T1 = Т0К, где Та — период следования счетных импульсов; К — емкость счетчика. В момент появления фронта импульса UIупр ключ переводится в положение 1, и с входного устройства на интегратор поступает напряжение U/x, пропорциональное измеряемому напряжению Ux. Затем, на интервале времени Т1 = t1 — t0происходит интегрирование напряжения U/x (пропорционального измеряемому Ux) в результате чего нарастающее напряжение на выходе t1 интегратора будет: UИ = ∫Ux′dt . В момент t = t1 управляющий t0
сигнал UIупр переводит ключ в положение 2 и на интегратор с источника образцового напряжения подается образцовое отрицательное напряжение UИОН Одновременно с этим управляющий сигнал UIупр опрокидывает триггер.
Интегрирование напряжения UИОН — происходит быстрее, так как в схеме установлено . Интегрирование образцового напряжения продолжается до тех пор, пока выходное напряжение интегратора снова не станет равным нулю (при этом Т2 = t2- t1).Поэтому в течение времени второго
интервала на выходе интегратора формируется спадающее напряжение t2
При этом длительность интервала t1 интегрирования Т2 тем больше, чем выше амплитуда измеряемого напряжения U’x.
В момент времени t = t2 напряжение UИ на выходе интегратора становится равным нулю и устройство сравнения (второй вход которого соединен с корпусом) выдает сигнал на триггер, возвращая его в исходное состояние. На его выходе формируется импульс Uт длительностью Т2, поступающий на вход схемы И. На другой ее вход подается сигнал UГСИ с генератора счетных импульсов. По окончании импульса UТ, поступающего с триггера, процесс измерения прекращается.
Преобразование измеряемого временного интервала Т2 в эквивалентное число импульсов N осуществляют так же, как и в предыдущем методе — заполнением интервала T2 периодическими импульсами генератора счетных импульсов и подсчетом их числа счетчиком. На счетчике, а значит и на ЦОУ, записывают число импульсов NUсч, пропорциональное измеряемому напряжению
Ux:
(2.15)
Это выражение приводит к следующим формулам:
(2.16)
Из последних равенств получим
(2.17)
Из приведенных соотношений видно, что погрешность результата измерения зависит только от уровня образцового напряжения (а не от нескольких, как в кодоимпульсном приборе). Однако здесь также имеет место погрешность дискретности. Достоинством прибора является высокая помехозащищенность, так как он интегрирующий. На основе схем с двойным интегрированием выпускают приборы с более высоким классом точности, чем приборы с ГЛИН. Вольтметры этого типа имеют погрешность измерения 0,005…0,02 %.
Цифровые вольтметры наивысшего класса точности создаются комбинированными: в схемах сочетают методы поразрядного уравновешивания и времяимпульсного интегрирующего преобразования.
Вольтметр с двойным интегрированием измеряет среднее значение напряжения за время T1
История создания
Прародителем всех современных вольтметров стал своеобразный указатель «электрической силы», о которой еще никто ничего толком не знал. Его изобретателем стал русский физик Георг Рихман. Датой этого открытия считается 1745 год. Показатели измерялись с помощью небольших весов рычажного типа, которые колебались в зависимости от воздействий электричества. Этот основной принцип используется во всех современных вольтметрах.
Процесс измерения вольтажа прибора
Модернизированная версия прибора появилась в 1830-х годах благодаря Фарадею, но не осталось никаких доказательств этому. Следующий по счету прибор был придуман Морицом Якоби в 39 году 19 века, когда тот смог превратить гальванометр в прибор для измерения характеристик электрического тока.
Серьезным этапом модернизации стало изобретение француза д’Арсонваля, придумавшего гальванометр для измерения магнитных и электрических полей. При их изменении прибор показывал разные значения.
Георг Рихман — один из первых изобретателей вольтметра
Важно! Русские ученые П. Яблочков и М. Добровольский также внесли огромный вклад в развитие прибора. Добровольский, в частности, создал амперметр и электромагнитный вольтметр. Кроме них, над этим работал и Н. Славянов
Рабочий металлург на пушечных заводах придумал амперметр на 1000 Ампер в 1880-х
Кроме них, над этим работал и Н. Славянов. Рабочий металлург на пушечных заводах придумал амперметр на 1000 Ампер в 1880-х.
После утверждения Ампера и Вольта в качестве электротехнических величин в международных стандартах. Немец Фридрих Циппенбон изобрел первое устройство, которое официально было названо «вольтметр».
