Что представляет собой аппарат
Устройство аппарата
Плазморез достаточно сложный аппарат, состоящий из нескольких основных узлов:
Элементы плазмореза
Далее подробно рассмотрим устройство плазмореза.
Плазмотрон
Этот элемент представляет собой плазменный резак, по сути, основной элемент аппарата, который образует плазму. Плазмотрон соединяется с другими элементами аппарата при помощи кабеля и шланга, по которому подается воздух и электрический ток.
Надо сказать, что резаки бывают двух типов:
Прямого действия. Дуговой разряд появляется между металлической заготовкой и резаком. Именно такие плазмотроны применяются для работы с металлом;
Схема устройства плазмотрона прямого действия
-
Косвенного. Дуговой разряд возникает внутри самого плазмотрона. Это позволяет использовать аппарат для резки неметаллических материалов.
Плазмотрон содержит два основных элемента: -
Сопло. Эта деталь формирует плазменную струю. От ее диаметра и длины зависит скорость резки металла, размер реза и интенсивность охлаждения.
Как правило, диаметр сопла не превышает 3 миллиметров, а длина составляет 9-12 миллиметров. Чем больше длина, тем качественнее рез, но меньше долговечность самого сопла. Поэтому оптимальный вариант, когда длина сопла в полтора раза больше его ширины;
Схема устройства сопла и электрода
Электрод. Металлический стержень, как правило, выполненный из гафния. Электрод обеспечивает возбуждение электрической дуги для воздушноплазменной резки.
Источник питания
Задача источника питания заключается в подаче тока на плазмотрон. Источники питания бывают двух типов:
Трансформатор. Увесистые и потребляют много энергии, но зато они менее чувствительные к перепадам температуры. Кроме того, толщина заготовки, которую способен перерезать аппарат, может достигать 40-50 мм;
Инвертор имеет компактные размеры
Инверторы. Более легкие, компактные и экономные в плане потребления энергии. Кроме того, инверторы обеспечивают более стабильную дугу.
К минусам относится то, что их можно использовать для разрезки листов толщиной не более 30 миллиметров.
Компрессор обеспечивает устройство сжатым воздухом с постоянным давлением
Компрессор
Для работы плазмореза необходим газ, которые обеспечивает образование плазмы и отвечает за охлаждение плазмотрона. Поэтому для подачи газа на сопло используется компрессор.
В аппаратах с силой тока не превышающей 200 А, в качестве газа используется воздух. Такой аппарат может разрезать заготовки толщиной до 50 миллиметров.
Промышленный станок с работает другими газами, такими как аргон, гелий, азот, водород и т.д.
Кабель-шланговый пакет связывает отдельные узлы в единый аппарата
Кабель-шланговый пакет
Как я уже говорил выше, данный элемент объединяет отдельные узлы аппарата в плазморез, т.е. по шлангу подается газ на сопло, а кабель обеспечивает подачу тока на электрод.
ГЕНЕРА́ТОРЫ ПЛА́ЗМЫ
ГЕНЕРА́ТОРЫ ПЛА́ЗМЫ, устройства, создающие из электрически нейтральных веществ потоки низкотемпературной плазмы, т. е. плазмы с кинетич. энергией частиц, примерно равной их энергии ионизации. Иногда термин «Г. п.» применяют и к др. источникам плазменных потоков, напр. плазменным ускорителям. Осн. характеристики Г. п.: степень ионизации плазмы, ср. энергия частиц, энергетич. цена иона, т. е. энергия, идущая на получение одного иона.
