Схема и устройство плавного включения ламп накаливания

Реле ходовых огней 12, 24В Блок ДХО DRL ближний, дальний

Новости Главные Новости Hyundai Остальные. Отзывы Отзывы Solaris new Отзывы Solaris Эксплуатация Solaris new Solaris Противоугонные системы. Мануалы Регламент ТО Руководство по ремонту и обслуживанию new. Имя Пароль.

Рекомендуем Вам пройти регистрацию или войти в Ваш аккаунт , чтобы полноценно использовать все доступные инструменты для покупки, продаж и общения на сайте. Во всех разделах Совместные покупки и заказы Детские товары Детская одежда и обувь Женская одежда и обувь Мужская одежда и обувь Красота и уход Товары для дома, отдыха, праздника Канцтовары, книги, арт Услуги, работа Животные, растения, аксессуары Другое Куплю, обмен, отдам, спрос.

Основа основ плавного включения

Давайте начнем с элементарных вещей и вспомним, что такое RC – цепь и как она связана с плавным розжигом и затуханием светодиода. Посмотрите на схему.

В ее состав входит всего три компонента:

  • R – резистор;
  • C – конденсатор;
  • HL1 – подсветка (светодиод).

Два первых компонента и составляют RC – цепь (произведение сопротивления и емкости). От увеличения сопротивления R и емкости конденсатора C увеличивается время розжига LED. При уменьшении, наоборот.

Мы не будем углубляться в основы электроники и рассматривать, как протекают физические процессы (точнее ток) в данной схеме. Достаточно знать, что она лежит в основе работы всех устройств плавного розжига и затухания.

Рассмотренный принцип RC – задержки лежит в основе всех решений плавного включения и выключения светодиодов.

Место установки защитного блока

Плавное включение света в квартире достигается при правильном выборе места установки. Защиту для каждого светильника устанавливают в зависимости от его места расположения. Если имеется техническая возможность, то лучше поместить его в полость под люстрой. Достоинство устройства – его компактность. Поэтому оно устанавливается в любом доступном месте рядом с осветительным прибором.

С блоком поставляется подробная инструкция. Поэтому его можно установить самостоятельно, не прибегая к услугам электрика. Если позволяет мощность УПВЛ – возможен монтаж для группы из нескольких ламп. В этом случае лучшее место размещения — распределительная коробка. Если в защитной схеме присутствует осветительный трансформатор для понижения мощности, то блок должен находиться первым по ходу тока. Напряжение 220 В должно первым поступать на него, а далее по цепи на всю сеть освещения.

При монтаже устройства плавного включения света необходимо придерживаться строгих правил:

  1. Доступность для ремонта.
  2. Запрещено заклеивать УПВЛ обоями, закрывать гипсокартоном и заделывать штукатуркой.

Подключение своими руками

В первую очередь, нужно сказать, что разобрав диммер, каждый сможет понять, что его подключение не сложнее, чем обычного выключателя.

Давайте составим пошаговую инструкцию, пользуясь которой, каждый сможет получить желаемый результат:

Первый и самый важный шаг – обесточить розетку

Это мера безопасности, ведь работать необходимо с оголенными проводами, а получить удар 220в – не самое приятное.

Ослабляем винты на клеммах.

Далее подключаем 2 провода выключателя, к проводам от старого выключателя (важно не забывать и соблюдать полярность, иначе, в лучшем случае, все придется переделывать). Снимаем верхнюю рамку и устанавливаем устройство со специально отведенное место в стене

Снимаем верхнюю рамку и устанавливаем устройство со специально отведенное место в стене.

Привинчиваем винты монтажных лапок.

Крепим верхнюю рамку (коробку).

Замена лампы

Если отсутствует свет и причина проблемы лишь в том, чтобы заменить перегоревшую лампочку, действовать нужно следующим образом:

Разбираем светильник

Делаем это осторожно, чтобы не повредить прибор. Поворачиваем трубку по оси. Направление движения указано на держателях в виде стрелочек

Когда трубка повернута на 90 градусов, опускаем ее вниз. Контакты должны выйти через отверстия в держателях. Контакты новой лампочки должны находиться в вертикальной плоскости и попадать в отверстие. Когда лампа установлена, поворачиваем трубку в обратную сторону. Остается лишь включить электропитание и проверить систему на работоспособность. Завершающее действие — монтаж рассеивающего плафона

Направление движения указано на держателях в виде стрелочек. Когда трубка повернута на 90 градусов, опускаем ее вниз. Контакты должны выйти через отверстия в держателях. Контакты новой лампочки должны находиться в вертикальной плоскости и попадать в отверстие. Когда лампа установлена, поворачиваем трубку в обратную сторону. Остается лишь включить электропитание и проверить систему на работоспособность. Завершающее действие — монтаж рассеивающего плафона.

https://youtube.com/watch?v=tAWxBFV7fzI

Как сделать блок пуска для электроинструмента

Существует достаточно много вариантов самостоятельного оборудования болгарки устройством плавного пуска. Некоторые из них представлены в авторских видео.

