Как подключить однофазный двигатель

Содержание

Наилучший способ пуска

Для наиболее эффективного использования асинхронного двигателя целесообразно применять комбинированные режимы его эксплуатации. Это означает использование переключений выводов обмоток для получения по выбору одного из двух вариантов соединения обмоток. Запуск и разгон двигателя происходит по схеме соединения «звезда». После того как завершится переходный процесс и величина пускового тока достигнет минимального значения происходит переключение на схему «треугольник».

Достигается такое управление тремя группами контактов по три контакта в каждой группе. Чтобы переход от одной схемы к другой не привёл к аварии, должна соблюдаться определённая последовательность срабатывания контактов.

  • При пуске асинхронного двигателя первая и вторая группы замыкаются. При этом не имеет особого значения, какая из них замкнёт контакты первой.
  • Третья группа остаётся разомкнутой до окончания разгона ротора.
  • Когда ротор разогнался, вторая группа размыкает контакты.
  • Через некоторое время, которое необходимо для завершения размыкания второй группы контактов замыкаются контакты третьей группы.
  • Отключение электродвигателя от трёхфазной сети 380 В происходит размыканием контактов первой и второй группы.
  • Чтобы сделать переход от одной схемы к другой более безопасным надо отключить контакты первой группы на время отключения контактов второй группы и включения контактов третьей группы.

Для схемы потребуется три магнитных пускателя с контактами пригодными для отключения токов управляемого двигателя.

Трехфазный асинхронный двигатель представляет собой устройство, состоящее из двух частей: статора и ротора, которые разделены воздушным зазором и не имеют никакой механической связи друг с другом.

На статоре расположены три обмотки, намотанные на специальном магнитопроводе, который набран из пластин специальной электротехнической стали. Обмотки намотаны в пазах статора и расположены под углом в 120 градусов друг к другу.

Ротор представляет собой конструкцию, опирающуюся на подшипники, имеющую крыльчатку для вентиляции. В целях электропривода ротор может иметь прямую связь с механизмом либо через редукторы или другие системы передачи механической энергии. Роторы в асинхронных машинах могут быть двух видов:

Короткозамкнутый ротор, который представляет собой систему проводников соединенных с торцов кольцами. Образуется пространственная конструкция, напоминающая беличье колесо. В роторе индуцируются токи, создающее свое поле, взаимодействующее с магнитным полем статора. Это и приводит в движение ротор.

Массивный ротор – это цельная конструкция из ферромагнитного сплава, в которой одновременно индуцируются токи и являющаяся магнитопроводом. Благодаря возникновению в массивном роторе вихревых токов идет взаимодействие магнитных полей, которое и является движущей силой ротора.

Главной движущей силой в трехфазном асинхронном двигателе является вращающееся магнитное поле, которое возникает, во-первых, благодаря трехфазному напряжению, а, во-вторых, взаимному расположению обмоток статора. Под его воздействием в роторе возникают токи, создающее поле, которое взаимодействует с полем статора.

Асинхронным двигатель называют из-за того, что частота вращения ротора отстает от частоты вращения магнитного поля, ротор постоянно пытается «догнать» поле, но его частота всегда меньше.

Главные преимущества асинхронных двигателей

Простота конструкции, которая достигается за счет отсутствия коллекторных групп, имеющие быстрый износ и создающие дополнительное трение.

Для питания асинхронного двигателя не требуется дополнительных преобразований, он может питаться прямо из промышленной трехфазной сети.

За счет сравнительно небольшого количества деталей асинхронные двигатели очень надежны, имеют долгий срок эксплуатации, просты в техническом обслуживании и ремонте.

Конечно, трехфазные машины не лишены недостатков

Асинхронные электродвигатели имеют чрезвычайно малый пусковой момент, что ограничивает сферу их применения.

При запуске эти двигатели потребляют большие токи при пуске, которые могут превышать допустимые в конкретной системе электроснабжения.

Асинхронные двигатели потребляют немалую реактивную мощность, которая не приводит к увеличению механической мощности двигателя.

