Мостовой трехфазный выпрямитель: схема выпрямления

Содержание

Схема однополупериодного выпрямителя

При подаче переменного sin-идального напряжения на первичную обмотку трансформатора напряжение на зажимах вторичной его обмотки также будет переменным синусоидальным и будет равноU2=U2msinwt. Диод проводит электрический ток только в том случае, когда его анод относительно катода будет иметь положительный потенциал. Поэтому ток в цепи – вторичная обмотка, диод и нагрузка – будет протекать только в одном направлении, то есть в течение одной половины периода переменного напряженияU2. В результате этого ток, протекающий в цепи нагрузки, оказывается пульсирующим. Максимальное значение тока:

Im=U2m/RH, гдеRH– сопротивление потребителя постоянного тока.

Кривая получаемого в процессе однополупериодного выпрямления пульсирующего тока может быть разложена в гармонический ряд Фурье:

i=Im(1/π+1/2 sinwt-2/3π∙1 cos2wt-…).

Пульсирующий ток, как видно из выражения, кроме переменных составляющих содержит также и постоянную I=Im/π. Отсюда постоянная составляющая напряжения

U=IRH=Im/π∙RH=U2m/π.

Через действующее значение напряжения: U=√2 ∙U2/π.

Переменные составляющие характеризуют величину пульсаций тока и напряжения.

График работы однополупериодного выпрямителя

Для оценки пульсаций при какой-либо схеме выпрямления вводится понятие коэффициента пульсаций q, под которым понимается отношение амплитуды Aнаиболее резко выраженной гармонической составляющей, входящей в кривые выпрямленного тока или напряжения, к постоянной составляющей Aв тока\напряжения в выходной цепи выпрямителя:q=Am/AB.

Для схемы однополупериодного выпрямителя: q=0.5Im/(1/π ∙Im)=π/2. В течение половины периода, когда анод диода имеет отрицательный относительно катода потенциал, диод тока не проводит. Напряжение, воспринимаемое диодом в непроводящий полупериод, называется обратным напряжением Uобр. Обратное напряжение на диоде будет определяться напряжением на вторичной обмотке. Максимальное значение напряженияUобрm=U2m. Значит, вентиль надо выбирать так, чтобы [Umax обр]>=U2m.

Недостатки такой схемы выпрямления: большие пульсации выпрямленного тока и напряжения, а также плохое использование трансформатора, поскольку по его вторичной обмотке протекает ток только в течение половины периода. Такую установку используют в маломощных системах, когда выпрямленный ток мал.

От чего зависит КПД диодного выпрямителя?

Самый большой эффект на увеличение КПД блока питания дает усовершенствование системы выпрямления переменного/импульсного тока.

В простых БП используют диодные схемы выпрямления. Их КПД в основном зависит от падения напряжения (Uобр или Vfm) на p-n переходах диодов:

Падение напряжения связано с наличием обратного сопротивления у полупроводникового перехода и обусловлено необходимостью затратить энергию на преодоление его энергетического барьера. Чем оно меньше, тем меньше энергии теряется на диоде в процессе выпрямления.

Падение напряжения Vfm различных полупроводниковых материалов значительно отличается, так, на кремниевых (дешевых) диодах Vfm равно 0,65-1,2 В, на германиевых (дорогих) диодах – 0,25-0,3 вольт, на диодах Шоттки (приемлемая цена) — 0,35-0,8 В.

Величина Vfm на диоде нелинейна и зависит от свойств полупроводника (концентрации носителей электронов/дырок), величины протекающего тока и обратно пропорционально температуре.

Вольтамперные характеристики кремниевых и германиевых диодов:

Вольтамперная характеристика диодов Шоттки в сравнении с кремниевыми диодами:

Германиевые диоды имеют прекрасные показатели, но дороги, работают на малых токах и напряжениях, кремниевые – дешевы, могут работать на высоких напряжениях, имеют низкий КПД. Диоды Шоттки работают только на низких напряжениях и высоких токах, имеют хороший КПД при приемлемой цене.