Блок пуска на базе микросхемы LM358

В следующем видео автор делится опытом самостоятельного изготовления платы блока плавного пуска по схеме, взятой из интернета, на базе микросхемы LM358. Корпус для платы автор изготовил из коробочки из-под шампуня, что говорит о богатой фантазии мастеров самодеятельного творчества. Автор не просто слепо скопировал схему из интернета, а доработал с заменой характеристик некоторых ее элементов: транзисторов, диодов, резисторов. Радиатор для охлаждения полупроводниковых приборов взят из магнитофона. Для того, чтобы была возможность разместить блок плавного пуска внутри корпуса болгарки, а не как в случае предложенного варианта, разработана плата меньшего размера.

Технология работ по изготовлению блока пуска

Автор следующего видео подробно описывает приемы работ, применяемые комплектующие и вспомогательные технологические материалы для изготовления устройства плавного пуска. Здесь в качестве базового элемента взята микросхема к1182. Технология не рассчитана на применение в качестве основы печатной платы, автор называет такую сборку технологией «навесного монтажа». При таком производстве работ кроме пайки применяется крепление отдельных элементов с помощью крепежных изделий, например, так крепится симистор к теплоотводу. Готовый блок пуска не универсален для всех болгарок. На двух отдельно взятых автором УШМ они выходили на режим за ощутимо разный промежуток времени.

Один из вариантов компоновки самодельного блока пуска

В качестве исходного варианта автор следующего видео выбрал известную в интернете сборку с микросхемой LM358.Так как собранный пусковой блок не поместился внутри корпуса болгарки, автор «упаковал» внутрь лишь симистор с радиатором, по причине хороших условий охлаждения от колеса вентилятора болгарки. Остальную часть блока вместе с микросхемой закрепил на корпусе УШМ.

Использование утюга в качестве дополнительной нагрузки для снижения оборотов болгарки

Этот способ не относится конкретно к теме плавного пуска болгарки. Однако, для понимания принципа действия электронного устройства диммер, который используется для регулировки мощности (или количества оборотов) болгарки вполне приемлем. В следующем видео утюг забирает определенную мощность у УШМ, тем самым снижая ее обороты.

Типовую схему блока пуска следует дорабатывать для каждого отдельного электроинструмента

Автор следующего видео рассказывает как оборудовал свою бытовую болгарку устройством плавного пуска для увеличения срока эксплуатации.

Важно: схема может отлично работать для регулировки яркости лампы, но для необходимого функционирования болгарки при пуске быть неспособной выполнять задачу. Для эффективной работы ее следует «настроить», а именно подобрать нужные величины резисторов, емкостей конденсаторов и возможно изменить характеристики полупроводниковых приборов.

Как приспособить в болгарке штатный диммер для регулировки оборотов

В следующем видео автор доработал кнопку включения (сделал ее подпружиненной) с целью использования возможностей покупного диммера для регулировки оборотов болгарки. После включения болгарки перемещением кнопки устанавливается требуемый режим оборотов. Диммер фиксирует этот режим и при повторном включении производится его установка.

Плавное включение фар и габаритных огней автомобиля. Устройство для увеличения срока эксплуатации автомобильных ламп

Недавно один из наших форумчан, Rus_lan, выложил на форум интересную штуку — устройство для плавного включения фар автомобиля. Штука эта многих сразу же заинтересовала (и меня в том числе), поэтому тему было решено более подробно раскрыть и описать в отдельной статье.

Итак, если вы автолюбитель, то вам наверняка приходится менять в своём автомобиле различные лампы накаливания: дальний и ближний свет, габаритные огни, поворотники…

Поскольку наиболее активно в автомобиле используются лампы ближнего света и габаритных огней, то и менять их приходится чаще всего.

Хорошо известно, что перегорают лампы обычно в момент включения, причём зимой гораздо чаще, чем летом. Почему так происходит?