Подключение электродвигателя 380В на 220В

Подключение электродвигателя 380В на 220В выполняется через конденсатор

Для такого подключения необходимо использовать бумажные (или пусковые) конденсаторы, при этом ВАЖНО чтобы номинальное напряжение конденсатора было больше либо равно напряжению сети. Могут применяться конденсаторы следующих марок (типов):. МБГО, МБГЧ, МБГП, МБГТ, МБГВ, КБГ, БГТ, ОМБГ, K42-4, К42-19 и др

МБГО, МБГЧ, МБГП, МБГТ, МБГВ, КБГ, БГТ, ОМБГ, K42-4, К42-19 и др.

Емкость конденсатора можно определить по формулам приведенным ниже, либо с помощью онлайн расчета емкости.

Первое, что необходимо сделать — это правильно соединить выводы обмоток электродвигателя. Как уже известно из статьи: схемы соединения обмоток электродвигателя обмотки электродвигателя можно соединить по схеме «звезда» (обозначается — Y) или по схеме «треугольник» (обозначается — Δ), при этом, как правило для подключения электродвигателя на 220В применяется схема «треугольник» , что бы определиться со схемой соединения обмоток необходимо посмотреть паспортные данные электродвигателя на прикрепленном к нему шильдике:

Запись: «Δ/ Y 220/380V» обозначает, что для подключения данного электродвигателя на 220В необходимо соединить его обмотки по схеме «треугольник», а для подключения на 380В — по схеме «звезда», как это сделать читайте здесь.

Второе, с чем необходимо определиться — это как будет производиться запуск электродвигателя, под нагрузкой (когда уже в момент запуска электродвигателя к его валу приложена нагрузка и он не может свободно вращаться) либо без нагрузки (когда вал электродвигателя в момент запуска свободно вращается, например наждак, вентилятор, циркулярная пила и т.п.).

При запуске двигателя без нагрузки применяется 1 конденсатор который называется рабочим, а при необходимости запуска двигателя под нагрузкой в схеме, помимо рабочего, дополнительно применяется 2-ой конденсатор который называется пусковым, он включается только в момент запуска.

Разберем схемы подключения электродвигателя 380 на 220 для обоих случаев:

1) Подключение электродвигателя через конденсатор по схеме «треугольник», запуск — без нагрузки:

Емкость рабочего конденсатора для подключения электродвигателя при схеме соединения обмоток «треугольником» рассчитывается по формуле:

Cр=4800 * IнUс ; мкф

где: Iн-номинальный ток электродвигателя в Амперах (принимается в соответствии с паспортными данными электродвигателя); Uс — напряжение сети в Вольтах.

В схеме для включения электродвигателя применяется однополюсный автоматический выключатель, однако его использование необязательно, можно включать электродвигатель напрямую в сеть через розетку используя обычную штепсельную вилку или, например, включать его через обычный выключатель освещения.

2) Подключение электродвигателя через конденсатор по схеме «звезда», запуск — без нагрузки:

Емкость рабочего конденсатора для подключения электродвигателя при схеме соединения обмоток «звездой» рассчитывается по формуле:

Cр=2800 * IнUс ; мкф

где: Iн-номинальный ток электродвигателя в Амперах (принимается в соответствии с паспортными данными электродвигателя); Uс — напряжение сети в Вольтах.

В случае если запуск двигателя 380 на 220 Вольт происходит под нагрузкой, в схеме дополнительно должен применяться пусковой конденсатор иначе силы момента на валу электродвигателя не хватит для его раскрутки и двигатель не сможет запуститься.

Пусковой конденсатор подключается параллельно рабочему и должен включаться только в момент запуска двигателя, после того как двигатель наберет обороты его необходимо отключать.

Емкость пускового конденсатора должна быть в 2,5 — 3 раза больше рабочего.

Cп= (2,5…3) * Cр; мкф

При данной схеме для запуска электродвигателя необходимо нажать и держать кнопку SB, после чего подать напряжение включив автоматический выключатель, как только двигатель запустится кнопку SB необходимо отпустить. В качестве кнопки так же можно использовать обычный выключатель.

Однако лучшим вариантом для подключения электродвигателя 380 на 220 является использование ПНВС-10 (пускатель нажимной с пусковым контактом):

Кнопки «пуск» в этих пускателя имеют 2 контакта один из них при отпускании кнопки «пуск» размыкается отключая пусковой конденсатор, а второй остается замкнутым и через него подается напряжение на электродвигатель через рабочий конденсатор, отключение производится кнопкой «стоп».

