Как подобрать конденсатор для трехфазного двигателя таблица

Содержание

Типы конденсаторов

Существуют различные виды конденсаторов для электродвигателей:

  • Фольговые конденсаторы отличаются хорошей стабильностью параметров (в основном, емкости), также могут работать при высоких напряжениях (порядка нескольких сотен вольт). По этой причине их охотно используют в основном в цепях питания сети. Емкости фольговых конденсаторов остаются на уровне от примерно одного до нескольких десятков микрофарад.
  • Электролитические конденсаторы предлагают очень большую емкость (от единиц микрофарад до нескольких десятков фарад). Эти типы конденсаторов имеют довольно низкую точность измерения емкости (часто в диапазоне +/- 20%) и показывают довольно большие колебания этого параметра в зависимости от температуры окружающей среды, рабочего напряжения и времени. Можно выделить две основные группы: алюминиевые и танталовые электролитические конденсаторы.
  • Керамические конденсаторы наиболее часто используются. Их структура в чем-то схожа с фольгированными конденсаторами Эти конденсаторы характеризуются самой низкой емкостью среди упомянутых типов элементов (от единичных пикофарад до нескольких микрофарад), но у них есть другие, очень выгодные с практической точки зрения особенности. Они обеспечивают хорошую температурную стабильность, низкий допуск по емкости и низкие потери. Такие конденсаторы могут присутствовать как в корпусах для сквозных отверстий, так и в корпусах для поверхностного монтажа.
  • Слюдяные конденсаторы, несмотря на многие превосходные свойства (включая высокую стабильность емкости во времени, строго определенный температурный коэффициент емкости), постепенно снимаются с производства по материальным и технологическим причинам. Слюдяные конденсаторы сконструированы аналогично керамическим многослойным конденсаторам, но, поскольку они не подвергаются отжигу при высоких температурах, электроды могут быть изготовлены из серебра.
  • Конденсаторы из полистирола отличаются высокой стабильностью, высоким сопротивлением изоляции, малым тангенсом угла потерь, малым (и в то же время постоянным) отрицательным температурным коэффициентом емкости и возможностью достижения жестких допусков емкости. В некоторой степени недостатком этих конденсаторов является относительно низкая верхняя допустимая рабочая температура (+ 70С).

Фото конденсаторов для электродвигателей поможет вам при походе в магазин.

Как подключить с реверсом

Обеспечить вращение ротора в обратную сторону не представляет затруднения. В схему подключения двигателя необходимо добавить двухпозиционный переключатель. Средний контакт переключателя подсоединяется к одному из контактов конденсаторов, а крайние к выводам двигателя.

Рассмотренные варианты подключения промышленных двигателей в бытовую сеть не представляют большой сложности при их реализации

Важно только внимательно отнестись к некоторым нюансам и оборудование, хоть и с небольшой потерей мощности, прослужит долго и принесет пользу

Особенности и схема подключения частотного преобразователя к разным типам электродвигателей

Как подключить однофазный электродвигатель — схема с конденсатором

В чём отличия схем подключения обмоток электродвигателя звездой и треугольником

Схема работы устройства плавного пуска, его назначение и конструкция

Определение ёмкости последовательно или параллельно соединённых конденсаторов — формула

Что такое конденсатор, виды конденсаторов и их применение

Подключение однофазного электродвигателя: использование магнитного пускателя

Но есть другой путь — подключение однофазного электродвигателя как генератора для получения трехфазного напряжения.

В качестве кратковременного переключателя ставят кнопки с группой контактов или реле. По схеме, изображенной на рисунке 2, соединения исполнялись без нейтрали.


Функция центробежного выключателя состоит в отключении пусковой фазы, когда ротор набирает номинальную скорость. Помните, что при подключении коллекторного электрического двигателя без блока электроники, он будет работать только на максимальных оборотах, а при запуске будет сильный рывок, большой пусковой ток, искрение на коллекторе. В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Следовательно, раз он подключается к сети , все конденсаторы, задействованные в схеме, должны быть не менее чем на В. Магнитное поле основной обмотки поддерживает вращение длительное время.

К примеру, для изготовления наждака или самодельного сверлильного аппарата. Использовать необходимо только конденсаторы, которые идут в комплекте поставки. Как рассчитать емкость Емкость конденсатора, который устанавливается в схему подключения трехфазного электродвигателя, подсоединяемого к сети напряжением в В, зависит от самой схемы

Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на В


Магнитное поле основной обмотки поддерживает вращение длительное время. Решение — установка 3-х полюсного переключателя. Данная процедура реализуется простым изменением порядка включения пусковой обмотки при ее соединении с рабочей обмоткой. Это связано с тем, что при включении в сеть только рабочей обмотки С1-С2 у однофазного конденсаторного двигателя возникнет пульсирующее магнитное поле, а не вращающееся, то есть он не запустится. С каждым из сетевых проводов необходимо подключить дроссели для исключения помех.

