Особенности параллельного и последовательного соединений светодиодов

Содержание

Какое напряжение идёт на диод

Производители указывают номинальное прямое напряжение. Это значение будет различным для каждого типа светодиода. Но не нужно каждый раз проверять значения в документации. Достаточно использовать примерную таблицу, содержащую безопасные диапазоны напряжения:

Прямое напряжение LED в зависимости от цвета

Приведенная таблица содержит значения, которые были записаны из даташитов наиболее популярных производителей светодиодов. Конечно есть исключения, например сверх-яркие или мощные светодиоды. Но в случае с обычными, можно смело пользоваться этой таблицей.

А это ещё одна, аналогичная.

В общем когда пропускаем через LED ток желаемой интенсивности (например 20 мА), то прямое напряжение на нем устанавливается само. 

Комбинированный способ подключения светодиодов

Итак. Подключим наши 15 светодиодов комбинированным способом. Вспомним расчёт для последовательного подключения. Там мы выяснили, что от 12 вольт можем безболезненно запитать 3 светодиода. На каждый из 3-х светодиодов потребуется резистор в 480 Ом. Это и будет наша цепочка — 3 светодиода и резистор. Теперь мы параллельно подключим 5 таких цепочек. При параллельном соединении напряжение питания остаётся неизменным, а сила тока для каждой цепочки умножается на количество цепочек. Получается, нужен источник на 12В и 5*0,025=0,125А. Как видим, такой способ подключения сильно экономит ток.

Достоинства: низкое потребление тока при большой плотности светодиодов, каждая цепочка не зависит от соседних, благодаря наличию собственного токоограничительного резистора.Недостатки: внутри цепочки мы получаем те же проблемы, что и при обычном параллельном соединении. При наличии «кривых» светодиодов в цепочке, она выйдет из строя раньше других.

Комбинированное подключение светодиодов. 3 цепочки по 3 светодиода.

Выводы

При подключении светодиодов к источнику питания предпочтительно использовать параллельное соединение, снабжая каждый светодиод отдельным стабилизатором. При подключении большого количества светодиодов, для удешевления конструкции возможно комбинирование последовательного и параллельного способов соединения светодиодов для достижения оптимального результата.

Подключение через стационарный блок питания

Поскольку мультимедийные системы для авто работают от напряжения 12 В, для их функционирования не нужно использовать более мощные источники питания. Поэтому многие умельцы подключают магнитолу к блоку бесперебойного питания и разным сетевым адаптерам.

Какой выбрать блок питания

Чтобы определить, какой блок питания для автомагнитолы нужен, важно оценить силу выходного тока. Она должна составлять не меньше 5 А

При повышении нагрузок потребление может вырастать до 10-15 А

При повышении нагрузок потребление может вырастать до 10-15 А.

На рынке доступны профессиональные устройства с увеличенным запасом мощности, однако из-за дороговизны они не пользуются спросом. Лучше подобрать простой, но качественный БП с оптимальными рабочими параметрами.

Подключение магнитолы

Собираясь подключить магнитолу через блок компьютера или ноутбука, нужно отрезать базовый разъем устройства, по которому оно подключается к транспортному средству, и выполнить зачистку концов проводов для соединения с сетевым адаптером или источником бесперебойного питания. Проводка оставляется в старых разъемах, после чего выполняется сборка акустической схемой по базовой схеме.

Роль АКБ выполняет источник бесперебойного питания или адаптер с выходным напряжением 12 Вт.

Световой поток – еще одна немаловажная характеристика светодиодов

Эта характеристика измеряется в люменах

Обращая внимание на нее мы можем получить более-менее правдивое понимание того, сколько света мы получим от источника. Это достаточно «размытая» характеристика, т.к

световой поток зависит от многих факторов. И если в описании к светодиоду будет указано, что он выдает 100 люмен, то это не факт. Правильное определение истинного значения состоит не в производственных данных, а в экспериментальных. Посмотрим одну из методик.

