Цоколевка светодиодов
Под цоколевкой принято понимать внешний вид (исполнение корпуса) светодиода. Каждый производитель выполняет светодиод в своем корпусе, в зависимости от структуры и назначения. Единого стандарта, как в светодиодных лампах не существует, напомню, самые распространенные цоколи ламп: е27, е14.
Из всего множества все – таки можно выделить пару небольших групп. Например, самые распространенные простые светодиоды выполняются в прозрачном или цветном корпусе из прочного пластика или стекла, и имеют форму цилиндра, край которого чаще всего закруглен.
Более дорогие светодиоды состоят из нескольких частей: основания и линзы. На основании расположены токопроводящие дорожки, а линза выполнена из качественного материала, которая служит в качестве рассеивателя света.
Основание изготавливают в виде круга или квадрата. Полярность на квадрате обозначают скошенным уголком. Например, светодиоды CREE, выглядят следующим образом:
Не всегда есть возможность определить полярность привычными способами, из-за нестандартной цоколевки светодиода: особенное строение корпуса, утолщение одного из светодиодов и другие причины. Поэтому, в таких случаях, как не крути, придется прибегнуть к электрическому замеру.
Обозначение светодиодов на схеме
Светодиод на схеме обозначается в виде обычного диода с двумя стрелками, направленными в сторону, обозначающее излучение света. Сам диод может изображаться, как в круге, так и без него.
Подписывается полупроводниковый элемент на отечественных схемах буквами HL (HL1, HL2 и т.д.) – это по ГОСТ. В зарубежных стандартах обозначение светодиода на схеме аналогично российскому. Подписывается он уже другим словом — LED (LED1, LED2, LED3 и т.д.), что в переводе с английского расшифровывается как light — emitting diode – светоизлучающий диод.
Вторым отличием является буквенное обозначение фоторезистора – VD или VB, что означает фотоэлемент.
В заключении хочется сказать, что маркировка очень важна. Знание ее расшифровки, позволяет определить основные параметры светодиода, не открывая даташит. Запомнить маркировку всех производителей нереально, да и не к чему, достаточно знать расшифровку основных брендов.
Распиновка светодиода
Для решения вопроса существует всего 3 способа:
Согласно нормам, принятым во всем мире, на обычном светодиоде (не SMD типа), длинная ножка всегда является «+» или же анодом. Для работы светодиода на него должна подаваться положительная полуволна. А короткая – катодом.
Для проверки необходимо переключатель прибора поставить в режим «Прозвонка» и установить красный щуп мультиметра на анод, а черный – на катод. В результате светодиод должен засветиться. Если этого не произошло, необходимо поменять полярность (черный на анод, а красный на катод).
Если присмотреться к светодиоду, то можно увидеть 2 кончика возле кристалла. Тот, который больше – катод, тот, что меньше – анод.
Как подключить от 9В батарейки Крона
«Крона» имеет относительно небольшую емкость и не очень подходит для питания мощных светодиодов. Максимальный ток такой батареи не должен превышать 30 – 40 мА. Поэтому к ней лучше подключить 3 последовательно соединенных светоизлучающих диода с рабочим током 20 мА. Они, как и в случае подключения к батарейке 3 вольта не будут светить в полную силу, но зато, батарея прослужит дольше.
Схема питания от батарейки крона
В одном материале трудно осветить все многообразие способов подключения светодиодов к батареям с различным напряжением и емкостью. Мы постарались рассказать о самых надежных и простых конструкциях. Надеемся, что этот материал будет полезен как начинающим, так и более опытным радиолюбителям.
ВАХ полупроводниковых диодов из разных материаллов
ВАХ полупроводниковых диодов как в прямом, так и в обратном направлениях протекания тока аппроксимируются экспоненциальными функциями. На практике совпадение расчетных (теоретических) и экспериментальных характеристик наблюдается лишь на ограниченных участках кривых, например, в области малых токов. В области прямых больших токов (напряжений) зависимость тока от напряжения практически линейна. На рисунке показаны реальные ВАХ полупроводниковых диодов.
ВАХ полупроводниковых диодов, выполненных из разных материалов и разными методами (точечные – m, плоскостные – n). Монокристаллические: германиевые – Ge, кремниевые – Si; поликристаллические: меднозакисные (купроксные) – Cu2O; селеновые – Se.