В магнитопроводе однофазных двигателей находится двухфазная обмотка, состоящая из основной и пусковой обмотки. Контроль показателей пускового тока в таких двигателях осуществляется частотным преобразователем. Это и будет, один из сетевых проводов. Наиболее удобным является магнитный пускатель с управлением от в переменного тока. Все емкости, которые включаются в схему, должны быть однотипными.

Если после этого двигатель окажется горячим, то: Возможно, подшипники загрязнились, зажались или просто износились. Идея применения пускового конденсатора состоит в его включении в цепь лишь в момент запуска мотора. Станках для обработки сырья и т. Подключение конденсатора. Как подключить конденсатор к электродвигателю. Схема.

Расчет параметров конденсатора онлайн

Не знаю как Вам, а мне никогда не нравилось работать и вычислять ёмкости конденсаторов. Больше всего раздражало наличие в исходных данных, ёмкостей в разных номиналах, в пикофарадах, в нанофарадах, микрофарадах. Их приходилось переводить в Фарады, что влекло за собой глупейшие ошибки в расчетах.

Конденсатор — в принципе это любая конструкция, которая может сохранять накопленный электрический потенциал. Если же эта конструкция, не только хранит электроэнергию, но и генерирует её, то это уже источник электропитания и никак не конденсатор.

Конструкция конденсаторов может быть любой, но чаще всего в практике используется плоский конденсатор, состоящий из двух проводящих пластин, между которыми находится какой либо диэлектрик. Это связано с тем, что расчет ёмкости такого конденсатора ведется по известной формуле и простотой его создания. Свернув такой плоский конденсатор в рулон, мы получаем, что при фактическом скромном размере «рулона», там находится плоский конденсатор, длиной в десятки сантиметров и обладающий повышенной ёмкостью.

Емкости конденсаторов некоторых форм известны, и мы дальше их рассмотрим.

Но хотелось бы заметить, что на наш взгляд, потенциал развития конденсаторов до конца не завершен. Ведь форма конструкции какого либо конденсатора может быть любая, материалы из которого сделаны обкладки или диэлектрический слой тоже могут быть любыми в пределах таблицы Менделеева. Единственная сложность, это невозможность теоретически просчитать потенциальную ёмкость, новосозданного (другой конструкции) конденсатора. Это усложняет нахождение самой лучшей конструкции конденсатора.

Есть хорошая книга по рассмотрению электрической ёмкости различных фигур. Для любопытных рекомендую поискать на просторах Интернета: Расчет электрической ёмкости в авторстве Ю.Я.Иоселль 1981 года

Данный бот рассчитывает параметры типовых форм конденсаторов. Отличие от других калькуляторов, присутствующих в интернете, это возможность задавать параметры, которые Вам известны, для того что бы рассчитать остальные.

И последнее нововведение, которое вы можете использовать. Вам не обязательно придется переводить заданные данные в метры, фарады и т.д. Достаточно обозначить размерность данных.

Например, если ёмкость известна и равно 100 пикофарад, то боту можно так и написать c=100пикофарад или с=100пФ, бот сам переведет в Фарады.

Результат, тоже будет выдан оптимально визуальному восприятию пользователя.

Это стало возможно с созданием бота Система единиц измерения онлайн

Как подключать конденсаторы

Подключение любого вида конденсаторов должно производиться по точной схеме. Рабочий конденсатор подключается снизу, а пусковой выше параллельно ем.

Кроме того, важно не забыть подключить кнопку пуска, при этом следите за последовательностью проводов

При помощи такой схемы можно подключать и конденсаторы на проверку. При суммировании мощностей рабочего и пускового конденсаторов будет получаться, что мощность меняется.

Также можно подключать последовательно несколько конденсаторов пускового типа и смотреть за двигателем.

Читать также: Основные типы токарных станков

На чтение: 3 минуты Нет времени?

Подключая асинхронный двигатель в сеть с одной фазой (220 в), появляется необходимость обеспечения сдвига фаз для имитации трехфазной сети. В противном случае электромотор просто не сможет функционировать из-за отсутствия вращения магнитных полей. В этом случае возможно применение конденсаторов, имеющих возможность создать нужный перекос, тем самым переводя синусоидальные колебания однофазного тока в некое подобие трехфазного. Проблемой становится правильный подбор емкости конденсаторов. Для этого необходимо произвести расчеты с максимальной точностью.