Трансформаторы (с выпрямителем или без него)

Сердце трансформатора — сердечник. Он набирается из пластин трансформаторной стали, изготовить которые вручную довольно проблематично. Правдами и неправдами исходный материал добывается на заводах, в строительных бригадах, на пунктах сбора металлолома. Полученная конструкция (как правило, в виде прямоугольника) должна иметь сечение не меньше, чем 55 см². Это довольно тяжелая конструкция, особенно после укладки обмоток.

При сборке обязательно надо предусмотреть регулировочный винт, с помощью которого можно двигать вторичную обмотку относительно неподвижной первички.

Чтобы не вдаваться в сложности расчетов сечения проводов, возьмем типовые параметры:

  • сила тока на вторичке 100–150 А;
  • напряжение холостого хода 60–65 вольт;
  • рабочее напряжение при сварке 18–25 вольт;
  • сила тока на первичной обмотке до 25 А.

Исходя из этого, сечение провода первички должно быть не менее 5 мм², если делать с запасом — можно взять провод 6–7 мм². Изоляция должна быть жаростойкой, из материала, не поддерживающего горение.

Вторичная обмотка набирается из провода (а лучше медной шины), сечением 30 мм². Изоляция тряпичная. Пусть толщина вас не пугает, количество витков на вторичке небольшое.

Количество витков первичной обмотки определяется по коэффициенту 0.9–1 виток на вольт (для наших параметров).

Формула выглядит так:

W(количество витков) = U(напряжение) / коэффициент.

То есть, при напряжении в сети 200–210 вольт, это будет порядка 230–250 витков.

Соответственно, при напряжении вторички 60–65 вольт, количество ее витков составит 67–70.

С технической точки зрения трансформатор готов. Для удобства использования рекомендуется выполнить небольшой запас по вторичной обмотке, с несколькими ответвлениями (на 65, 70, 80 витках). Это позволит уверенно работать в местах с пониженным напряжением сети.

Прятать агрегат в корпус, или оставлять открытым — это вопрос безопасности использования. Типовой изготовленный сварочный трансформатор своими руками выглядит так:

Оптимальный материал для корпуса — текстолит 10–15 мм.

Добавляем выпрямитель

Самодельный мощный сварочный трансформатор с точки зрения схемотехники — обычный блок питания. Соответственно выпрямитель устроен так же просто, как в сетевом заряднике для мобильного телефона. Только элементная база будет выглядеть на несколько порядков массивнее.

Как правило, в простую схему из диодного моста добавляют пару конденсаторов, гасящих импульсы выпрямленного тока.

Можно собрать выпрямитель и без них, но чем ровнее ток, тем качественней получается сварочный шов. Для сборки собственно моста применяются мощные диоды типа Д161–250(320). Поскольку при нагрузке на элементах выделяется много тепла, его нужно рассеивать с помощью радиаторов. Диоды крепятся к ним с помощью болтового соединения и термопасты.

Разумеется, ребра радиаторов должны либо обдуваться вентилятором, либо выступать над корпусом. Иначе вместо охлаждения они будут греть трансформатор.

Мини сварочный трансформатор

Если вам не нужно варить рельсы или швеллера из стали 4–5 мм, можно собрать компактный сварочник для спайки стальной проволоки (изготовление каркасов для самоделок) или сварки тонкой жести. Для этого можно взять готовый трансформатор от мощного бытового прибора (идеальный вариант — микроволновка), и перемотать вторичную обмотку. Сечение провода 15–20 мм², потребляемая мощность не более 2–3 кВт.

Расчет схемы производится также, как и для более мощных агрегатов. При сборке выпрямителя можно использовать менее мощные диоды.

Микросварочник

Если сфера применения ограничена спайкой медных проводов (например, при монтаже распределительных коробок), можно ограничиться конструкцией размером с пару спичечных коробков.

Выполняется на транзисторе КТ835 (837). Трансформатор изготавливается самостоятельно. Фактически — это высокочастотный повышающий преобразователь.

Трансформатор мотаем на ферритовом стержне. Две первичные обмотки: коллекторная (20 витком 1 мм), базовая (5 витков 0.5 мм). Вторичная (повышающая) обмотка — 500 витков 0.15 проволоки.