Возьмем три светодиода одинаковой мощности и светового потока ( по datasheet ) при 350 мА – 120 люмен. При питании диодов от драйвера 350 мА в течении 1 мин., не превышая температуру кристалла получили следующие данные. Причем светодиод №3 выдает 120 люмен при токе всего в 300 мА. Т.е. делаем вывод, что данные по паспорту не всегда правильные. Выбирайте диоды с условием того, что истинное значение люменов будет на 10-15 процентов меньше. Тогда в конечном итоге не разочаруетесь, а в случае как с 3 диодом еще и порадуетесь.

Еще одна неприятная новость. С увеличением температуры кристалла падает световой поток. Эта характеристика ВСЕГДА указывается в данных, в виде графика. Не ленитесь и смотрите. Как правило, при рабочей температуре кристалла в 85 градусов у большинства LEDs световой поток уменьшается на 12 процентов.

1 2 3
По datasheet 120 120 120
Температура кристалла 25 25 25
Время свечения мин мин Мин
Истинное знач 120 115 148

Сколько светодиодов можно подключить к 12 Вольт

Условно, подключение происходит по 2 способам:

  1. К стационарной сети промышленной частоты (50Гц) напряжением 220В;
  2. К сети с безопасным напряжением величиной 12В.

Рассмотрим каждый из вышеприведенных примеров по отдельности.

в которой 0,75 – коэффициент надежности led, U пит – это напряжения источника питания, U пад – напряжение, которое падает на светоизлучающем диоде и создает световой поток, I – номинальный ток, проходящий через него, и R – номинал сопротивления для регулирования проходящего тока. После соответствующих вычислений, номинал сопротивления должен соответствовать 30 кОм.

Для нашего случая U – это будет разность напряжения питающей сети и напряжения падения на светодиоде. После соответствующих вычислений, для подключения одного led мощность сопротивления должна равняться 2Вт.

После определения номинала и мощности сопротивления можно собрать схему для подключения одного светодиода к 220В. Для ее надежной работы необходимо ставить дополнительный диод, который будет защищать светоизлучающий диод от пробоя, при возникновении амплитудного напряжения на выводах светодиода в 315В (220*√2).

На схеме, как видим, установлен обратный диод VD1, пропускающий обе полуволны на конденсатор C1 емкостью 220 нФ, на котором происходит падение напряжение до необходимого номинала.

12 вольт – это безопасное напряжение, которое применяется в особо опасных помещениях. Именно к таким и относятся ванные комнаты, бани, смотровые ямы, подземные сооружения и другие помещения.

Еще одним достоинством напряжения 12В, является то, что в большинстве случаев оно уже выпрямленное (постоянное), что значительно упрощает схему подключения. Рекомендуется дополнительно монтировать стабилизатор напряжения типа КРЭН или аналога.

Как мы уже знаем, светоизлучающий диод можно подключить как к цепям 12В, так и к цепям 220В, однако существует и несколько вариаций их соединения между собой:

  • Последовательное.
  • Параллельное.

Подключение светодиода через стабилизатор напряжения

Красные и желтые LED можно подсоединять сразу по пять штук, поскольку падение из напряжения ниже 2,2 Вольт.

Перед тем как рассчитать резистор, нужно выяснить рабочее напряжение каждой лампочки. Его измеряют самостоятельно или выясняют информацию из технической документации.

Светодиоды на 12 В подключают только через стабилизатор

Если речь идет о подсоединении ленты ламп в ИП, важно знать, что у них есть ограничительный резистор, рассчитанный на каждую групп из нескольких LED

Продавцы уверяют, что продают светодиоды, которые возможно подключить к источнику питания на 12 В. На самом деле это утверждение некорректно. У лед-лампочки нет строго определенного рабочего вольтажа, поэтому можно говорить только об источнике света, изготовленном из диодов.

Следует определить, что происходит в лед-лампочке во время свечения. В данном процессе самые важные 2 параметра: максимальный и рабочий (необходимый для свечения) ток. Они учитываются в производстве лед-матриц, но не при выборе источника тока.