Старинный вольтметр
Установка на усилитель
Установка вольтметра на усилитель в машине осуществляется сравнительно легко. Для ее осуществления потребуются следующие элементы:
Сначала в корпусе, где располагается кармашек над магнитолой, необходимо просверлить отверстие с диаметром где-то 1,6 миллиметра, куда следует установить соответствующий разъем с подключенным к нему проводом.
Теперь необходимо пропустить провод до самого багажника, попутно прикрепляя его при помощи изоленты к кабелю питания самого усилителя, и закрепить на усилительных клеммах. REM-кабель, что осуществляет управление магнитолой, а также усилитель подключаются к вольтметру, чтобы он включался одновременно с ними. Именно благодаря этому можно будет видеть точное напряжение на усилительных клеммах, когда в этом есть необходимость.
Специфика установки
Таблица характеристик цифрового вольтметра.
Если с цифровыми вольтметрами, которые питаются от прикуривателя, не возникает проблем во время монтажа, то модели, устанавливаемые непосредственно в приборную панель, часто заставляют водителей задуматься над порядком их подключения.
Большинство вольтметров, представленных на рынке, имеют два или три провода для подключения к сети, хотя встречаются модели и с четырьмя контактами. Провода имеют стандартную цветовую маркировку:
- красный провод соответствует «плюсу»,
- черный провод подключается к «минусу»,
- белый провод отвечает за управление интенсивностью подсветки, включение и выключение устройства.
https://youtube.com/watch?v=JLS5YJuTB4M
Recommended Posts
Так как на работу измерительных приборов влияют не только их собственные неисправности, но и сбои в подключаемых устройств, иногда нужно заниматься регулировкой.
Переключение производил при отключении подачи питания на нагрузку.
По поводу шунта.
Купив пару штук таких ампервольтметров, один сразу же сжог напряжением 26 вольт. Никакого спама, только полезные идеи! Схема подключения вольтметра амперметра и вентилятора к зарядному устройству из компьютерного блока питания Скачать схему подключения вольтметра амперметра и вентилятора к зарядному устройству С зарядным устройством из компьютерного блока питания все понятно.
В других случаях табло покажет только падение напряжения. На освободившейся контакт, со стороны подстроечника припаивается провод желаемой длины для пробы удобно мм и лучше красного цвета Выпаять СМД резистор Третье. Оснащен настроечными резисторами. Для наглядности результат своих хлопот записал на видеоролик.
Китайский ампервольтметр схема подключения
При токе 10 ампер она уже горячая. Поэтому предлагаю рассмотреть схему подключения классического стрелочного вольтметра и амперметра. Вращая их, можно переделать нулевые значения. Схема YB27VA Прибор конечно же имеет свои погрешности измерения, для подстройки показаний тока и напряжения к близким к реальности на плате установлены два подстроечных резистора, соответственно один для тока и другой для напряжения.
В других случаях табло покажет только падение напряжения. Также желательно, чтобы у прибора присутствовал шунт, для доработки процесса подключения. Чтобы у вас не было дополнительных расходов, перед покупкой амперметра всегда уточняйте у продавца наличие шунта внутри прибора. Если пересчитать делитель, то «показиметр» можно использовать не только как вольтметр — например, можно сделать индикацию тока, температуры и т. Оснащен настроечными резисторами.
В последнее время меня буквально заваливают вопросами, как подключить, куда подключить. У меня вышло мкВ на входе ОУ. Как подключить прибор WR При конструировании зарядных устройств для аккумуляторных батарей, и различных блоков питания, многие радиолюбители используют готовые вольтметры-амперметры китайского производства, которые без особого труда можно купить в интернете, например, на сайте Алиэкспресс.
Как подключить вольтметр амперметр
Гальванометры (аналоговые счетчики)
Аналоговые счетчики располагают иглами, которые поворачиваются, чтобы отмечать на шкале цифры. Это и отличает их от цифровых приборов, выводящих цифровые символы прямо на экран. В центре большинства аналоговых приборов находится гальванометр (G). Ток проходит сквозь него и приводит к пропорциональному перемещению (отклонение иглы).
Гальванометр характеризуется сопротивлением и текущей чувствительностью. Последнее – ток, осуществляющий значительное отклонение иглы гальванометра (максимальный ток). К примеру, гальванометр, чья токовая чувствительность составляет 50 мкА достигает максимального прогиба в 50 мкА.
Если подобный прибор обладает сопротивлением в 20 Ом, то только напряжение V = IR = (50 мкА) (25 Ом) = 1.25 мВ создает полномасштабное считывание. Объединив с ним резисторы, можно рассматривать его в качестве вольтметра или амперметра.