Собираем схему, припаиваем по схеме резисторную обвязку (чтобы трансформатор не перегревался на холостом ходу), аппарат готов. Питание от 12 до 24 вольт, с помощью такого аппарата можно сваривать жгуты проводов, резать тонкую сталь, соединять металлы толщиной до 1 мм.

В качестве сварочных электродов можно использовать толстую швейную иглу.

Характеристики лабораторного блока питания

  • входное напряжение: 24 В переменного тока;
  • выходное напряжение: от 0 до 30 В (регулируемое);
  • выходной ток: 2 мА – 3 А (регулируемый);
  • пульсации выходного напряжения: менее 0.01%
  • размер платы 84 х 85 мм;
  • защита от короткого замыкания;
  • защита по превышению установленной величины тока.
  • О превышении установленного тока сигнализирует светодиод.

Для получения полноценного блока следует добавить лишь три компонента – трансформатор с напряжением на вторичной обмотке 24 вольта при 220 вольтах на входе (важный момент, о котором подробно ниже) и током 3,5-4 А, радиатор для выходного транзистора и кулер на 24 Вольта для охлаждения радиатора при большом токе нагрузки. Кстати, в интернете нашлась и схема данного блока питания:

Из основных узлов схемы можно выделить:

  • диодный мост и фильтрующий конденсатор;
  • регулирующий узел на транзисторах VT1 и VT2; 
  • узел защиты на транзисторе VT3 отключает выход, пока питание операционных усилителей не будет нормальным
  • стабилизатор питания вентилятора на микросхеме 7824;
  • на элементах R16, R19, C6, C7, VD3, VD4, VD5 построен узел формирования отрицательного полюса питания операционных усилителей. Наличие этого узла обуславливает питание всей схемы именно переменным током от трансформатора; 
  • выходные конденсатор С9 и  защитный диод  VD9.

Отдельно нужно остановиться на некоторых компонентах примененных в схеме:

  • выпрямительные диоды 1N5408, выбраны впритык – максимальный выпрямленный ток 3 Ампера. И хоть диоды в мосте работают попеременно, все же не будет лишним заменить их более мощными, например диодами Шотки на 5 А;
  • стабилизатор питания вентилятора на микросхеме 7824 выбран на мой взгляд не совсем удачно – под рукой у многих радиолюбителей наверняка найдутся вентиляторы на 12 вольт от компьютеров, а вот куллеры на 24 В встречаются гораздо реже. Покупать такой не стал, решив заменить 7824 на 7812, но в процессе испытаний БП отказался от этой идеи. Дело в том, что при входном переменном напряжении в 24 В, после диодного моста и фильтрующего конденсатора получаем 24*1,41=33,84 Вольта. Микросхема 7824 прекрасно справится с задачей рассеивания лишних 9, 84 Вольта, а вот 7812 приходится тяжко, рассеивая в тепло 21,84 Вольта. 

Кроме того, входное напряжение для микросхем 7805-7818 регламентировано производителем на уровне 35 Вольт, для 7824 на уровне 40 Вольт. Таким образом, в случае простой замены 7824 на 7812, последняя будет работать на грани. Вот ссылка на даташит.

Учитывая вышеприведенное, имевшийся в наличии кулер на 12 Вольт подключил через стабилизатор 7812, запитав ее от выхода штатного стабилизатора 7824. Таким образом, схема питания кулера получилась хоть и двухступенчатой, но надежной. 

Операционные усилители TL081, согласно даташита требуют двуполярное питание +/- 18 Вольт – в целом 36 Вольт и это максимальное значение. Рекомендуемое +/- 15.

И вот тут начинается самое интересное относительно переменного входного напряжения величиной 24 Вольта! Если взять трансформатор, который при 220 В на входе, выдает 24 В на выходе, то опять же после моста и фильтрующего конденсатора получаем 24*1,41=33,84 В.

Таким образом, до достижения критической величины остается всего 2,16 Вольта. При увеличении напряжения в сети до 230 Вольт (а такое бывает в нашей сети), с фильтрующего конденсатора снимем уже 39,4 Вольта постоянного напряжения, что приведет к гибели операционных усилителей.