Представленный ниже онлайн-калькулятор расчета емкости поможет выполнить все действия довольно просто и быстро, не допустив ошибок в вычислениях.

Высчитывая необходимые показатели самостоятельно следует воспользоваться таблицей.

Способ подключения двигателя Формулы, необходимые для производства вычислений
«Звезда»
  • Cр=2800*I/U; I=P/(√3*U*η*cosϕ)
  • Cр=(2800/√3)*P/(U²*η*cosϕ)
«Треугольник» Cр=(4800/√3)*P/(U²*η*cosϕ)

Расшифровать обозначения можно следующим образом:

  • Cр – емкости рабочих элементов (мкФ);
  • Cп – емкости пусковых элементов;
  • I – величины токов (А);
  • U – величины напряжений (В);
  • η – Коэффициент полезного действия электромотора в процентах, разделенных на 100;
  • cosϕ – коэффициент мощности.


На этой табличке есть все необходимые данные для онлайн калькулятора

После ввода всех необходимых данных в соответствующие поля нужно нажать кнопку «рассчитать…». Полученные показатели используются для подбора емкости. Единственное неудобство – редко случается найти именно элемент с рассчитанными параметрами. В этом случае берется ближайшая емкость, стоящая ниже по показателю. Если же взять более мощный элемент, возможен перегрев обмоток электродвигателя вследствие возрастания рабочего тока, что неизбежно приведет к повреждению изоляции и опасности межвиткового замыкания. В редких случаях совпадения показателей, естественно, лучше выбрать именно такой.

Номинальное напряжение конденсатора должно быть минимум в полтора раза выше сетевого. Причина этому – резкое возрастание этого показателя в пусковой момент. При подключении к однофазной сети номинал должен составлять 360 в. Если подключается фазное напряжение по двум проводам – 400-450 в. Но это минимальный предел. На самом деле профессионалы советуют брать еще выше – никаких проблем это не создаст.


Схема подключения асинхронного двигателя на 220 В

Ниже представлена таблица номиналов рабочего и пускового конденсатора. Для примеров – серия CBB60 (полипропиленовый пленочный, основное назначение которого – схемы подключения асинхронного двигателя) и серия CBB65, помещенная в алюминиевые корпуса.

Для пуска применяются неполярные конденсаторы на основе электролита (CD60). Как рабочие они неприменимы. Их проблема в том, что длительная нагрузка существенно снижает их срок службы. Хотя в качестве пусковых допускается и CBB60 (CBB65), но они более габаритны при тех же емкостях. Ниже представлена таблица рекомендованных для подобной эксплуатации конденсаторов, способных работать с электродвигателями.


…а так подключение выглядит «в живую»

Полипропиленовые пленочные CBB60 (российский аналог К78-17) и CBB65 Электролитические неполярные CD60
Номинал напряжения (в) 400; 450; 630 220—275; 300; 450
Емкость (мкФ) 1,5; 2,0;2,5; 3,0; 3,5; 4,0; 5,0; 6,0; 7,0; 8,0; 10; 12; 14; 15; 16; 20; 25; 30; 35; 40; 45; 50; 60; 65; 70; 75; 80; 85; 90; 100; 120; 150 5,0; 10; 15; 20; 25; 50; 75; 100; 150; 200; 250; 300; 350; 400; 450; 500; 600; 700; 800; 1000; 1200; 1500

Бывает, что элементов с необходимой емкостью нет. Тогда можно «спарить» два. Стоит понимать, что параллельное соединение и последовательное дадут совершенно различные показатели. Наиболее оптимальным будет последовательное соединение. А для расчета суммарной емкости предлагаем Вам использовать другой онлайн калькулятор, который сэкономит время и избавит от лишних расчетов.

Устройство и предназначение конденсаторов

Этот элемент электрической схемы состоит из двух пластин (обкладок). Обкладки расположены по отношению друг к другу так, что между ними оставлен зазор. При включении конденсатора в цепь электрического тока на обкладках накапливаются заряды. Из-за физического зазора между пластинами устройство обладает маленькой проводимостью.

Внимание! Этот зазор бывает воздушным или заполнен диэлектриком. В качестве диэлектрика применяются: бумага, электролит, оксидные плёнки

Главная особенность такого двухполюсника – способность накапливать энергию электрического поля и мгновенно отдавать её на нагрузку (заряд и разряд)

Главная особенность такого двухполюсника – способность накапливать энергию электрического поля и мгновенно отдавать её на нагрузку (заряд и разряд).