Функциональную основу Г. п. составляет газовый разряд (дуговой, тлеющий, высокочастотный, СВЧ-разряд, лазерный, пучково-плазменный). Г. п., работающие на газах при давлениях, сравнимых с атмосферным, обычно называют плазмотронами. Г. п., работающие на газах при низких давлениях, входят в состав более крупных устройств, напр. двухступенчатых плазменных ускорителей или ионных источников. Большое внимание уделяют разработке Г. п., создающих плазму непосредственно из твёрдых веществ. Для этих целей используют вакуумные дуги с холодным катодом. Возникающие на таких катодах «пятна» с большой плотностью тока (порядка 105 А/см2) вызывают интенсивную эрозию материала катода и ионизацию продуктов эрозии. Появление импульсных лазеров привело к разработке Г. п., в которых плазма образуется в результате воздействия мощных лазерных импульсов на поверхность твёрдого или жидкого вещества. Такие Г. п. применяют для определения химич. состава этих веществ. Непрерывное расширение областей приложения плазмы стимулирует разработку новых разновидностей Г. п. и совершенствование имеющихся.
Характеристика и преимущества оборудования
Востребованность плазмореза связана с комплексом преимуществ, которым обладает данное устройство:
- возможность автоматической обработки в автономном или полуавтономном режиме;
- высокая точность выполнения поставленных задач;
- длительный эксплуатационный период;
- наиболее высокий показатель производительности среди аналогичных устройств;
- простота использования.
Для серийного производства на самодельном станке с ЧПУ достаточно одного человека выполняющего функции оператора.
Благодаря управляющей программе станок с ЧПУ способен изготовлять подряд большое количество деталей с идентичными параметрами. Несмотря на высокую мощность сигнала, в сравнение с другими станками плазморез потребляет минимальный объем электричества. Это позволяет экономить на работе с плазменным станком.
Комплектующие самодельного станка редко выходят из строя. Чаще всего поломки возникают с плазменным резаком. На современных устройствах об этом может сообщать специальный сигнал. Данная деталь стоит относительно дорого, но способна прослужить длительное время.
Плазменная резка является одним из самых скоростных видов обработки. Станочный прибор имеет сложную конструкцию, в состав которой входит электронное оборудование. Но обучение по его использованию занимает минимум времени.
Станок плазменной резки металла с ЧПУ способен обрабатывать даже самые твердые виды стали. Минимальная толщина, на которую погружается плазменный резак, составляет 0,5 миллиметров. Максимальная может достигать 15 сантиметров. При помощи плазменного резака обеспечивается ровный срез в соответствии с заданной схемой, но при этом заготовка практически не нагревается. Преимущество рабочего инструмента заключается в крайне низкой вероятности сбоев, когда выполняется ЧПУ плазменная резка.
Виды и назначение плазморезов
Прежде чем понять, как выбрать плазморез, необходимо изучить существующие виды приборов. В зависимости от области применения они подразделяются:
- Инверторные. Обладают способностью резать металл толщиной 30 мм.
- Трансформаторные. Разрезают металл толщиной 80 мм.
Они подразделяются:
- Контактные. При работе необходим контакт плазмы с металлом. Толщина его может быть до 18 мм.
- Бесконтактные. В этом случае металл может быть большой толщины и контакта с ним не требуется.
В зависимости от потребляемой энергии также есть свои разновидности. Это приборы:
- Бытовые. Работают от сети 220 Вт.
- Плазморез промышленный. Работает от трехфазной сети 380 Вт.
Достоинства плазмотрона
Плазматрон обладает следующими достоинствами:
- Эффективность работы.
- Универсальность. Может работать с любыми металлами.
- Отсутствие необходимости в предварительной подготовке заготовки. Очистка от загрязнения, снятие старой краски – всего этого не нужно делать.
- Высококачественный срез. Для среза, выполненного плазморезом, характерны точность, ровность, отсутствие окалины. Также почти не нужна последующая обработка.
- Минимум тепловых деформаций металлических заготовок.
- Безопасность эксплуатации. В процессе работы не применяются газовые баллоны.
- Возможность создания криволинейных срезов.
- Экологическая безопасность.
Благодаря многочисленным достоинствам плазмотрона, он широко применяется в промышленности, будь то изготовление кронштейнов, дверных блоков, вентиляции или отопления.
Принципиальная схема устройства
На типовом чертеже самодельного плазмореза отображают следующие элементы:
- Электрод. На этот компонент поступает напряжение от блока питания, благодаря чему осуществляется ионизация газовой среды. Для производства стержня используют тугоплавкие металлы – титан, гафний, цирконий.