Дело в том, что рабочая температура нити лампы накаливания составляет более двух с половиной тысяч градусов цельсия. Именно при такой температуре нить и начинает светиться. До рабочей температуры нить нагревается протекающим по ней током. Если нагрев происходит слишком быстро и неравномерно, то температуры соседних участков нити не успевают выравниваться за счёт теплопроводности, между соседними участками создаётся большой перепад температур, расширяются эти участки сильно неравномерно, в результате чего в нити возникают большие механические нагрузки и она рвётся. Похожий эффект можно наблюдать, если плеснуть холодной водой на раскалённый камень. Внешние слои камня при этом резко охлаждаются и сжимаются, в то время, как внутренние ещё остаются горячими и расширенными. В результате, как мы знаем, камень трескается.

Кроме эффекта, описанного выше, механические нагрузки возникают также из-за магнитного взаимодействия витков спирали, сила которого опять же пропорциональна силе тока.

Хорошо, ну а при чём же здесь всё-таки момент включения? Всё очень просто. В момент включения, когда нить холодная, её сопротивление значительно ниже, чем сопротивление в нагретом состоянии, соответственно и протекающий в это время ток значительно больше рабочего тока. Следовательно, в момент включения мы имеем максимальную скорость нагрева нити, а также максимальное магнитное взаимодействие витков. Зимой начальная температура, а значит и начальное сопротивление нити, ниже, чем летом, следовательно начальный ток ещё больше.

Как с этим бороться? Давайте подумаем. Избавиться от неравномерного нагрева нити мы не можем, поскольку он возникает вследствии дефектов самой нити (например, если нить неравномерна по толщине, то более тонкие участки имеют большее сопротивление и нагреваются быстрее и сильнее). Однако, мы вполне можем уменьшить скорость нагрева и магнитное взаимодействие между витками спирали. Для этого нужно всего лишь ограничить протекающий через нашу лампочку ток, чтобы он, в то время, пока спираль нагревается, не превышал рабочего значения (или хотя бы превышал его незначительно). Именно такое устройство, позволяющее при включении плавно увеличивать ток через лампочку, и предложил Rus_lan.

  1. C1 — конденсатор 47мкФ x 16В
  2. R1 — резистор 68кОм
  3. R2 — резистор 6,8кОм
  4. R3 — резистор 24кОм
  5. T1 — полевой транзистор FDB6670AL
  6. D1 — диод (любой)

Работает это устройство следующим образом: за счёт резисторов и конденсатора, установленного параллельно затвору полевика, напряжение на затворе транзистора растёт очень медленно, соответственно также медленно этот транзистор и открывается, что, в свою очередь, обеспечивает плавное увеличение напряжения на лампе и тока через неё. Делитель R1R3 задаёт максимальное напряжение на затворе. Резистор R2 дополнительно увеличивает время включения и защищает затвор транзистора, предотвращая любые возможности возникновения резких бросков тока через него.

Схема выложена в том варианте, в котором Rus_lan выложил её на форум, но лично я бы в ней кое-что изменил. Дело в том, что электролитические конденсаторы крайне плохо переносят низкие температуры (а у нас, например, зимой морозы -30 0 С и ниже совсем не редкость), поэтому я считаю, что лучше взять какой-нибудь керамический кондёр. Понятно, что найти керамику с такой ёмкостью нереально, но в таком случае можно взять конденсатор с ёмкостью поменьше, а уменьшение ёмкости скомпенсировать пропорциональным увеличением резисторов R1, R3.

Собранное устройство выглядит вот так:

А вот так оно выглядит в работе (в автомобильной фаре):

На этом всё, как говорится «ни гвоздя, ни жезла», удачи!

Тиристорная схема

Данную схемку можно рекомендовать для повторения. Она состоит из распространенных элементов, пылящихся на чердаках и в кладовках.

В цепи выпрямительного моста VD1, VD2, VD3, VD4 в качестве нагрузки и ограничителя тока стоит лампа накаливания EL1. В плечах выпрямителя установлен тиристор VS1 и сдвигающая цепочка R1 и R2, C1. Установка диодного моста обусловлена спецификой работы тиристора.

После подачи напряжения на схему, ток протекает через нить накала и попадает на выпрямительный мост, далее через резистор происходит зарядка емкости электролита. При достижении напряжения порога открывания тиристора, он открывается, и пропускает через себя ток лампочки накаливания. Получается постепенный, плавный разогрев вольфрамовой спирали. Время разогрева зависит от емкости конденсатора и резистора.

Как сделать плавное включение ближнего и дальнего света фар и для чего это нужно? »

Часто водители спрашивают, как сделать плавное включение ближнего и дальнего света фар. Такое переключение не только придает автомобилю более интересный внешний вид, меньше воздействует на зрение, но и увеличивает срок службы галогеновых лампочек. Для создания такого эффекта необходимо добиться плавного затухания нити накала. Это является довольно распространенным видом тюнинга оптики

При этом, он не вызывает никаких проблем с работниками ГИБДД, что немаловажно в свете все более увеличивающихся штрафов. Итак, рассмотрим, каким образом достигается этот эффект, и нужно ли тратить на это свое время. Что дает?