Напряжение на лампочке чаще всего от 1,5 до 3,5 вольт, цифра зависит от цвета лампочки. Меньшее значение – красные диоды, самое большое – сверхяркие. Светящийся диод на 12 вольт – это матрица (сборка), в состав которой может входить любое количество кристаллов, соединенных последовательно. Подобных цепочек может быть несколько, они соединяются друг с другом параллельно.

Последовательное и параллельное соединения диодов.

Если для выпрямительной схемы нельзя выбрать нужный тип диода в соответствии с заданным значением обратного напряжения или прямого тока, то используют два или более однотипных диодов с меньшими значениями параметров, включая эти диоды последовательно или параллельно.

Параллельное соединение диодов

Параллельное соединение диодов

При параллельном соединении диодов из-за возможного разброса параметров их токи будут неодинаковыми. Один из этих токов может превысить максимально допустимое значение, что приведёт к выходу из строя сначала одного, а затем и другого диода. Более равномерное распределения тока между параллельно соединёнными диодами достигается включением последовательно с каждым из них одинаковых по номиналу резисторов Rд. Сопротивление резисторов Rд должно быть в 5…10 раз больше, чем сопротивление диода в прямом направлении. В мощных выпрямительных устройствах для этой же цели используются индуктивные выравниватели токов.

Расчёт параллельного соединения диодов

Для начала расчёта необходимо определить требуемое количество параллельно соединённых диодов, исходя из того, что ток, проходящий через один диод не должен превышать значения максимально допустимого значения тока для данного типа диода, тогда количество параллельно соединённых диодов будет равно

, где

mTnp

При дробных значениях расчётного количества диодов округление ведётся в большую сторону.

Значение сопротивления добавочных резисторов определяется по формуле


, где

np.cp

Расчитаное сопротивление добавочных резисторов округляют до ближайшего стандартного сопротивления.

Пример расчёта параллельного соединения диодов

Рассчитать выпрямительную цепь, позволяющую получить выпрямленный ток Iвыпр = 550 мА, если используются диоды Д226Б.

Так как средний прямой ток диода Д226Б Iпр. ср = 300 мА, то необходимо применить несколько параллельно соединённых диодов с добавочными резисторами. Рассчитаем количество параллельно соединённых диодов, примем kT = 0,8

Возьмём n = 3.

Найдём значение сопротивлений добавочных резисторов

Выберем резистор из стандартного ряда сопротивлений Е24 (± 5%) Rдоб = 6,2 Ом

Последовательное соединение диодов

Последовательное соединение диодов

Для обеспечения возможности работы выбранного типа диода в схеме выпрямителя с обратным напряжением, превышающим его максимально допустимое значение, следует соединять однотипные диоды последовательно. Если параметры не совпадают, то один из диодов оказывается под значительно большим напряжением, чем другой. Это может привести к пробою одного, а затем и другого диода. Выравнивание обратного напряжения на последовательно соединенных диодах достигается шунтированием каждого из диодов резистором Rш. Ток, протекающий через эти резисторы, должен быть в 5…10 раз больше максимально возможного обратного тока диодов. В мощных высоковольтных выпрямительных устройствах для этой же цели диоды шунтируют конденсаторами Сш или RC-цепью.

Расчёт последовательного соединения диодов

Для начала расчёта необходимо определить количество последовательно соединенных диодов, исходя из того что падение напряжения на каждом отдельно взятом диоде не должно превышать амплитудного значения напряжения, тогда количество последовательно включённых диодов будет равно


, где

Um — амплитудное значение напряжения проходящее через диод,
kH – коэффициент нагрузки по напряжению (может принимать значения от 0,5 до 0,8),
Uobp max — максимально допустимое обратное напряжение диода.

При дробных значениях расчётного количества диодов округление ведётся в большую сторону.

Значение сопротивлений шунтирующих резисторов определяется по формуле


, где

Iобp max — максимально допустимый обратный ток диода при максимальной температуре.

Пример расчёта последовательного соединения диодов

Рассчитать выпрямительную цепь для напряжения с амплитудным значением 700В, используя диоды Д226Б.