- Сопло. Узел пропускает воздух, создает направленную струю из ионизированного газа.
- Охладитель. Отводит тепло от сопла, препятствуя перегреву плазмотрона.
Собираемый по типовой схеме аппарат имеет следующий принцип работы:
- Нажатием на клавишу «Пуск» включается реле. Оно обеспечивает подачу электричества к управляющему блоку.
- Второе реле направляет ток на инвертор. После этого включается система продувки горелки. Мощный воздушный поток попадает в камеру, прочищая ее.
- Срабатывает осциллятор, который ионизирует рабочий газ, циркулирующий между анодом и катодом. На этой стадии появляется первичная дуга.
- При поднесении горелки к металлу возникает разряд. Формируется режущая дуга.
- С помощью геркона отключается подача тока для розжига. При пропаже режущей дуги она возобновляется.
- После окончания резки реле включает компрессор. Нагнетаемый им воздух охлаждает сопло, удаляет продукты горения металла.
Правила выбора инструмента
Люди, которые работали с плазморезом, отметят, что чем больше сила тока, попадающего на электрод, тем быстрее будет процесс. Но есть и некоторые условия, на которые будут влиять и остальные параметры оборудования. Сюда отнесем толщину среза и тип металла. От таких параметров будет зависеть, какое оборудование для работы выбрать, а именно такой из параметров, как сила тока. Чтобы разрезать лист меди с толщиной в 0.2 см, вам нужен будет плазменный резак с силой тока в 12 А.
Обратите внимание, советуем покупать оборудование, которое будет иметь запас силы тока. Обычно указанные параметры при покупке максимальные, а значит, работать на них получится непродолжительное время
Преимущества и недостатки
Итак, преимущества следующие:
- Резка на большой скорости, а значит, на процесс будет затрачено не так много времени. По сравнению с остальными режущими инструментами (к примеру, с кислородной горелкой) скорость выше в целых 6 раз. Он уступает только лазерной резке.
- При помощи плазменного устройства можно разрезать заготовки с большой толщиной, а это не всегда под силу даже болгарке.
- Может разрезать любые виды металлов, главное, чтобы был правильно выставлен режим работы.
- Минимальный этап подготовки – поверхности деталей можно зачищать от грязи, ржавчины, масляных пятен, но в этом нет никакого смысла, так как это не помеха для резки.
- Точность среза высокая, качество тоже. Для ручных устройств чтобы улучшить точность среза часто используют специальные упоры, которые не будут давать резаку смещаться по плоскости. В итоге получается срез без наплывов, тонкий и ровный.
- Небольшая температура нагревания, исключение – зона среза, поэтому заготовки не подвергаются деформации.
- Возможность фигурного среза, и хотя таким качеством могут похвастаться и остальные инструменты, но, например, после использования кислородной горелки придется шлифовать края среза и убирать подтеки металла.
- Проводимая операция безопасна на 100%, так как нет ни одного газового баллона в комплекте к оборудованию.
Недостатки:
- Высокая стоимость оборудования.
- Допустимо работать лишь одним резаком.
- Следует выдерживать направление плазмы аккурат перпендикулярно плоскости обрабатываемой детали. На данный момент в продаже появились аппараты, который могут резать под углом от 15 до 50 градусов.
- Толщина изделия для разрезания ограничена, поэтому самые мощные экземпляры могут резать металл, толщина которого 10 см. При помощи кислородной горелки вы сможете порезать металл с толщиной в 50 см.
И, тем не менее, плазморез как устройство достаточно востребован. Ручные виды часто используют, но лишь в небольших предприятиях, где нужно выполнять большие объемы резки и к качестве реза предъявлены жесткие требования.
- Предидущее: Сколько в месяц потребляет электрический полотенцесушитель?