Схема подключения блока
Почти все они малогабаритные и могут быть установлены в небольшие корпуса блоков питания. Здесь весьма часто протягивает руку помощи Алиэкспресс, оперативно поставляя китайские цифровые измерительные приборы.
Но новичкам ввод в эксплуатацию подключение в схему ампервольтметра может оказаться задачей проблематичной, т. Сегменты светятся прилично ярко, цветовая гамма подобрана очень удачно.
Измеряемое напряжение В; ток А.
А ток на выходе легко достигал практически одного ампера. Подключение При помощи вольтметра можно измерить текущее напряжение в сети электроснабжения.
За небольшую плату можно узнать, работает ли техника в подходящих условиях. Подав питание на схему, индикатор начнет светиться. Практически близнец прошлого вольтметра, отличается маркировкой проводов и сниженной ценой.
При неправильном подключении табло прибора будет показывать нулевые значения. Подав питание на схему, индикатор начнет светиться.
Чтобы он начал измерять напряжение менее 3 Вольт, нужно выпаять резистор-перемычку R1 и на ее правую по схеме контактную площадку подать напряжение В с внешнего источника выше можно, но нежелательно — стабилизатор DA1 сильно греется. Поскольку на странице продавца нет данной информации, то пришлось покопаться в сети и набросать пару схем. Толстые провода: черный минус амперметра, красный выход амперметра. Достаточно будет подключить зарядное, где установлен вольтамперметр к батареи, и мы увидим какое сейчас на ней напряжение. Иногда бывают амперметры без встроенного токоизмерительного шунта.
Простое и красивое техническое решение. Нижняя граница 0,1 В и 0,01 А. Поскольку на странице продавца нет данной информации, то пришлось покопаться в сети и набросать пару схем. Дело в том, что если подключить вольтметр амперметр к регулируемому выходу блока питания, то при понижении напряжения менее 4. Не каждый сразу поймет, какой провод, куда нужно подключать, а инструкции обычно только на китайском языке. Как подключить Вольтамперметра DC 100v 10a часть 2
Купил я для своей зарядки любопытный экземпляр китайского вольтметра амперметра, брал на рынке особо не разглядывал, но когда домой принес — три дня голову чухал, как подключить, ибо в инете особо ничего не нашел похожего.Нашел общее описание с кривым переводом на сайте avrobot.ru/product_info.php?products_ >
“Инструкция по подключению:— Красный тонкий провод (vcc): Напряжение питания прибора + 3.5-30 В (Примечание: если измеряемый сигнал меньше, чем 30 В и имеют общий минус питания, то измеряемый сигнал может быть использован также для питания прибора )— Черный тонкий провод (земля): Напряжение питания “-“, “-” измеряемого сигнал 3.5-30 В— Желтый тонкий провод (vin): Измеряемый сигнал “+” (0-100 В)— Красный толстый провод (i +): Вход тока “+” (в серии питания положительные)— Черный толстый провод (i -): C. Вход тока “-” (Провод отрицательного питания)Инструкция по калибровке:Вследствии влияния температуры и изменения параметров электрокомпонентов от времени, возможно появление ненулевых показаний прибора при измерении, что является нормальным явлением. Это не является ошибкой или неисправностью.Решение: Когда прибор отключен от питания, пожалуйста, замкните контакты А и B. Затем сделайте измерение электроэнергии, прибор автоматически откалибруется к нулю. После окончания автоматической калибровки, пожалуйста, отсоедините A и B. После этого используйте прибор в обычном режиме.”
На задней стенке присутствует микросхема MC74HC5950, идут два толстых провода и три тонких.Далее фото и комментарии.
Какие изделия используют?
Некоторое время назад найти и установить такой прибор, было большой проблемой. Автолюбители устанавливали на свои машины амперметры от грузовых автомобилей, а те водители, которые были на «вы» с радиоэлектроникой, сами подбирали измерительные приборы. Первыми отечественными машинами, у которых вольтметр занял своё постоянное место на приборном щитке, была ВАЗ 2105, а несколько позже они появились и на других моделях.
Сегодня такой проблемы не существует, так как имеется большой выбор таких изделий в торговых сетях. Можно установить в панель электронные часы, которые одновременно с текущим временем показывают напряжение бортовой сети. Встречаются электронные тахометры, которые после нажатия нужной кнопки выполняют функции вольтметра. Такие устройства особых проблем не вызывают у владельцев.
Также сегодня в продаже имеются автомобильные амперметры и вольтметры, а отдельные водители самостоятельно подгоняют приборы, которые применяют в радиоэлектронных устройствах. Установка таких указателей сопряжена с некоторыми трудностями, так как нужно подбирать шунты к ним, производить калибровку или изготовление новых шкал. Поэтому на этом останавливаться не будем.