Так как максимально допустимое обратное напряжение диода Uобр.max = 300В, то для выпрямления необходимо применить цепочку из последовательно соединённых диодов с шунтирующими резисторами. Рассчитаем количество последовательных диодов, примем kH = 0,7

Возьмём n = 4

Найдём значение сопротивлений шунтирующих резисторов

Выберем резистор из стандартного ряда сопротивлений Е24 (± 5%) Rш = 1 MОм

Включение дополнительных и шунтирующих резисторов неизбежно связано с увеличением потерь мощности и уменьшением КПД выпрямительной схемы.

Как пользоваться знаниями про особенности параллельного и последовательного подключений

Наверное, самый главный вопрос, который встаёт перед учеником – это зачем вообще всё это знать?

Тут всё довольно просто. Зная эти параметры, можно легко собрать нужную цепь. Например, представим, что мы хотим соединить два аккумулятора, напряжение каждого из которых 6 В для подключения автомобильного светодиода, рассчитанного на 12 В. Как соединить аккумуляторы? Если параллельно, то получим повышенную емкость и напряжение 6 В. Диод не «раскурится». Если же использовать последовательное подключение, то на выходе будем иметь сумму 6 В + 6 В = 12 В. Задача решена. Таких примеров можно привести очень и очень много.

Ещё один вопрос, как рассчитывать другие параметры (емкость, мощность, индуктивность) при последовательном и параллельном соединении проводников.

Например, если мы подключим последовательно 5 конденсаторов, как узнать общую емкость этой цепи? Конечно же, можно, опять-таки, заучить формулы. На практике вы их забудете сразу, как перестанете решать подобные задачи. Поэтому, гораздо важнее держать в уме физическое определение ёмкости, а уже из него выводить конкретный частный случай, помня, что при последовательном подключении сила тока всегда одинакова, а напряжение суммируется.

Применение на практике

Для примера, рассмотрим инверторный аппарат TELWIN Force 165. Во входном выпрямителе используются диодные сборки GBPC3508. Выпрямительный мост GBPC3508 может работать с током 35 А, обратное напряжение – 800 В.

С ним вместе идет обязательно сглаживающий фильтр из конденсаторов большой емкости. Кроме этого имеется фильтр электромагнитной совместимости, который не пропускает помехи от инвертора в бытовую сеть.

На выходе инвертора используются мощные сдвоенные диоды с общим катодом. Они имеют высокое быстродействие в отличие от диодов расположенных на входе устройства.

Благодаря малому времени восстановления, менее 50 наносекунд, приборы успевают переключать высокочастотный ток на выходе вторичной обмотки.

В данном приборе используются сдвоенные диоды марок STTH6003CW, FFH30US30DN или VS-60CPH03, рассчитаны на прямой ток 30 ампер на один прибор (60 ампер на оба) и обратное напряжение 300 вольт.

Устанавливаются на радиатор. Для защиты полупроводников от перегрузки используется RC фильтр. Схема управления требует стабильный источник питания без бросков напряжения.

Для этого в приборе предусмотрены стабилитроны или уже готовый интегральный стабилизатор, которые обеспечивают стабильное питание на микросхемах управления. В результате получается компактное устройство, позволяющее качественно варить металл.

Как мы знаем, в наших розетках протекает переменный электрический ток с напряжением в 220 вольт. Но как быть если нам нужно запитать низковольтный приемник, которому требуется постоянный ток? Если с напряжением все понятно – нам поможет трансформатор, то как сделать из переменного тока постоянный – вопрос. В этой ситуации нам на помощь приходит такое устройство как выпрямитель. Это устройство содержится почти во всех электронных приборах, которые работает на постоянном токе, от сварочных полуавтоматов, до блоков питания. В статье мы рассмотрим классическую схему выпрямителя из четырех диодов, которая именуется выпрямительным диодным мостом.

Распиновка светодиода

Светодиод – кристалл, дополненный добавками, которые излучают свет в процессе прохождения электротока. Свечение появляется, если на анод подается положительный вольтажа, на катод – отрицательный.