В последние десятилетия в отечественной литературе избегают приводить внешний вид ВАХ полупроводниковых приборов. И это не случайно. Вольт-амперные характеристики не очень хорошо воспроизводимы: они отличаются даже у приборов одной партии. Кроме того, ВАХ, особенно для силовых низкочастотных полупроводниковых приборов, сильно зависят от частоты, от сопротивления нагрузки, его резистивно-емкостных и иных характеристик.
Тем не менее, свойства полупроводниковых приборов необходимо каким-то образом описывать. В этой связи в паспортах на них и справочных руководствах принято указывать параметры характерных точек на ВАХ, полученные путем статистического усреднения данных по большой выборке однотипных полупроводниковых приборов испытанных по стандартизированной методике измерений, в пределах использования которой эти данные достаточно воспроизводимы.
К наиболее важным параметрам, характеризующим избранные и наиболее практически значимые точки ВАХ, принято относить:
Прямой ток (Iпр.) — среднее значение тока через открытый диод, при котором обеспечивается надежный режим работы.
Прямое падение напряжения (Uпр.) — напряжение на диоде при прохождении прямого тока Iпр.
Обратный ток (Iобр.) — ток через диод при определенном обратном напряжении.
Максимальное обратное напряжения (Uобр.) — напряжение, соответствующее безопасной области работы, после превышения которого может произойти повреждение прибора.
Все эти сведения для выпрямительных диодов обычно приводят для области низких частот, a именно, 50 Гц. При повышенных частотах на работу полупроводниковых силовых приборов начинают заметно влиять емкости переходов, что можно наблюдать, например, на характериографе. Более того, емкости переходов изменяются в несколько раз при разном уровне приложенного напряжения, a также существенно разнятся при прямом и обратном включении. На практике c ростом частоты диоды теряют выпрямительные свойства и больше напоминают резистивноемкостную цепочку, поэтому при выборе диода для той или иной схемы необходимо учитывать его частотные характеристики.
Как следует из последнего рисунка, ВАХ различных полупроводниковых приборов заметно отличаются друг от друга. Эти различия часто используют во благо при создании полупроводниковых приборов, предназначенных для выполнения специфических функций. B частности, селеновые выпрямители не могут составить конкуренцию кремниевым или германиевым, поскольку рассчитаны на малый прямой ток и малое обратное напряжение, зато свойства их более воспроизводимы,что позволяет применять селеновые выпрямители при параллельном или последовательном их включении без использования уравнительных резисторов (обычно для создания слаботочных высоковольтных выпрямительных столбов).
Меднозакисные выпрямители в настоящее время практически не используют, однако их и сейчас можно встретить в некоторых измерительных приборах.
Наиболее широкое распространение в последнее время получили кремниевые и, в меньшей мере, германиевые полупроводниковые диоды. Кремниевые выгодно отличаются тем, что способны работать при повышенных температурах, вплоть до 100…130oС. Они имеют меньшие обратные токи, допускают работу при более высоких обратных напряжениях — до 800…1200В. Германиевые диоды имеют малое прямое падение напряжения на переходе, но работают до температур не выше 70oС. Кроме перечисленных, выпрямительные функции могут выполнять и другие полупроводниковые приборы, например на основе арсенида галлия GaAs или антимонида индия InSb.
Получаем 12 Вольт из 220
Наиболее часто стоит задача получить 12 вольт из бытовой электросети 220В. Это можно сделать несколькими способами:
- Понизить напряжение без трансформатора.
- Использовать сетевой трансформатор 50 Гц.
- Использовать импульсный блок питания, возможно в паре с импульсным или линейным преобразователем.
Понижение напряжения без трансформатора
Преобразовать напряжение из 220 Вольт в 12 без трансформатора можно 3-мя способами:
- Понизить напряжение с помощью балластного конденсатора. Универсальный способ используется для питания маломощной электроники, например светодиодных ламп, и для заряда небольших аккумуляторов, как в фонариках. Недостатком является низкий косинус Фи у схемы и невысокая надежность, но это не мешает её повсеместно использовать в дешевых электроприборах.
- Понизить напряжение (ограничить ток) с помощью резистора. Способ не очень хороший, но имеет право на существование, подойдет, чтобы запитать какую-то очень слабую нагрузку, типа светодиода. Его основной недостаток – это выделение большого количества активной мощности в виде тепла на резисторе.
- Использовать автотрансформатор или дроссель с подобной логикой намотки.