Выхода тут два: либо заменить операционные усилители другими, с более высоким допустимым напряжением питания, либо уменьшить количество витков во вторичной обмотке трансформатора. Я пошел по второму пути, подобрав количество витков во вторичной обмотке на уровне 22-23 Вольта при 220 В на входе. На выходе БП получил 27,7 Вольта, что меня вполне устроило. 

В качестве радиатора для транзистора D1047 нашел в закромах радиатор процессора. На нем же закрепил стабилизатор напряжения 7812. Дополнительно установил плату контроля оборотов вращения вентилятора. Ею со мной поделился донорский компьютерный блок питания ПК. Терморезистор закрепил между ребер радиатора.

При токе в нагрузке до 2,5 А вентилятор вращается на средних оборотах, при повышении тока до 3 А в течении длительного времени вентилятор включается на полую мощность и снижает температуру радиатора.

Климатические условия


Большинство рыночных стабилизатором рассчитаны на работу при температуре от 5 до 35 градусов тепла по Цельсию. Относительная влажность воздуха должна быть в пределах 35-90%. В атмосфере должны отсутствовать водяные брызги, пыль и тому подобное. Если это не предоставляется возможным, используют специальные корпуса. Хотя по отношению к температуре необходимо сказать, что самые передовые образцы могут выдерживать диапазон с -40 до +40 градусов, что смотрится весьма недурно в наших погодных условиях. Но благодаря нагреву самой машины можно использовать и самые распространённые модели, хотя в случае с ними могут быть определённые проблемы с быстрым запуском (возможно, перед активацией придётся подождать).

Схемы блоков питания

Напряжение лабораторного БП располагается в интервале от 0 до 35 вольт. Для этой цели подходят схемы, по которым можно собрать следующие БП:

  • однополярный;
  • двуполярный;
  • лабораторный импульсный.

Конструкции подобных устройств обычно собраны либо на обычных трансформаторах напряжения (ТН), либо на импульсных трансформаторах (ИТ).

Внимание! Отличие ИТ от ТН в том, что на обмотки ТН подается синусоидальное переменное напряжение, а на обмотки ИТ приходят однополярные импульсы. Схема включения обоих абсолютно идентична

Импульсный трансформатор

Простой лабораторный

Однополярный БП с возможностью регулировать выходное напряжение можно собрать по схеме, в которую входят:

  • понижающий трансформатор Tr ( 220/12…30 В);
  • диодный мост Dr для выпрямления пониженного переменного напряжения;
  • электролитический конденсатор С1 (4700 мкФ*50В) для сглаживания пульсации переменной составляющей;
  • потенциометр для регулировки выходного напряжения Р1 5 кОм;
  • сопротивления R1, R2, R3 номиналом 1кОм, 5,1 кОм и 10 кОм, соответственно;
  • два транзистора: Т1 КТ815 и Т2 КТ805, которые желательно установить на теплоотводы;
  • для контроля напряжения на выходе устанавливают цифровой вольтамперметр, с интервалом измерений от 1,5 до 30 В.

В коллекторную цепь транзистора Т2 включены: С2 10 мкф * 50 В и диод Д1.

Схема простого БП

К сведению. Диод устанавливают для защиты С2 от переполюсовки при подключении к аккумуляторам для подзарядки. Если такая процедура не предусмотрена, можно заменить его перемычкой. Все диоды должны выдерживать ток не менее 3 А.

Печатная плата простого БП

Двухполярный источник питания

Для питания усилителей низкой частоты (УНЧ), имеющих два “плеча” усиления возникает необходимость в применении двухполярного БП.

Важно! Если монтировать лабораторный БП, стоит остановить внимание именно на аналогичной схеме. Источник питания должен поддерживать любые форматы выдаваемого постоянного напряжения

Двухполярный ИП на транзисторах

Для такой схемы допустимо применять трансформатор с двумя обмотками на 28 В и одной на 12 В. Первые две – для усилителя, третья – для питания охлаждающего вентилятора. Если таковой не окажется, то достаточно двух обмоток равного напряжения.

Для регулировки выходного тока применены наборы резисторов R6-R9, подключаемые с помощью сдвоенного галетного переключателя (5 положений). Резисторы подбирают такой мощности, чтобы они выдерживали ток более 3 А.