Устройство детали

Первым прототипом ёмкости стала Лейденская банка, созданная в 1745 году в городе Лейдене немцем фон Клейстом. Банку изнутри и снаружи выстилали медной фольгой. Так появилась идея создания обкладок.

Лейденские банки, соединённые параллельно

Графическое обозначение двухполюсника на схемах и чертежах – две вертикально расположенные черты (как обкладки) с зазором между ними.

Обозначение на схемах

Схема подключения «звезда»

В случае если на клеммнике электродвигателя 6 выводов — следует их прозвонить по отдельности и определить, какие выводы связаны друг с другом. В паспорте мотора нужно найти назначение выводов. После этого схема переподключается, формируя привычный «треугольник».

С этой целью снимаются перемычки и контактам присваивают условные обозначения от A до F. Далее последовательно соединяются контакты: A и D, B и E, C и F.

Теперь контакты D, E и F станут соответственно нулевым, рабочим и фазовым проводом. Конденсатор присоединяют к ним точно так же, как в предыдущем случае.

При первом включении нужно внимательно следит за тем, чтобы обмотки не перегревались. В этом случае следует немедленно отключить устройство и определить причину перегрева.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.

Со всеми этими

Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС

подключение однофазного двигателя

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно)

К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

{SOURCE}

Подключение асинхронного двигателя

Трехфазный переменный ток

Электрическая сеть трехфазного переменного тока получила наиболее широкое распространение среди электрических систем передачи энергии. Главным по сравнению с однофазной и двухфазной системами является ее экономичность. В трехфазной цепи энергия передается по трем проводам, а токи текущие в разных проводах сдвинуты относительно друг друга по фазе на 120°, при этом синусоидальные ЭДС на разных фазах имеют одинаковую частоту и амплитуду.

Трехфазный ток (разница фаз 120°)

Звезда и треугольник

Трехфазная обмотка статора электродвигателя соединяется по схеме в зависимости от напряжения питания сети. Концы трехфазной обмотки могут быть: соединены внутри электродвигателя (из двигателя выходит три провода), выведены наружу (выходит шесть проводов), выведены в распределительную коробку (в коробку выходит шесть проводов, из коробки три).

Фазное напряжение – разница потенциалов между началом и концом одной фазы

Другое определение для соединения “звезда”: фазное напряжение это разница потенциалов между линейным проводом и нейтралью (обратите внимание, что у схемы “треугольник” отсутствует нейтраль)

Линейное напряжение – разность потенциалов между двумя линейными проводами (между фазами).

Звезда Треугольник Обозначение
Uл, Uф – линейное и фазовое напряжение, В,
Iл, Iф – линейный и фазовый ток, А,
S – полная мощность, Вт
P – активная мощность, Вт

Внимание: Несмотря на то, что мощность для соединений в звезду и треугольник вычисляется по одной формуле, подключение одного и того же электродвигателя разным способом в одну и туже электрическую сеть приведет к потреблению разной мощности. При этом не правильное подключение электродвигателя, может привести к расплавлению обмоток статора

Пример: Допустим электродвигатель был подключен по схеме “звезда” к трехфазной сети переменного тока Uл=380 В (соответственно Uф=220 В) и потреблял ток Iл=1 А

Полная потребляемая мощность:

S = 1,73∙380∙1 = 658 Вт.

Теперь изменим схему соединения на “треугольник”, линейное напряжение останется таким же Uл=380 В, а фазовое напряжение увеличится в корень из 3 раз Uф=Uл=380 В. Увеличение фазового напряжения приведет к увеличению фазового тока в корень из 3 раз. Таким образом линейный ток схемы “треугольник” будет в три раза больше линейного тока схемы “звезда”. А следовательно и потребляемая мощность будет в 3 раза больше:

S = 1,73∙380∙3 = 1975 Вт.

Таким образом, если двигатель рассчитан на подключение к трехфазной сети переменного тока по схеме “звезда”, подключение данного электродвигателя по схеме “треугольник” может привести к его поломке.

Если в нормальном режиме электродвигатель подключен по схеме “треугольник”, то для уменьшения пусковых токов на время пуска его можно соединить по схеме звезда. При этом вместе с пусковым током уменьшится также пусковой момент.