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Простейший драйвер шагового двигателя своими руками

Чтобы собрать схему драйвера в домашних условиях могут пригодиться некоторые элементы от старых принтеров, компьютеров и другой техники. Вам понадобятся транзисторы, диоды, резисторы (R) и микросхема (RG).

Схема простейшего драйвера

Для построения программы руководствуйтесь следующим принципом: при подаче на один из выводов D логической единицы (остальные сигнализируют ноль) происходит открытие транзистора и сигнал проходит к катушке двигателя. Таким образом, выполняется один шаг.

На основе схемы составляется печатная плата, которую можно попытаться изготовить самостоятельно или сделать под заказ. После чего на плате впаиваются соответствующие детали. Устройство способно управлять шаговым устройством от домашнего компьютера за счет подключения к обычному USB порту.

Как выбрать конденсатор

Есть несколько нюансов, которые касаются количества подсоединяемых конденсаторов.

По сути, схема подключения электродвигателя запитана на кнопку «Пуск» и на тумблер отключения питания. Чтобы запустить мотор, необходимо нажать на кнопку «Пуск» и удерживать ее до полного включения двигателя. Это можно контролировать даже на слух.

Иногда есть необходимость, чтобы электродвигатель работал то в ту, то в другую сторону. Это тоже несложная схема, в которую необходимо установить дополнительный тумблер переключения направления вращения ротора.

Один конец тумблера (основной) запитывается на конденсатор, второй на ноль, третий на фазу. Если при такой схеме подключения мотор набирает слабо обороты, или его мощность снижается, то придется установить дополнительно пусковой конденсатор.

Емкость конденсатора

Есть несколько параметров устанавливаемых в электродвигатель конденсаторов, которые придется рассчитывать под необходимый номинал мощности мотора. И один из них – это емкость. Чтобы ее определить, можно воспользоваться несколькими формулами.

Есть более простой вариант определения емкости, в нем присутствует соотношение – на каждые 1,0 кВт мощности необходимо присоединять 70 мкФ. Кстати, в данном случае приходится именно подбирать.

Поэтому рекомендуется использовать конденсаторы разной емкости. Подключая их в схему, производится запуск движка, который должен работать корректно. Если необходимо уменьшить или увеличить емкость, то добавляется или уменьшается один из конденсаторов.

Что касается емкости пускового конденсатора, то он должен быть в 2,5-3,0 раза больше, чем у рабочего.

Пример подбора конденсаторов по емкости

Теперь данные подставляем в формулу: C=4800*(3/220)=65 мкФ. Конечно, такого конденсатора нет, но его можно заменить несколькими, соединенными параллельно между собой. К примеру, 10 штук по 6 мкФ, и один 5 мкФ. При этом емкость пускового прибора будет находиться в диапазоне 160-200 мкФ.

Обратите внимание, что этот расчет делается на номинальную мощность мотора. Поэтому если электрический агрегат будет работать без нагрузки, то будет все время греться

Поэтому стоит продумать ситуацию, для чего можно просто снизить емкость установленного блока конденсаторов.

Но данная ситуация – палка о двух концах. Все дело в том, что снижая емкость, снижается и мощность. Поэтому совет: установить в схему минимальный показатель емкости (в нашем случае 160 мкФ), а после проверки начинать поднимать его до оптимального значения.

И все же учитывайте тот факт, что работа без нагрузки – это быстрый выход из строя электродвигателя, который был переделан из прибора, подключаемого к сети 380В в сеть на 220В.

Тип конденсаторов

Какие же конденсаторы используются при подключении электродвигателя 380 на 220 вольт? Чаще всего это марки КБП, МБГП, МПГО, МБГО, все они бумажного типа в герметичном металлическом корпусе. У всех этих типов есть один недостаток – большие габаритные размеры при небольшой емкости. Поэтому связка из нескольких изделий – достаточно большая, что неудобно во всех отношениях.

Есть на рынке так называемые электролитические конденсаторы.