Гасящий конденсатор
Прежде чем приступить к рассмотрению этой схемы предварительно стоит сказать об условиях, которые вы должны соблюдать:
- Блок питания не универсальный, поэтому его рассчитывают и используют только для работы с одним заведомо известным прибором.
- Все внешние элементы блока питания, например регуляторы, если вы будете использовать дополнительные компоненты для схемы, должны быть изолированы, а на металлических ручках потенциометров надеты пластиковые колпачки. Не касайтесь платы блока питания и проводов для подключения выходного напряжения, если к ним не подключена нагрузка или если в схеме не установлен стабилитрон или стабилизатор для низкого постоянного напряжения.
Тем не менее, такая схема вряд ли вас убьёт, но удар электрическим током получить можно.
Схема изображена на рисунке ниже:
R1 – нужен для разрядки гасящего конденсатора, C1 – основной элемент, гасящий конденсатор, R2 – ограничивает токи при включении схемы, VD1 – диодный мост, VD2 – стабилитрон на нужное напряжение, для 12 вольт подойдут: Д814Д, КС207В, 1N4742A. Можно использовать и линейный преобразователь.
Или усиленный вариант первой схемы:
Номинал гасящего конденсатора рассчитывают по формуле:
С(мкФ) = 3200*I(нагрузки)/√(Uвход²-Uвыход²)
Или:
С(мкФ) = 3200*I(нагрузки)/√Uвход
Но можно и воспользоваться калькуляторами, они есть в онлайн или в виде программы для ПК, например как вариант от Гончарука Вадима, можете поискать в интернете.
Конденсаторы должны быть такими – пленочными:
Или такие:
Остальные перечисленные способы рассматривать не имеет смысла, т.к. понижение напряжения с 220 до 12 Вольт с помощью резистора не эффективно ввиду большого тепловыделения (размеры и мощность резистора будут соответствующие), а мотать дроссель с отводом от определенного витка чтобы получить 12 вольт нецелесообразно ввиду трудозатрат и габаритов.
Блок питания на сетевом трансформаторе
Классическая и надежная схема, идеально подходит для питания усилителей звука, например колонок и магнитол. При условии установки нормального фильтрующего конденсатора, который обеспечит требуемый уровень пульсаций.
В дополнение можно установить стабилизатор на 12 вольт, типа КРЕН или L7812 или любой другой для нужного напряжения. Без него выходное напряжение будет изменяться соответственно скачкам напряжения в сети и будет равно:
Uвых=Uвх*Ктр
Ктр – коэффициент трансформации.
Здесь стоит отметить, что выходное напряжение после диодного моста должно быть на 2-3 вольта больше, чем выходное напряжение БП – 12В, но не более 30В, оно ограничено техническими характеристиками стабилизатора, и КПД зависит от разницы напряжений между входом и выходом.
Трансформатор должен выдавать 12-15В переменного тока. Стоит отметить, что выпрямленное и сглаженное напряжение будет в 1,41 раз больше входного. Оно будет близко к амплитудному значению входной синусоиды.
Также хочется добавить схему регулируемого БП на LM317. С его помощью вы можете получить любое напряжение от 1,1 В до величины выпрямленного напряжения с трансформатора.
Как подключить светодиодные лампы на 220 вольт
Самая большая хитрость при подключении светодиодных ламп на 220 в, что никакой хитрости нет. Подключение происходит абсолютно точно также, как вы это делали с лампами накаливания или компактными люминесцентными лампами (КЛЛ). Для этого: обесточьте цоколь, а затем вкрутите в него лампу. При установке никогда не касайтесь металлических частей лампы: помните, что иногда нерадивые электрики вместо фазы могут провести через выключатель ноль. В таком случае, фазное напряжение никогда не будет сниматься с цоколя.
Производители выпустили светодиодные аналоги всех, выпускавшихся ранее типов ламп с самыми разными цоколями: Е27, Е14, GU5.3 и так далее. Принцип установки для них остается такой же.
Если же Вы купили светодиодную лампочку, рассчитанную на 12 или 24 Вольта, тогда Вам не обойтись без блока питания. Подключение источников света производится параллельно: все «плюсы» лампочек вместе к плюсовому выходу блока питания, а все «минусы» вместе — к «минусу» блока питания.