Слово «распиновка» произошло от английского «Pin», которое можно перевести как «вывод» или «ножка». Распиновка светодиода – это определение функций контактов. Они обозначены вместе с предназначением на микросхемах и в таблицах. Схемы достаточно простые, на них видно, куда подключить «плюс», куда «минус». Если лед-лампочка сверхяркая, на ее корпусе или контактах имеется маркировка. Катод – это всегда ножка на широком основании.

Понятия, сокращения, глоссарий.

  • БП — блок питания.
  • SMD — устройство, излучающее свет, монтируемое на резиновой, бумажной, самоклеющейся поверхности ленты. С нанесёнными проводящими ток дорожками и миниатюрными полупроводниковыми элементами, расположенными в один или несколько рядов. А также могут быть установлены ограничивающие резисторы и конденсаторные сглаживающие фильтры. Длину ленты разрезают по специально нанесённому пунктиром месту.
  • Чип — полупроводниковый кристалл.
  • Подложка — гибкая плата с припаянными элементами.
  • СД — диод, излучатель света.
  • Клеящаяся основа — фиксирует на поверхности СД.
  • Люминофор — материал, испускающий фотоны под воздействием энергии полупроводника.
  • RGB-контроллер — прибор, с функцией инфракрасного или радиоуправляемого цвета, режимом свечения. Регулируют дистанционным пультом.
  • Samsung, Philips, LG. Брендовые производители СД.
  • Диммер — это устройство для расширения функциональных возможностей светодиодных источников. Регулирует интенсивность потока освещения, его цвет, экономит электроэнергию. Составная часть обычного выключателя.
  • Дистанционный пульт — прибор для управления одним или несколькими узлами.
  • Усилитель контроллера — устройство для передачи сигнала к диодам, обеспечивающее одинаковые цвета и яркость излучения.
  • Световой поток, обозначенный единицей люмен (лм).
  • ИК — инфракрасный контроллер.

Напряжение питания светодиодов

Несмотря на то что электрический параметр №1 для светодиода – это номинальный ток, часто для расчётов необходимо знать напряжение на его выводах. Под понятием «напряжение светодиода» понимают разницу потенциалов на p-n-переходе в открытом состоянии.

Оно является справочным параметром и вместе с другими характеристиками указывается в паспорте к полупроводниковому прибору. 3, 9 или 12 вольт… Часто в руки попадают экземпляры, о которых ничего не известно. Так как узнать падение напряжения на светодиоде?

Прекрасной подсказкой в этом случае является цвет свечения, внешняя форма и размеры полупроводникового прибора. Если корпус светодиода выполнен из прозрачного компаунда, то цвет его остаётся загадкой, разгадать которую поможет мультиметр.

Для этого переключатель цифрового тестера переводят в положение «проверка на обрыв» и щупами поочерёдно касаются выводов светодиода. У исправного элемента в прямом смещении будет наблюдаться небольшое свечение кристалла. Таким образом, можно сделать вывод не только о цвете свечения, но и о работоспособности полупроводникового прибора.

Светоизлучающие диоды разных цветов изготавливают из различных полупроводниковых материалов. Именно химический состав полупроводника во многом определяет напряжение питания светодиодов, точнее, падение напряжение на p-n-переходе.

В связи с тем, что в производстве кристаллов используют десятки химических соединений, точного напряжения для всех светодиодов одного цвета не существует. Однако есть определённый диапазон значений, которых зачастую достаточно для проведения предварительных расчетов элементов электронной цепи.

С одной стороны, размер и внешний вид корпуса не влияют на прямое напряжение светодиода. Но, с другой стороны. через линзу можно увидеть количество излучающих кристаллов, которые могут быть соединены последовательно. Слой люминофора в SMD светодиодах может скрывать целую цепочку из кристаллов.

Ярким примером является миниатюрные многокристальные светодиоды от компании Cree, падение напряжения на которых зачастую значительно превышает 3 вольта. В последние годы появились белые SMD светодиоды, в корпусе которых размещено 3 последовательно соединённых кристалла. Их часто можно встретить в китайских светодиодных лампах на 220 вольт.

Естественно убедиться в исправности LED-кристаллов в такой лампе при помощи мультиметра не удастся. Стандартная батарейка тестера выдаёт 9 В, а минимальное напряжение срабатывания трёхкристального белого светоизлучающего диода – 9,6 В. Также встречаются двухкристальная модификация с порогом срабатывания от 6 вольт.