И третий тип конденсаторов – это полипропиленовые элементы металлизированного типа, марка СВВ. Их форма может быть круглой или пластинчатой. Приборы высокого качества, небольших размеров и большой емкости. Их-то и рекомендуют сегодня устанавливать специалисты, когда стоит вопрос, как подключить электродвигатель 380 вольт на 220.

Напряжение конденсатора

Рабочее напряжение – один из основных параметров, на которые надо обязательно обращать внимание. Здесь две позиции:. Поэтому совет: умножаете напряжение в сети на 1,15 – это и будет напряжение конденсатора

Поэтому совет: умножаете напряжение в сети на 1,15 – это и будет напряжение конденсатора.

Подключение асинхронного двигателя

Трехфазный переменный ток

Электрическая сеть трехфазного переменного тока получила наиболее широкое распространение среди электрических систем передачи энергии. Главным по сравнению с однофазной и двухфазной системами является ее экономичность. В трехфазной цепи энергия передается по трем проводам, а токи текущие в разных проводах сдвинуты относительно друг друга по фазе на 120°, при этом синусоидальные ЭДС на разных фазах имеют одинаковую частоту и амплитуду.

Трехфазный ток (разница фаз 120°)

Звезда и треугольник

Трехфазная обмотка статора электродвигателя соединяется по схеме в зависимости от напряжения питания сети. Концы трехфазной обмотки могут быть: соединены внутри электродвигателя (из двигателя выходит три провода), выведены наружу (выходит шесть проводов), выведены в распределительную коробку (в коробку выходит шесть проводов, из коробки три).

Фазное напряжение – разница потенциалов между началом и концом одной фазы

Другое определение для соединения “звезда”: фазное напряжение это разница потенциалов между линейным проводом и нейтралью (обратите внимание, что у схемы “треугольник” отсутствует нейтраль)

Линейное напряжение – разность потенциалов между двумя линейными проводами (между фазами).

Звезда Треугольник Обозначение
Uл, Uф – линейное и фазовое напряжение, В,
Iл, Iф – линейный и фазовый ток, А,
S – полная мощность, Вт
P – активная мощность, Вт

Внимание: Несмотря на то, что мощность для соединений в звезду и треугольник вычисляется по одной формуле, подключение одного и того же электродвигателя разным способом в одну и туже электрическую сеть приведет к потреблению разной мощности. При этом не правильное подключение электродвигателя, может привести к расплавлению обмоток статора

Пример: Допустим электродвигатель был подключен по схеме “звезда” к трехфазной сети переменного тока Uл=380 В (соответственно Uф=220 В) и потреблял ток Iл=1 А

Полная потребляемая мощность:

S = 1,73∙380∙1 = 658 Вт.

Теперь изменим схему соединения на “треугольник”, линейное напряжение останется таким же Uл=380 В, а фазовое напряжение увеличится в корень из 3 раз Uф=Uл=380 В. Увеличение фазового напряжения приведет к увеличению фазового тока в корень из 3 раз. Таким образом линейный ток схемы “треугольник” будет в три раза больше линейного тока схемы “звезда”. А следовательно и потребляемая мощность будет в 3 раза больше:

S = 1,73∙380∙3 = 1975 Вт.

Таким образом, если двигатель рассчитан на подключение к трехфазной сети переменного тока по схеме “звезда”, подключение данного электродвигателя по схеме “треугольник” может привести к его поломке.

Если в нормальном режиме электродвигатель подключен по схеме “треугольник”, то для уменьшения пусковых токов на время пуска его можно соединить по схеме звезда. При этом вместе с пусковым током уменьшится также пусковой момент.

Подключение электродвигателя по схеме звезда и треугольник

Обозначение выводов статора трехфазного электродвигателя

Обозначение выводов обмоток статора вновь разрабатываемых трехфазных машин согласно ГОСТ 26772-85

Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Начало Конец
Открытая схема (число выводов 6)
первая фаза U1 U2
вторая фаза V1 V2
третья фаза W1 W2
Соединение в звезду (число выводов 3 или 4)
первая фаза U
вторая фаза V
третья фаза W
точка звезды (нулевая точка) N
Соединение в треугольник (число выводов 3)
первый вывод U
второй вывод V
третий вывод W

Обозначение выводов обмоток статора ранее разработанных и модернизируемых трехфазных машин согласно ГОСТ 26772-85

Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Начало Конец
Открытая схема (число выводов 6)
первая фаза C1 C4
вторая фаза C2 C5
третья фаза C3 C6
Соединение звездой (число выводов 3 или 4)
первая фаза C1
вторая фаза C2
третья фаза C3
нулевая точка
Соединение треугольником (число выводов 3)
первый вывод C1
второй вывод C2
третий вывод C3

Устройство и принцип работы

Говоря о конденсаторных асинхронных двигателях, речь в первую очередь будет идти об электромоторах, изначально рассчитанных для подключения к однофазной сети. Это несколько перекликается с двухфазными или трехфазными двигателями, переделанными для подключения в обычную однофазную сеть на 220 Вольт. Но существенным отличием этих электродвигателей выступает то, что здесь конденсатор выступает как обязательное условие электрической схемы и включение в трёхфазную сеть 380 Вольт такого асинхронного двигателя просто невозможно.

Устройство и принцип работы конденсаторного двигателя основаны на физических свойствах асинхронного двигателя, но для создания движущей силы и вращения магнитного поля в цепь обмоток включен пусковой конденсатор.

По своему устройству он не отличается от обычного асинхронника и в составе имеет:

  1. Неподвижный статор в массивном корпусе с рабочей и пусковой обмотками.
  2. Закрепленный на валу ротор, приводимый в движение силой электромагнитного поля, создаваемого обмотками статора.

Обе части электродвигателя соединены между собой на подшипниках качения или скольжения (втулки), закрепленных в крышках корпуса статора.

По принципу работы конденсаторный электродвигатель, как отмечалось выше, относится к асинхронным – движение осуществляется за счет создания электромагнитного поля обмотками статора, сдвинутыми относительно друг друга на 90 градусов. Единственное отличие от трехфазных асинхронных электродвигателей заключается во включенном в цепь конденсаторе, через который включаются вторая обмотка электродвигателя.

Обычный асинхронный двигатель при включении в сеть начинает работу с пусковой обмоткой. После того как ротор набрал обороты, пусковая обмотка отключается и работу продолжает только рабочая обмотка. Минусом такого электромотора с пусковой обмоткой выступает момент пуска, когда ротор начинает набор оборотов

Для электродвигателя важно чтобы в этот момент не было нагрузки, или нагрузка была небольшой. Пусковой момент получается ниже, чем у аналогичных по мощности трёхфазных моторов

В схеме подключения конденсаторного асинхронного двигателя есть фазосдвигающий конденсатор. При подключении в сеть через конденсатор во второй обмотке возникает сдвиг фаз, равный 90 градусам (на практике немного меньше). Это способствует тому, что в работу ротор включается с максимально возможным крутящим моментом.

Такой запуск обеспечивает включение двигателя как на холостом ходу, так и под нагрузкой

Это очень важно для подключения двигателя под нагрузкой. На практике по такой схеме подключается мотор от стиральной машины старых моделей

В момент пуска двигатель должен начать вращать воду в баке, а это существенная нагрузка на электродвигатель. При отсутствии пускового конденсатора двигатель не будет запускаться, он будет гудеть, греться, но работать не будет.

Как правильно подобрать конденсаторы

Теоретически предполагается осуществлять расчет необходимой емкости путем деления силы тока на напряжение и полученную величину умножить на коэффициент. Для разного типа соединений обмоток коэффициент составляет:

Недостатком этого метода является то, что не всегда на электродвигателе сохранилась табличка с данными. Невозможно точно знать коэффициент мощности и мощность двигателя, а следовательно и силу тока. К тому же на силу тока могут действовать такие факторы как отклонения напряжения в сети и величина нагрузки на двигатель.

Мощность электродвигателя, кВт 0,4 0,6 0,8 1,1 1,5 2,2
Ёмкость конденсатора C2 в номинальном режиме, мкФ 40 60 80 100 150 230
Ёмкость конденсатора C2 в недогруженном режиме, мкФ 25 40 60 80 130 200
Ёмкость пускового конденсатора C1 в номинальном режиме, мкФ 80 120 160 200 250 300
Ёмкость конденсатора C1 в недогруженном режиме, мкФ 20 35 45 60 80 100

Поэтому следует применять упрощенный расчет емкости рабочих конденсаторов. Просто учесть, что на каждые 100 ватт мощности необходимо 7 микрофарад емкости. Удобнее использовать несколько параллельно соединенных конденсаторов малой, желательно одинаковой емкости, чем один большой. Просто суммируя емкость собранных конденсаторов, можно легко определить и подобрать оптимальное значение. Для начала лучше процентов на десять занизить суммарную емкость.