Переменный резистор R нужно брать сдвоенный номиналом 4.7 Ом. Так проще осуществлять регулировку по обоим плечам. Стабилитроны VD1 Д814 соединены последовательно для получения 28 В (14+14).

Для диодного моста можно взять диоды подходящей мощности, рассчитанные на ток до 8 А. Допустимо устанавливать диодную сборку типа KBU 808 или аналогичную. Транзисторы КТ818 и КТ819 необходимо установить на радиаторы.

Подбираемые транзисторы должны иметь коэффициент усиления от 90 до 340. БП после сборки не требует специальной наладки.

Лабораторный импульсный бп

Отличительной чертой ИПБ является рабочая частота, которая в сто раз выше частоты сети. Это дает возможность получить большее напряжение при меньшем количестве витков обмотки.

Информация. Чтобы получить 12 В на выходе ИПБ с током 1 А для сетевого трансформатора достаточно 5 витков при сечении провода 0,6-0,7 мм.

Простой полярный ИП можно собрать, используя импульсные трансформаторы от компьютерного БП.

Лабораторный блок питания своими руками можно собрать по схеме приведенной ниже.

Схема импульсного блока питания

Данный источник питания собран на микросхеме TL494.

Важно! Для управления Т3 и Т4 используется схема, в которую входит управляющий Тr2. Это связано с тем, что встроенные ключевые элементы микросхемы не имеют достаточной мощности

Трансформатор Тr1 (управляющий) берут от компьютерного БП, он «раскачивается» при помощи транзисторов Т1 и Т2.

Особенности сборки схемы:

  • для минимизации потерь при выпрямлении используют диоды Шоттки;
  • ESR электролитов в фильтрах на выходе должен быть как можно ниже;
  • дроссель L6 от старых БП применяют без изменения обмоток;
  • дроссель L5 перематывают, намотав на ферритовое кольцо медный провод диаметром 1,5 мм, набрав 50 витков;
  • Т3, Т4 и D15 крепят на радиаторы, предварительно отформатировав выводы;
  • для питания микросхемы, управления током и напряжением применяют отдельную схему на Tr3 BV EI 382 1189.

Вторичная обмотка выдает 12 В, которые выпрямляются и сглаживаются при помощи конденсатора. Микросхема линейного стабилизатора 7805 стабилизирует его до 5 В для питания схемы индикации.

Внимание! Допустимо использовать в этом БП любую схему вольтамперметра. В таком случае микросхема для стабилизации 5 В не понадобится

Выпрямительные схемы

Выпрямление электрических колебаний, это процесс, в результате которого переменное входное колебание преобразуется в выходное колебание только одного знака (рисунок 1.5). Процесс выпрямления используется в устройствах электропитания (блоках питания) и демодуляторах.

Выпрямление всегда осуществляется при использовании нелинейных элементов, обладающих свойством однонаправленного пропускания электрического тока. Благодаря таким свойствам на выходе выпрямляющего элемента получают ток одного знака.

Для выпрямления применяют полупроводниковые и вакуумные (кенотроны) диоды, газоразрядные диоды (газотроны), тиратроны, кремниевые и селеновые элементы, тиристоры и другие элементы с нелинейными свойствами в зависимости от применения, значений выпрямленных напряжений и токов, отбираемых нагрузкой. В маломощных электронных устройствах для выпрямления чаще всего применяют полупроводниковые диоды.

Название “выпрямитель” используется, прежде всего, для схем, преобразующих переменный ток в постоянный. Выпрямителем называется также и сам элемент с однонаправленными свойствами, используемые в процессе выпрямления.

Однополупериодным выпрямителем называется такой выпрямитель, на выходе которого после процесса выпрямления остаются колебания одного знака. Схема однополупериодного выпрямителя, возбуждаемого синусоидальным сигналом, представлена на рисунке 1.6.

Диод, включенный таким образом, что приводит ток только при положительных полупериодах входного колебания, т.е. когда напряжение на его аноде больше потенциала катода. Среднее значение колебания, полученного в результате выпрямления синусоидального напряжения с действующим значением и максимальным значением , равно

Например, при выпрямлении напряжения с действующим значением , после выпрямления получаем напряжение .