Самые точные данные о прямом падении напряжения на светодиоде можно получить путём проведения практических измерений. Для этого понадобится регулируемый блок питания (БП) постоянного тока с напряжение от 0 до 12 вольт, вольтметр или мультиметр и резистор на 510 Ом (можно больше). Лабораторная схема для тестирования показана на рисунке.

Здесь всё просто: резистор ограничивает ток, а вольтметр отслеживает прямое напряжение светодиода. Плавно увеличивая напряжение от источника питания, наблюдают за ростом показаний на вольтметре. В момент достижения порога срабатывания светодиод начнёт излучать свет.

В какой-то момент яркость достигнет номинального значения, а показания вольтметра перестанут резко нарастать. Это означает, что p-n-переход открыт, и дальнейший прирост напряжения с выхода БП будет прикладываться только к резистору. Текущие показания на экране и будут номинальным прямым напряжением светодиода.

Если ещё продолжить наращивать питание схемы, то расти будет только ток через полупроводник, а разность потенциалов на нём изменится не более чем на 0,1-0,2 вольт. Чрезмерное превышение тока приведёт к перегреву кристалла и электрическому пробою p-n-перехода.

Если рабочее напряжение на светодиоде установилось около 1,9 вольт, но при этом свечение отсутствует, то возможно тестируется инфракрасный диод. Чтобы убедиться в этом, нужно направить поток излучения на включенную фотокамеру телефона. На экране должно появиться белое пятно.

В отсутствии регулируемого блока питания можно запитать светодиод «кроной» на 9 В. Также можно задействовать в измерениях сетевой адаптер на 3 или 9 вольт, который выдаёт выпрямленное стабилизированное напряжение, и пересчитать номинал сопротивления резистора.

Распиновка светодиода

Для решения вопроса существует всего 3 способа:

Согласно нормам, принятым во всем мире, на обычном светодиоде (не SMD типа), длинная ножка всегда является «+» или же анодом. Для работы светодиода на него должна подаваться положительная полуволна. А короткая – катодом.

Для проверки необходимо переключатель прибора поставить в режим «Прозвонка» и установить красный щуп мультиметра на анод, а черный – на катод. В результате светодиод должен засветиться. Если этого не произошло, необходимо поменять полярность (черный на анод, а красный на катод).

Если присмотреться к светодиоду, то можно увидеть 2 кончика возле кристалла. Тот, который больше – катод, тот, что меньше – анод.

Смешанное подключение

Подобный способ подключения является самым оптимальным. По такому принципу собраны все светодиодные ленты. Он подразумевает комбинацию параллельного и последовательного подключения. Как он выполняется можно увидеть на фото:

Схема подразумевает включение параллельно не отдельных светодиодов, а последовательных цепочек из них. В результате этого даже при выходе из строя одной или нескольких цепочек, светодиодная гирлянда или лента будут по-прежнему одинаково светить.

Мы рассмотрели основные способы подключения простых светодиодов. Теперь разберем методы соединения мощных светодиодов, и с какими проблемами можно столкнуться при неправильном подключении.

Последовательное и параллельное соединение выпрямительных диодов

При выпрямлении более высоких напряжений приходится соединять дио­ды последовательно, с тем, чтобы обрат­ное напряжение на каждом диоде не превышало предельного. Но вследствие разброса обратных сопротивлений у раз­личных экземпляров диодов одного и того же типана отдельных диодах обратное напряжение может оказаться выше предельного, что повлечет пробой диодов. Поясним это примером.

Пусть в некотором выпрямителе амплитуда обратного напряжения сос­тавляет 1000 В и применены диоды с Uобр max = 400 В. Очевидно, что необ­ходимо соединить последовательно не менее трех диодов. Предположим, что обратные сопротивления диодов Rо6р1, = Rобр2 = 1 МОм и Rо6р3 = 3 МОм. Обратное напряжение распределяется пропорционально обратным сопротивле­ниям, и поэтому получится Uо6р1, = Uобр2 = 200 В и Uо6р3, = 600 В.