Если двигатель легко запускается и мощности его достаточно для работы, то все подобрано правильно. Если нет – нужно еще подсоединять конденсаторы, пока двигатель не достигнет оптимальной мощности.

Следует помнить, что много не всегда хорошо, и при превышении оптимальной емкости рабочих конденсаторов двигатель будет перегреваться. Перегрев может привести к сгоранию обмоток и выходу электродвигателя из строя.

Желательно выбирать конденсаторы с рабочим напряжением не менее 450 вольт. Самыми распространенными являются так называемые бумажные конденсаторы, с буквой Б в наименовании. В настоящее время выпускаются и специализированные, так называемые моторные конденсаторы, например К78-98.

В случае, если запуск двигателя осуществляется под нагрузкой и происходит тяжело, необходим еще и пусковой конденсатор. Он включается параллельно рабочему на непродолжительное время пуска электродвигателя. Его емкость должна быть равной или не более чем в два раза превышать емкость рабочего.

Как рассчитать емкость

Емкость конденсатора, который устанавливается в схему подключения трехфазного электродвигателя, подсоединяемого к сети напряжением в 220В, зависит от самой схемы. Для этого существуют специальные формулы.

Соединение звездой:

Cр = 2800•I/U, где Ср – это емкость, I – сила тока, U – напряжение. Если производится подсоединение треугольником, то используется та же формула, только коэффициент 2800 меняется на 4800.

Хотелось бы обратить ваше внимание на тот факт, что сила тока (I) на бирке мотора не указывается, поэтому ее надо будет рассчитать по вот этой формуле:

I = P/(1.73•U•n•cosф), где Р- это мощность электрического двигателя, n – КПД агрегата, cosф – коэффициент мощности, 1,73 – это поправочный коэффициент, он характеризует соотношение между двумя видами токов: фазным и линейным.

Так как чаще всего подключение трехфазного двигателя к однофазной сети 220В производится по треугольнику, то емкость конденсатора (рабочего) можно подсчитать по более простой формуле:

C = 70•Pн, здесь Рн – это номинальная мощность агрегата, измеряемая в киловаттах и обозначаемая на бирке прибора. Если разобраться в этой формуле, то можно понять, что существует достаточно простое соотношение: 7 мкФ на 100 Вт. К примеру, если устанавливается мотор мощностью 1 кВт, то для него необходим конденсатор на 70 мкФ.

Как определить, точно ли подобран конденсатор? Это можно проверить только в рабочем режиме.

  • Если в процессе эксплуатации мотор перегревается, то, значит, емкость прибора больше требуемой.
  • Низкая мощность двигателя, значит, емкость занижена.

Даже расчет может привести к неправильному выбору, ведь условия эксплуатации мотора будут влиять на его работу. Поэтому рекомендуется начинать подбор с низких величин, и при необходимости наращивать показатели до необходимых (номинальных).

Что касается пусковой емкости, то здесь в первую очередь учитывается, какой пусковой момент необходим для запуска электродвигателя

Хотелось бы обратить ваше внимание на то, что пусковая емкость и емкость пускового конденсатора – это не одно и то же. Первая величина – это сумма емкостей рабочего и пускового конденсаторов. В качестве рабочих можно использовать бумажные, металлизированные или пленочные аналоги

При этом необходимо учитывать тот факт, что допустимое напряжение должно быть в полтора раза быть больше номинального. Как видите, подобрать точно конденсатор под электродвигатель достаточно непростым. Даже расчет является процессом неточным

В качестве рабочих можно использовать бумажные, металлизированные или пленочные аналоги. При этом необходимо учитывать тот факт, что допустимое напряжение должно быть в полтора раза быть больше номинального. Как видите, подобрать точно конденсатор под электродвигатель достаточно непростым. Даже расчет является процессом неточным.