- Следующее: Применение универсальных гипсовых плит для облицовки стен в доме
Перспективы использования плазмотронов:
Растущий интерес к оборудованию проявляют химики и авиастроители. В плазмохимии устройство может использоваться как для ускорения протекания многих реакций с увеличением их эффективности, так и для синтеза соединений различной сложности, получить которые раньше не удавалось. К примеру, при взаимодействии водородной плазмы с метаном легко получить ацетиленовое сырье, а введя в плазменный поток пары нефти, можно разложить их на органические производные.
Прибор, создающий плазменную струю, выбрасывает ее через сопло с огромной скоростью, а это может обеспечивать механическое движение. По аналогии строятся реактивные двигатели, но там выбрасываемую струю составляют горячие газы, скорость которых способна достигать нескольких км/сек. У плазмы она в десятки раз больше (от 10 до 100 км/сек). Значит и тягу можно получить во столько же раз мощнее, затратив на это значительно меньше топливной смеси. Первые испытания космических спутников с такой системой успешно завершились, проводятся дальнейшие работы.
Примечание: Фото //www.pexels.com, //pixabay.com
Найти что-нибудь еще?
карта сайта
плазмотроны для резки металла ценыкупить ручной плазмотрон а141 гта 5 онлайн stm 120 td 300 дуговой металлургическийголовка сопло электрод катод плазмотрона cs 141плазмотрон или плазмотрон как правильно
Коэффициент востребованности
458
Устройство
Горелка состоит из:
- электрододержателя, электрически изолированного от обеих внутренних трубок;
- вихревого кольца, которое обеспечивает круговое движение плазмы;
- полого электрода, внутри которого установлены рабочая и экранирующая трубки;
- возвратной пружины;
- наконечника;
- защитного колпачка.
Конструктивно к плазмотрону для плазменной резки относят также шланги, по которым осуществляется подвод плазмообразующего воздуха.
Форма отверстия в сопле определяет размеры и конфигурацию дуги. Оно рассчитывается таким образом, чтобы выдерживать поток ионизированного газа, нагретого до 4500…5000°С, при плотности тока до 40000 °С/мм2.
Последовательность работы ручного плазмотрона такова. При выключенном оборудовании рабочие поверхности детали и наконечника соприкасаются между собой, поэтому головка плазмотрона не должна быть прижата к металлу. При включении резака источник питания начинает генерировать постоянный ток, мощность которого может достигает 500 А. Ток ионизирует воздух, находящийся в промежутке между трубками, который постепенно ионизируется, приобретая необходимую температуру. В результате инициируется поток плазмообразующего газа. При повышении давления газа до нужных пределов, пружина раздвигает между собой электрод и сопло. Образуется промежуток, в котором возбуждается электрическая искра. Она и преобразует воздушный поток в струю плазмы. Затем происходит переключение направления постоянного тока по наиболее короткому пути между электродом и заготовкой. Такое движение длится до тех пор, пока триггер не возвращён в своё прежнее положение.
Как работает самодельный плазмотрон
В принципе, самодельный плазмотрон работает точно так же, как и заводской. Правда, у него свой собственный ресурс, зависящий в основном от материала, из которого изготовлено сопло.
Сначала включается осциллятор и инвертор, через которые ток подается на электрод. Происходит его поджиг. Управление поджигом производится кнопкой, расположенной на рукоятке горелки.
Секунд 10-15, за это время дежурная дуга заполнит собой все пространство между электродом и соплом
Теперь можно подавать сжатый воздух, потому что за это время температура внутри сопла достигнет 7000С.
Как только из сопла вырвется плазма, можно переходить к процессу резки металла.
Очень важно правильно вести горелку вдоль намеченного контура резки. К примеру, если скорость продвижения резака не очень большая, то это гарантия, что ширина реза будет большой, плюс края будут точно неровными с наплывами и корявыми
Если скорость движения резака, наоборот, будет большой, то расплавленный металл будет плохо выдуваться из зоны резки, что приведет к образованию рваного реза, потеряется его непрерывность. Поэтому опытным путем необходимо подобрать скорость резки.