В данном случае, важно соблюдать полярность («плюс» — к «плюсу», «минус» — к «минусу»), поскольку светодиоды будут испускать световой поток только в том случае, если соблюдена полярность! Некоторые изделия при переполюсовке могут выйти из строя. Например, у вас есть мебельная подсветка на кухне, в гардеробе или в другом месте, составленная из 4-х галогенных ламп мощностью 40 Вт и напряжением 12 В, запитанных от трансформатора
Вы решили заменить эти лампы на светодиодные 4 штуки по 4–5 Вт
Например, у вас есть мебельная подсветка на кухне, в гардеробе или в другом месте, составленная из 4-х галогенных ламп мощностью 40 Вт и напряжением 12 В, запитанных от трансформатора. Вы решили заменить эти лампы на светодиодные 4 штуки по 4–5 Вт.
Иногда подобные светодиодные лампы для точечных светильников в большинстве случаев комплектуются блоком питания на заводе-изготовителе. При покупке таких ламп следует одновременно озадачиться и покупкой источника питания.
Достоинства и недостатки светодиодов
Плюсы
- Высокая механическая и вибрационная стойкость.
- Небольшой разогрев.
- Маленькие габаритные размеры, легкий
- Долговечность.
- Низкое энергопотребление и мощность.
- Возможность регулирования интенсивности свечения.
- Высокие декоративные качества: разнообразие цветов и оттенков свечения.
- Безынерционность: включаются сразу на полную мощность.
- Возможность работы при низких температурах.
- Низкая цена индикаторных светодиодов.
- Безопасность: низкие рабочие значения напряжения и тока.
Минусы
- Высокая цена SMD.
- Ухудшения со временем качества кристалла: чем дольше светодиод работает, тем он тусклее.
- Повышенные требования к источнику питания.
- Недопустимы даже небольшие превышения минимальных и максимальных значений электрических параметров.
Виды диодов
Стабилитроны
Стабилитроны представляют из себя те же самые диоды. Даже из названия понятно, чтоб стабилитроны что-то стабилизируют. А стабилизируют они напряжение. Но чтобы стабилитрон выполнял стабилизацию, требуется одно условие. Они должны подключатся противоположно, чем диоды. Анод на минус, а катод на плюс. Странно не правда ли? Но почему так? Давайте разберемся. В Вольт амперной характеристике (ВАХ) диода используется положительная ветвь – прямое направление, а вот в стабилитроне другая часть ветки ВАХ – обратное направление.
Снизу на графике мы видим стабилитрон на 5 Вольт. Сколько бы у нас не изменялась сила тока, мы все равно будем получать 5 Вольт ;-). Круто, не правда ли? Но есть и подводные камни. Сила тока не должны быть больше, чем в описании на диод, иначе он выйдет из строя от высокой температуры – Закон Джоуля-Ленца. Главный параметр стабилитрона – это напряжение стабилизации (Uст). Измеряется в Вольтах. На графике вы видите стабилитрон с напряжением стабилизации 5 Вольт. Также есть диапазон силы тока, при котором будет работать стабилитрон – это минимальный и максимальный ток (Imin, Imax). Измеряется в Амперах.
Выглядят стабилитроны точно также, как и обычные диоды:
На схемах обозначаются вот так:
Светодиоды
Светодиоды – особый класс диодов, которые излучают видимый и невидимый свет. Невидимый свет – это свет в инфракрасном или ультрафиолетовом диапазоне. Но для промышленности все таки большую роль играют светодиоды с видимым светом. Они используются для индикации, оформления вывесок, светящихся баннеров, зданий а также для освещения. Светодиоды имеют такие же параметры, как и любые другие диоды, но обычно их максимальный ток значительно ниже.
Предельное обратное напряжение (Uобр) может достигать 10 Вольт. Максимальный ток (Imax) будет ограничиваться для простых светодиодов порядка 50 мА. Для осветительных больше. Поэтому при подключении обычного диода нужно вместе с ним последовательно подключать резистор. Резистор можно рассчитать по нехитрой формуле, но в идеале лучше использовать переменный резистор, подобрать нужное свечение, замерять номинал переменного резистора и поставить туда постоянный резистор с таким же номиналом.
Лампы освещения из светодиодов потребляют копейки электроэнергии и стоят дешево.
Очень большим спросом пользуются светодиодные ленты, состоящие из множества SMD светодиодов. Смотрятся очень красиво.