На третьем диоде (кстати говоря, он явля­ется лучшим, так как у него наиболь­шее Rобр) обратное напряжение выше предельного, и он может быть пробит. Если это произойдет, то напряжение 1000 В распределится между оставши­мися диодами и на каждом из них будет 500 В. Ясно, что любой из этих диодов может пробиться, после чего все обратное напряжение 1000 В будет при­ложено к одному диоду, который его не выдержит. Такой последовательный пробой диодов иногда происходит за доли секунды.

Для того чтобы обратное напряжение распределялось равномерно между диодами независимо от их обратных сопротивлений, применяют шунтирова­ние диодов резисторами (рисунок 2.24).

Рисунок 2.24 – Последовательное соединение диодов

Сопротивления Rшрезисторов должны быть одинаковы и значительно меньше наименьшего из обратных сопротивле­ний диодов. Но вместе с тем Rшне должно быть слишком малым, чтобы чрезмерно не возрос ток при обратном напряжении, т. е. чтобы не ухудшилось выпрямление. Для рассмотренного при­мера можно взять резисторы с сопро­тивлением 100 кОм.

Тогда при обратном напряжении сопротивление каждого участка цепи, состоящего из диода и шунтирующего резистора, будет не­сколько меньше 100 кОм и общее об­ратное напряжение разделится между этими участками примерно на три рав­ные части. На каждом участке это напряжение окажется меньше 400 В и диоды будут работать надежно. Обыч­но шунтирующие резисторы имеют сопротивление от нескольких десятков до нескольких сотен килоом.

Параллельное соединение диодов применяют в том случае, когда нужно получить прямой ток, больший предель­ного тока одного диода. Но если диоды одного типа просто соединить парал­лельно, то вследствие неодинаковости вольт-амперных характеристик они ока­жутся различно нагруженными и в не­которых ток будет больше предельного. Различие в прямом токе у однотипных диодов может составлять десятки про­центов.

Для примера на рисунке 2.25, а показа­ны характеристики прямого тока двух диодов одного и того же типа, у кото­рых Iпр max = 0,2 А. Пусть от этих дио­дов требуется получить прямой ток 0,4 А. Если их соединить параллельно, то при токе 0,2 А на первом диоде напряжение равно 0,4 В (кривая 1). А на втором диоде при таком же напряжении ток будет лишь 0,05 А (кривая 2). Таким образом, общий ток составит 0,25 А, а не 0,4 А. Увеличивать напряжение на диодах нельзя, так как в первом диоде ток станет больше предельного.

Рисунок 2.25 – Параллельное соединение диодов

Из характеристик видно, что для получения во втором диоде тока 0,2 А надо иметь на нем напряжение 0,5 В, т. е. на 0,1 В больше, чем на первом диоде. Поэтому, чтобы установить пра­вильный режим работы диодов, надо подвести к ним напряжение 0,5 В, но последовательно с первым диодом включить уравнительный резистор (рисунок 2.25, б) – сцелью поглощения из­лишнего для первого диода напряжения 0,1 В. Ясно, что сопротивление этого резистора Rу = 0,1 : 0,2 = 0,5 Ом. При наличии такого резистора оба диода будут нагружены одинаково током в 0,2 А.

Практически редко включают парал­лельно больше трех диодов. Уравни­тельные резисторы с сопротивлением в десятые доли ома или единицы ом обычно подбирают экспериментально до получения в рабочем режиме одинако­вых токов в диодах. Иногда включают уравнительные резисторы с сопротивле­нием, в несколько раз большим, чем прямое сопротивление диодов, для того чтобы ток в каждом диоде определялся главным образом сопротивлением Rу.

Но в этом случае происходит допол­нительное падение напряжения на Ry, превышающее в несколько раз прямое напряжение диодов, и КПД, конечно, снижается. Если нежелательно вклю­чать уравнительные резисторы, то надо подобрать диоды с примерно одинако­выми характеристиками. Однако реко­мендуется по возможности не прибегать к параллельному соединению диодов.