Очень важно правильно подобрать материал для изготовления электрода. Чаще всего для этого используют гафний, бериллий, торий или цирконий
В процессе действия на них высоких температур на поверхности образуются тугоплавкие оксиды этих металлов, так что электрод из них разрушается медленно. Правда, нагретый бериллий становится радиоактивным, а торий начинает выделять токсичные вещества. Поэтому оптимальный вариант – это электрод из гафния.
Стабилизация давления на выходе из ресивера обеспечивается установленным редуктором. Стоит он недорого, зато решает проблему равномерного поступления сжатого воздуха на сопло резака.
Все работы по эксплуатации самодельного аппарата плазменной резки должны проводиться только в защитной одежде и обуви. Обязательно надеваются перчатки и очки.
Что касается размеров сопла, то делать его очень длинным не рекомендуется. Это приводит к быстрому его разрушению
К тому же очень важно провести правильную настройку режима реза. Все дело в том, что иногда в самодельных плазморезах появляется не одна дуга, а две
Это негативно сказывается на работе самого аппарата. И конечно, это уменьшает срок его эксплуатации. Просто сопло начинает быстрее разрушаться. Да и инвертор такой нагрузки может не выдержать, так что есть вероятность выхода его из строя.
И последнее. Характерная особенность данного вида резки металлов – это его плавка только в том месте, на который воздействует плазменный поток. Поэтому необходимо добиться того, чтобы пятно реза находилось по центру конца электрода. Даже минимальное смещение пятна приведет к отклонению дуги, что создаст условия образования неправильного реза, а соответственно снижения качества самого процесса.
Как видите, рисунок процесса резки зависит от многих фактором, поэтому, собирая плазмотрон без помощи специалистов своими руками, необходимо точно соблюдать все требования к каждому элементу и прибору. Даже небольшие отклонения снизят качество реза.
Как устроен плазморез
Этот аппарат состоит из следующих элементов:
- источник питания;
- воздушный компрессор;
- плазменный резак или плазмотрон;
- кабель-шланговый пакет.
Источник питания для аппарата плазменной резки осуществляет подачу на плазмотрон определенной силы тока. Представляет собой инвертор или трансформатор.
Компрессор требуется для подачи воздуха.
Кабель-шланговый пакет используется для соединения компрессора, источника питания и плазмотрона. По электрическому кабелю от инвертора или трансформатора начинает поступать ток для возбуждения электрической дуги, а по шлангу осуществляется подача сжатого воздуха, который требуется для возникновения внутри плазмотрона плазмы.
Инвертор или трансформатор
Чтобы получить плазму, нужно подключать качественные источники питания. Это могут быть трансформаторы или инверторы.
Сделать плазморез из инвертора выгодно благодаря компактности, точности подстроек тока, напряжения, контроля электрических параметров, экономному потреблению электроэнергии. Он имеет ограничение по току до 70 А, но мощности хватает для выполнения типичных работ по обработке металла.
Недостатком инвертора являются высокие требования к качеству питания, что не позволяет их применять в сетях с перепадами напряжения без подключения к стабилизаторам.
Трансформаторы лишены недостатка инвертора, более надёжны в эксплуатации, неприхотливы в обслуживании. Но при этом они имеют большие габариты, вес, высокое потребление электроэнергии. Ограничение по току достигает 180 А, в зависимости от количества витков, диаметра используемой проволоки.
Инвертор для плазменного резака
Элементы прибора
Расходники способны функционировать в течение одной 8-часовой рабочей смены, если речь идет об обработке металла толщиной до 1 см. Далее они подлежат замене, причем последнюю желательно проводить одновременно для катода и сопла.
При несоблюдении сроков замены качество получаемого реза значительно ухудшается, могут появиться волны или дать о себе знать эффект реза под углом. Если гафниевая или циркониевая вставка выгорят более чем на 2 мм, то электрод пригорит. Следствием станет значительный перегрев устройства.
Чтобы расплавленный обрабатываемый материал не повредил элементы плазмотрона, его оснащают защитным кожухом. Регулярный демонтаж и чистка кожуха – залог долгой и качественной работы всего прибора. При несоблюдении элементарных условий эксплуатации можно в скором времени добиться серьезной поломки плазмореза
Не менее важно чистить и другие элементы.