В отрицательный полупериод диод не проводит ток, и все подведенное к выпрямителю напряжение действует на диоде как обратное напряжение выпрямителя. При изменение направления включения диода он будет проводить в отрицательные полупериоды и не проводить в положительные.

Рассматриваемая схема выпрямителя называется последовательной. Название связано с тем, что нагрузка включается последовательно с нелинейным элементом (вентилем).

Двухполупериодным выпрямителем называют такой выпрямитель, в котором после процесса выпрямления остаются участки входного колебания, имеющие один знак. К ним после изменения знака добавляются участки, имеющие противоположный знак.

Принципиальная схема двухполупериодного выпрямителя, управляемого синусоидальным сигналом от трансформатора, показана на рисунке 1.7.

В периоды времени, когда на аноде диода Д1 действует положительное напряжение, на аноде диода Д2 присутствует отрицательное и наоборот. Это происходит потому, что средняя точка вторичной обмотки трансформатора заземлена, и, следовательно, она имеет нулевой потенциал. При положительной полуволне напряжения на вторичной обмотке диод Д1 пропускает ток, а диод Д2 не пропускает.

При отрицательной полуволне положительное напряжение действует на диоде Д2, который при этом проводит, а диод Д1, смещенный в обратном направлении, не проводит. Среднее значение напряжения, полученого на выходе двухполупериодного выпрямителя в 2 раза больше напряжения, полученного на выходе однополупериодного выпрямителя.

Технические параметры выпрямителя:

— Коэффициент пульсаций выпрямителя называется отношение максимального значения переменной составляющей напряжения на выходе выпрямителя к значению его постоянной составляющей на этом выходе. В большинстве применений желательно, чтобы коэффициент пульсаций был как можно меньше. Уменьшение пульсаций достигается путем применения соответствующих фильтров.

— Коэффициент использования трансформатора в выпрямительной схеме, определяется как отношение двух мощностей: выходной мощности постоянного тока и номинальной мощности вторичной обмотки трансформатора.

— Коэффициент полезного действия, это параметр, характеризующий эффективность схемы выпрямителя при преобразовании переменного напряжения в постоянное. КПД выпрямителя выражается отношением мощности постоянного тока, выделяемой в нагрузке, к входной мощности переменного тока. Коэффициент полезного действия определяется для резистивной нагрузки.

Частотная пульсация выпрямителя, это основная частота переменной составляющей, существующей на выходе выпрямителя. В случае однополупериодного выпрямителя частота пульсаций равна частоте входного колебания. Фильтрация пульсаций тем проще, чем выше частота пульсации.

Принципиальная схема и принцип работы

Принципиальная схема и принцип работы зависит от вида устройства, и поэтому необходимо рассмотреть их отдельно:

Трансформаторный БП.

Аналоговый вид БП имеет в своей схеме понижающий трансформатор, обеспечивающий величину вторичного напряжения в заданных величинах, и диодный мост, служащий для его выпрямления. Простейшая схема такого устройства выглядит следующим образом:

Принципиальная схема аналогового блока питания Конденсаторы, установленные в схеме, обеспечивают сглаживание импульсов напряжения на выходе блока питания.

Трансформаторный блок питания

Импульсный БП.

Инверторный вид БП работает за счёт электронных компонентов, входящих в схему устройства. Напряжение питающей сети подаётся на входной диодный мост, а его пики сглаживаются установленными конденсаторами. После этого сигнал преобразуется в прочих элементах схемы (транзисторы, микросхема, тиристоры и т.д.) и подаётся на импульсный трансформатор.

Трансформаторы данного вида изготавливаются на основе ферромагнетных материалов, поэтому имеют малые габаритные размеры, позволяющие минимизировать размеры БП. Напряжение, полученное после трансформации, подаётся к нагрузке (выходам блока питания). Такой тип БП называется схемой с гальванической развязкой.

Импульсный блок питания на интегральной микросхеме и с построечными резисторами

Существуют схемы БП без использования гальванического соединения. В этом случае входной сигнал сразу подаётся на фильтр нижних частот.

Импульсный блок питания