Подключение электродвигателя по схеме звезда и треугольник

Обозначение выводов статора трехфазного электродвигателя

Обозначение выводов обмоток статора вновь разрабатываемых трехфазных машин согласно ГОСТ 26772-85

Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Начало Конец
Открытая схема (число выводов 6)
первая фаза U1 U2
вторая фаза V1 V2
третья фаза W1 W2
Соединение в звезду (число выводов 3 или 4)
первая фаза U
вторая фаза V
третья фаза W
точка звезды (нулевая точка) N
Соединение в треугольник (число выводов 3)
первый вывод U
второй вывод V
третий вывод W

Обозначение выводов обмоток статора ранее разработанных и модернизируемых трехфазных машин согласно ГОСТ 26772-85

Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Начало Конец
Открытая схема (число выводов 6)
первая фаза C1 C4
вторая фаза C2 C5
третья фаза C3 C6
Соединение звездой (число выводов 3 или 4)
первая фаза C1
вторая фаза C2
третья фаза C3
нулевая точка
Соединение треугольником (число выводов 3)
первый вывод C1
второй вывод C2
третий вывод C3

Другие методы расчёта конденсатора для трехфазного двигателя

Расчёт конденсатора по мощности двигателя

Это довольно грубый расчёт и заключается он в том, что ёмкость подбирается по мощности. Существуют различные формулы, но все они сводятся к тому, что нужно брать 6-7 мкФ на 100 ватт мощности или 60-70 мкФ на 1 кВт. Насколько верны эти расчёты? Простой реальный пример. Двигатель 1,1 кВт имеет номинальный ток около 4,8 ампера при соединении обмоток треугольником. Следовательно, конденсатор для номинального режима будет 105 мкФ (не 60 и не 70).

Расчёт конденсатора через напряжение

Вспоминаем закон Ома, делаем небольшие умозаключения и понимаем, что полученный ток посредством электромагнитной индукции и магнитных потоков будет создавать напряжение. Обмотки сдвинуты на угол 120°. Дальше углубляться в теорию не будем, но из сказанного можно понять, что сдвигая конденсатором ток мы получаем как бы трехфазное напряжение. Следовательно, если токи в обмотках будут равны, то и напряжения тоже будут равны. Исходя из этого понимания можно подобрать точное значение конденсатора имея под рукой только вольтметр. Этот метод подбора ёмкости конденсатора можно назвать самым точным

Внимание на экран:

При использовании данного метода лучше всего использовать два вольтметра, так вы сразу будете видеть результат, так сказать, в онлайн режиме. Вся задача сводится к тому, чтобы подключая или отключая дополнительные конденсаторы привести значения первого и второго вольтметра к одному напряжению. Помните, что вы будете работать с опасным напряжением, поэтому перед работой прочитайте технику безопасности.

2 вариант

Схема идентична конденсаторному мотору, но без выключателя. Пусковой момент составляет только 20–30% от полной нагрузки крутящего момента.

Применение этого типа однофазных двигателей, как правило, ограничивается прямым приводом таких нагрузок, как вентиляторы, воздуходувки или насосы, которые не требуют высокого пускового крутящего момента. Возможны различные модификации схем с предварительным расчетом необходимой емкости конденсатора для подсоединения к двигателю 220 В.

Стоит отметить, что обеспечение лучших характеристик нужно при изменении нагрузки мотора. Увеличение емкости ведёт к уменьшению сопротивления в цепи переменного тока. Правда замена емкости электролита несколько усложняет схему.

Виды пусковых конденсаторов

Небольшие электродвигатели, мощность которых не превышает 200-400 ватт, могут работать без пускового устройства. Для них вполне достаточно одного рабочего конденсатора. Однако при наличии значительных нагрузок на старте, обязательно используются дополнительные пусковые конденсаторы. Он подключается параллельно с рабочим конденсатором и в период разгона удерживается во включенном положении с помощью специальной кнопки или реле.

Для расчета емкости пускового элемента необходимо умножить емкость рабочего конденсатора на коэффициент, равный 2 или 2,5. В процессе разгона двигатель требует емкость все меньше и меньше. В связи с этим, не стоит держать пусковой конденсатор постоянно включенным. Высокая емкость при больших оборотах приведет к перегреву и выходу из строя агрегата.

Читать также: Кованые автоматические ворота фото

В стандартную конструкцию конденсатора входят две пластины, расположенные напротив друг друга и разделенные слоем диэлектрика. При выборе того или иного элемента, необходимо учитывать его параметры и технические характеристики.

Все конденсаторы представлены тремя основными видами:

  • Полярные. Не могут работать с электродвигателями, подключенными к переменному току. Разрушающийся слой диэлектрика может привести к нагреву агрегата и последующему короткому замыканию.
  • Неполярные. Получили наибольшее распространение. Могут работать в любых вариантах включения за счет одинакового взаимодействия обкладок с диэлектриком и источником тока.
  • Электролитические. В этом случае электроды представляют собой тонкую оксидную пленку. Они могут достигать максимально возможной емкости до 100 тыс. мкФ, идеально подходят к двигателям с низкой частотой.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.