На схемах светодиоды обозначаются так:
Не забываем, что светодиоды делятся на индикаторные и осветительные. Индикаторные светодиоды обладают слабым свечением и используются для индикации каких-либо процессов, происходящих в электронной цепи. Для них характерно слабое свечение и малый ток потребления
Ну и осветительные светодиоды – это те, которые используются в ваших китайских фонариках, а также в LED-лампах
Светодиод – это токовый прибор, то есть для его нормальной работы требуется номинальный ток, а не напряжение. При номинальном токе на светодиоде падает некоторое напряжение, которое зависит от типа светодиода (номинальной мощности, цвета, температуры). Ниже табличка, показывающая какое падение напряжения бывает на светодиодах разных цветов свечения при номинальном токе:
Как проверить светодиод можно узнать из этой статьи.
Тиристоры
Тиристоры представляют собой диоды, проводимость которых управляется с помощью третьего вывода – управляющего электрода (УЭ). Основное применение тиристоров – это управление мощной нагрузкой с помощью слабого сигнала, подаваемого на управляющий электрод. Выглядят тиристоры примерно как диоды или транзисторы. У тиристоров параметров столько, что не хватит статьи для их описания. Главный параметр – Iос,ср. – среднее значение тока, которое должно протекать через тиристор в прямом направлении без вреда для его здоровья. Немаловажным параметром является напряжение открытия тиристор – (Uу), которое подается на управляющий электрод и при котором тиристор полностью открывается.
а вот так примерно выглядят силовые тиристоры, то есть тиристоры, которые работают с большой силой тока:
На схемах триодные тиристоры выглядят вот таким образом:
Существуют также разновидности тиристоров – динисторы и симисторы. У динисторов нет управляющего электрода и он выглядит, как обычный диод. Динисторы начинают пропускать через себя электрический ток в прямом включении, когда напряжение на нем превысит какое-то значение. Симисторы – это те же самые триодные тиристоры, но при включении пропускают через себя электрический ток в двух направлениях, поэтому они используются в цепях с переменным током.
Управление RGB светодиодом на Ардуино
Для этого занятия нам потребуется:
- плата Arduino Uno / Arduino Nano / Arduino Mega;
- макетная плата;
- RGB светодиод;
- 3 резистора 220 Ом;
- провода «папа-мама».
Фото. Схема подключения RGB LED к Ардуино на макетной плате
Модуль «RGB светодиод» можно подключить напрямую к плате, без проводов и макетной платы. Подключите модуль с полноцветным RGB светодиодом к следующим пинам: Минус — GND, B — Pin13, G — Pin12, R — Pin11 (смотри первое фото). Если вы используете RGB LED (Light Emitting Diode), то подключите его по схеме на фото. После подключения модуля и сборки схемы на Ардуино загрузите скетч в плату.
Скетч для мигания RGB светодиодом на Ардуино
#define RED 11 // присваиваем имя RED для пина 11 #define GRN 12 // присваиваем имя GRN для пина 12 #define BLU 13 // присваиваем имя BLU для пина 13 void setup() { pinMode(RED, OUTPUT); // используем Pin11 для вывода pinMode(GRN, OUTPUT); // используем Pin12 для вывода pinMode(BLU, OUTPUT); // используем Pin13 для вывода } void loop() { digitalWrite(RED, HIGH); // включаем красный свет digitalWrite(GRN, LOW); digitalWrite(BLU, LOW); delay(1000); // устанавливаем паузу для эффекта digitalWrite(RED, LOW); digitalWrite(GRN, HIGH); // включаем зеленый свет digitalWrite(BLU, LOW); delay(1000); // устанавливаем паузу для эффекта digitalWrite(RED, LOW); digitalWrite(GRN, LOW); digitalWrite(BLU, HIGH); // включаем синий свет delay(1000); // устанавливаем паузу для эффекта }
Пояснения к коду:
- с помощью директивы мы заменили номер пинов 11, 12 и 13 на соответствующие имена , и . Это сделано для удобства, чтобы не запутаться в скетче и понимать какой цвет мы включаем;
- в процедуре мы поочередно включаем все три цвета на RGB.
Расчет резистора для светодиода и различные подключения LEDs
Подключать светодиоды — дело не из сложных. Для правильного подключения достаточно знать школьный курс физики и соблюсти ряд правил.
Сегодня рассмотрим как правильно рассчитать резистор для светодиода и подключить его, чтобы он горел долго и на радость потребителю.
Главный параметр у любого светодиода — ток, а не напряжение, как считают многие. Светодиод необходимо питать стабилизированным током, величина которого всегда указана производителем на упаковке или в datasheet.