Как установить такие индикаторы?
Будем считать, что вам удалось приобрести амперметр или вольтметр предназначенные для применения в автомобилях, теперь рассмотрим процесс их установки. Следует напомнить особенности подключения их в электрические цепи.
Амперметр подключается только последовательно между источником тока и потребителями, при этом обязательно соблюдается полярность подключения, плюс от источника к плюсу прибора и так далее. Вольтметр подключается только параллельно к источнику питания, также при соблюдении полярности.
Подключение вольтметров к сети
Напряжение – с этим термином мы довольно часто сталкиваемся в повседневной жизни. Иногда нам нужно измерить напряжение в сети, чтобы понять, почему какое-либо устройство работает неудовлетворительно или лампа накаливания горит довольно тускло. Для данного рода измерений используют вольтметры. Вольтметр подключается к измеряемому устройству только параллельно, почему это так?
Как известно электрическое напряжение – это отношение работы, совершенной электрическим полем по перемещению заряда А, к величине заряда q, U=A/q. Также оно характеризует электрическое поле, которое возникает при прохождении электрического тока.
В системе международных обозначений СИ обозначается как U и измеряют в вольтах (1 В = 1 Дж/Кл). Для того чтобы измерять напряжение на устройстве необходимо параллельно к нему подключить вольтметр.
Для того, чтоб при параллельном включении снизить ток, потребляемый вольтметром и соответственно потери электрической энергии внутри устройства, внутреннее измерительное сопротивление выбирается как можно больше . Если включить вольтметр в цепь последовательно, то в связи с большим внутренним сопротивлением получим фактически разрыв цепи. То есть потери при измерении напряжения будет слишком большими, что неприемлемо, а также измерения будут некорректными. Поэтому вольтметр подключают только параллельно:
Если измеряется постоянное напряжение от 1 до 1000 мкВ могут использовать компенсаторами постоянного тока, но чаше пользуются цифровыми вольтметрами . Значения от десятков милливольт до сотен вольт измеряют приборами таких систем как: электромагнитной, электродинамической, магнитоэлектрической. Также не брезгуют и электронными аналоговыми и цифровыми вольтметрами. Также при измерении могут использовать добавочные сопротивления:
Где Rv – это внутреннее сопротивление вольтметра, Rдоб1…3 – добавочные сопротивления, UmV – максимальное которое может измерять сам вольтметр, а U1…3 – которые он может измерять с добавочными сопротивлениями.
Сопротивления добавочных резисторов определяется по формуле:
Где m – масштабный коэффициент.
Если проводят измерения постоянных напряжений в несколько киловольт, то в большинстве случаев используют вольтметры электростатические, реже используют измерительные устройства других систем подключаемых через делитель:
Где резисторы R1, R2 — резисторы выполняющие роль делителя, Rизм. – измерительное сопротивление, с которого снимается напряжение.
Если измеряют переменные напряжения до единиц вольт, то используют аналоговыми, выпрямительными и цифровыми устройствами. От единиц до сотен вольт и частотном диапазоне до нескольких десятков килогерц применяют выпрямительные системы, электромагнитные, электродинамические приборы. Если частота достигает нескольких десятков мегагерц, то в таком случае напряжение измеряют термоэлектрическими и электростатическими приборами.
В действующих значениях, как правило градуируют шкалы приборов для измерения величин переменного тока. Поэтому при измерении необходимо это учитывать (если необходимо измерять амплитудные и средние значения, то их как правило пересчитывают по соответствующим формулам).
При проведении измерении в сетях переменного тока напряжением выше 1000 В могут использоваться как делители, так и трансформаторы напряжения или измерительные трансформаторы. Чаще используют трансформаторы, так как трансформатор не только понижает значение напряжения, но потенциально разделяет измерительную цепь от силовой. Измерения могут проводится теми же приборами, что и в выше описанных случаях. Схема включения приведена ниже:
Где FU1, FU2 – предохранители, защищающие измерительную цепь от короткого замыкания.
Внешний вид трансформатора однофазного:
Как видим, при проведении измерение различного рода напряжений могут использоваться как различного рода приборы (цифровые, аналоговые и т.д.), так и устройства (делители, трансформаторы)
При проведении измерений важно учитывать каждый способ проведения измерений, для получения как можно более точного результата, а также корректного проведения измерительных работ
Похожие материалы:
- «Подключение» специалистов экстренных служб
- Новый стандарт многосвязной сети с Bluetooth
- Солнечное затмение испытывает надежность электрической сети