Особенности работы аппарата
При включении аппарата плазменной резки с трансформатора на плазмотрон поступает электрический ток высокого напряжения. Вследствие этого, образуется высокотемпературная электрическая дуга. Поток сжатого воздуха, проходя сквозь дугу, возрастает в объеме на один порядок и становится токопроводящим.
Ионизированный поток газа (плазма), за счет прохождения через сопло, увеличивает свои термодинамические характеристики: скорость возрастает до 800 м/с, а температура до 30 тыс. градусов Цельсия. Электропроводность плазмы сопоставима по значению с электропроводностью обрабатываемого металла.
Скорость резания обратно пропорциональна диаметру сопла плазменной горелки. Для формирования качественной плазменной дуги следует применять тангенциальную или воздушно-вихревую подачу сжатого воздуха.
Особенность режущей дуги состоит в том, что ее действие носит локальный характер: в процессе резания не происходит деформации или нарушения поверхностного слоя обрабатываемого изделия.
Газы для кислородно-газовой резки.
Название способа резки говорит само за себя: для такого способа обычно используется кислород, а также специальный горючий газ. Что касается второго, то для этих целей может применяться разный газ. В свое время большее распространение в кислородно-газовой резке получил ацетилен. Сегодня же в место него может применяться пропан, метан, а также разнообразные, специально подготовленные газовые смеси.
Горючие газы для такой резки могут быть:
- сжимаемые – например, нефтяной, метан, а также коксовый газ.
- сжиженные – такие как пропан, бутан.
Резка металла данным способом осуществляется так: кислород и горючий газ подаются в камеру смешивания в газовой горелке, на выходе из горелки они поджигаются, нагревая металл до такого состояния, когда он начинает плавиться. Только когда металл достаточно нагрелся, струя чистого кислорода разрезает деталь. Заметим, что все образующиеся в процессе окислы убираются полностью.
Кислородно-газовая резка может применяться только на деталях, изготовленных из углеродистых сталей, при этом и низко-, и среднелегированных. Толщина листов металла, которую можно разрезать таким способом, должна быть не менее одного и не более 300 миллиметров. Хотя, при использовании специализированного оборудования этим способом можно разрезать и более толстые металлы – вплоть до 2-х метров в толщину.
Деталировка агрегата
Рабочий орган аппарата имеет сложное внутреннее устройство. В отличие от кислородно-ацетиленового резака, в случае плазменной сварки, он получил особое название – плазмотрон.
Устройство плазматрона
В его корпусе находятся следующие узлы:
- сопло;
- электрод;
- изолятор;
- узел приема сжатого воздуха.
Возбудителем электрической дуги является электрод. Материалами его изготовления, чаще всего, являются гафний, цирконий и бериллий. Эти редкие металлы имеют свойство образовывать тугоплавкие оксидные пленки, которые защищают электрод от разрушения под воздействием высоких температур. Однако, по своим экологическим характеристикам, гафний превосходит другие металлы, ввиду меньшей радиоактивности и применяется чаще остальных.
Сопло плазменного резака выполняет функцию создания высокоскоростного потока плазмы. Геометрическая конфигурация сопла определяет скорость работы и мощность плазмореза, а также качество получаемой кромки реза. Последний параметр зависит от длины сопла.
Воздушный компрессор нужен для получения сжатого воздуха требуемого давления.
Устройство воздушного компрессора
Помимо этого, он применяется еще и для охлаждения рабочих элементов плазмореза.
Источник питания, плазмотрон, и воздушный компрессор соединяет между собой комплекс кабелей и шлангов.
В зависимости от типа контакта с разрезаемым материалом, плазморезы подразделяются на следующие виды: контактные и бесконтактные. Настроенный плазморез контактного типа дает возможность разрезать материалы толщиной до 18 мм.
Ручные плазморезы обладают малой мощностью. Они работают от сети переменного тока с напряжением 220 вольт. Мощные промышленные установки плазменной резки работают от трехфазной сети постоянного тока.