Ток на светодиодах ограничивается резистором — это самый дешевый вариант. Но есть и более «продвинутый» — использовать светодиодный драйвер. По факту, использование резисторов — пережиток прошлого, ведь на сегодняшний день драйверов на любой вкус и цвет полным-полно и по самой привлекательной цене. К примеру, самые дешевые можно приобрести тут. Драйверы обеспечивают стабильный ток на светодиодах независимо от изменения напряжения на его входе.
Правильное подключение светодиода к драйверу следует так: сперва необходимо подключить светодиод к драйверу, только после этого включаем драйвер.
Существует несколько типов подключения светодиодов:
Расчет резистора для светодиода
Вспомним закон Ома:
U=I*R
R=U/I где,
R — сопротивление — измеряется в Омах
U — напряжение- измеряется в вольтах (В)
I — ток- измеряется в амперах (А)
Пример расчета резистора для светодиода:
Допустим, источник питания выдает 12 В: Vs=12 В
Светодиод — 2 В и 20 мА
Чтобы рассчитать резистор нам необходимо преобразовать миллиамперы в амперы:
20 мА=0,02 А.
R=10/0.02=500 Ом
На сопротивление рассеивается 10 В (12-2)
Посчитаем мощность сопротивления:
P=U*I
P=10*0.02 A=0.2 Вт
Необходимый резистор — R=500 Ом и Р=0,2 Вт
Расчет резистора для светодиода при последовательном соединение светодиодов
Минус светодиода подключается с плюсом последующего. Так соединить можно до бесконечности. При таком соединении падение напряжения на светодиоде умножается на количество диодов в цепи. Т.е. если у нас 5 светодиодов с номинальным током 700 мА и падением напряжения 3,4 Вольта, то и драйвер нам необходим на 700 мА 3,4*5=17В
Это мы рассмотрели какие можно подбирать драйверы, а теперь вернемся непосредственно к тому, как произвести расчет резистора для светодиода при таких соединениях.
Выше мы рассмотрели расчет резистора для светодиода (одного). Пр последовательном соединении расчет аналогичный, но необходимо учитывать, что падение напряжения на резисторе меньше. Если «на пальцах», то от источника питания Мы отнимается суммарное падение напряжения на светодиодах Vl=3*2=6В. При условии, что у нас источник выдает 12В, то 12-6=6В.
R=6/0.02=300 Ом.
Р=6*0,02=0,12Вт
Т.е. нам нужен резистор на 300 Ом и 0,125 Вт.
Характеристики светодиода и источника питания аналогичные предыдущему примеру.
Расчет резистора для светодиода при параллельном соединении
При таком соединении плюс светодиода соединяется с плюсом другого, минус с минусом. При таком соединении ток суммируется, а падение остается неизменным. Т.е. если мы имеем 3 светодиода 700 мА и падением 3,4 В, то 0,7*3=2,1А, то нам потребуется драйвер с параметрами 4-7 В и не менее 2,1А.
Расчет резистора для светодиода в этом случае аналогичен первому случаю.
Расчет резистора для светодиода при последовательно-параллельное соединении
Интересное соединение. При таком расположении диодов несколько последовательных цепочек соединяются параллельно. Необходимо знать, что количество светодиодов в цепочках должно быть равным. Драйвер подбирается с учетом падения напряжения на одной цепочке и произведению тока на количество цепочек. Т.е. 3 последовательные цепи с параметрами 12В и 350 мА подключаются параллельно, напряжение остается 12В, а ток 350*3=1,05А. Для долгой работы чипов нам нужен светодиодный драйвер с 12-15В и током 1050мА.
Расчет резистора для светодиода в этом случае будет таким:
Резистор аналогичен при последовательном соединении, однако, стоит учитывать, что потребление от источника питания увеличится в три раза (0,2+0,2+0,2=0,06А).
При подключении светодиодов через резистор нужен стабилизированный источник питания, т.к. при изменении напряжения будет изменяться и ток, идущий через диод.
Существует еще один способ соединения светодиодов — параллельно-последовательное с перекрестным соединением. но это достаточно сложная тема в расчетах, поэтому не буду ее тут раскрывать. Если потребуется, конечно, опишу, но думаю это нужно только узкому кругу специалистов.
В сети можно найти много онлайн-калькуляторов, которые Вам рассчитают сразу резисторы. Но слепо верить им не стоит, а лучше перепроверить, следуя поговорке: «Хочешь сделать это хорошо, сделай это сам».