Что дает?

Как сделать плавное включение ближнего и дальнего света фар и для чего это нужно

. Основной функцией такой приблуды является защита лампочки от перегорания. Для большего понимания ситуации, рассмотрим ее с точки зрения физики. Все знают закон Ома, ну или догадываются о его существовании. Исходя из этого правила, следует, что сила тока всегда обратно пропорциональна сопротивлению. ФормулуI=U/R, в школе видели, пожалуй, все. Нить накала автомобильной лампочки в холодном состоянии имеет сопротивление в 10-12 раз выше, чем разогретая. При подаче на нее напряжения и мощности сила тока соответственно также увеличивается в такое же количество раз. У стандартной лампы в 55 Вт, этот показатель может достигать 60 Ампер.

Правда, держится такая сила тока недолго, только до разогрева спирали, после чего происходит снижение силы тока до нормальных показателей. Лампочки рассчитаны на такое повышение, и по идее ничего страшного происходить не должно. Но, все знают способность ламп накаливания перегорать именно при включении. Все дело в неравномерности износа спирали. При эксплуатации некоторые участки по разным причинам испаряются быстрее, истончившаяся спираль становится более чувствительна к повышению силы тока и перегорает.

Плавное переключение света не дает с самого начала максимальную мощность, что не позволяет силе тока увеличиться до опасных пределов. Таким образом, удается значительно увеличить срок службы галогенок (см. статью «»). Особенно это актуально для ламп «белого света», имеющих меньший ресурс.

Способы решения задачи

Для устранения проблемы достаточно снизить мощность, которая рассеивается при запуске. Для этого необходимо уменьшить силу тока в этой цепи. Существует несколько способов решения задачи:

  • Достаточно мощный полевой транзистор, имеющий конденсатор на затворе. Транзистор изначально пропускает малое количество тока. При этом, у него постепенно заряжается конденсатор, открывая затвор. При полностью заряженном конденсаторе мощность целиком проходит на лампу, что позволяет не использовать реле. Недостатком схемы можно считать необходимость отвода большого количества тепла;
  • Аналогично работает схема с NTS термистором и реле . В случае с автомобилем лучше использовать термистор на 2-5 Ом. Его подключают последовательно к лампе. При этом он рассеивает часть мощности. Постепенно нагреваясь, термистор снижает сопротивление. Мощность на лампочке растет, когда этот показатель достигнет определенного уровня реле, подключенное параллельно с лампой отключает термистор от цепи, обеспечивая лампе максимальное напряжение;
  • Широтно-импульсная модуляция . В отличие от описанных выше, при этом способе не ограничивается ток, что снижает рассеиваемую мощность. Это позволяет снизить необходимость в охлаждении. В схеме используется полевой транзистор. Через него напряжение подается на лампочку не постоянно, а с импульсами по несколько микросекунд. Благодаря этому, спираль нагревается равномерно. И происходит постепенное включение фар.

Подключение с использованием блока защиты


Схематическое подсоединение к сети блока защиты не вызовет труда при монтаже устройства. Подключается прибор двумя различными методами, что напрямую зависит от напряжения применяемых лампочек.

Если в осветительных приборах используются лампы на 220 В, блок защиты подсоединяется в цепь последовательным образом. Полярность проводки значения не имеет, главное – блок должен быть подключён в разрыв провода с фазой, то есть последовательно с выключателем.

Если применяемые лампы обладают меньшим напряжением (6 -24 В) и подсоединены к сети посредством понижающего трансформатора, блок защиты нужно подсоединять со стороны прихода 220 В.

Рекомендации по выбору

Чтобы грамотно подобрать устройство, следует изучить варианты монтажа:

  • Стандартный вариант подключения – управление светом с одной точки в помещении.
  • В спальнях можно установить два устройства – на входе в помещение и возле кровати, что позволяет менять интенсивность освещения при отходе ко сну.
  • Допустим вариант, когда регулирование света осуществляется с одного места, а управление – с двух. Это может быть выключатель на входе и два регулятора в разных зонах помещения.
  • Вариант в соотношении «три точки управления и одна точка регулирования». Здесь можно применить проходные диммеры, когда включение ламп в одной зоне помещения автоматически отключает осветительные устройства в других.


Два диммера и один выключатель


Управление из двух точек


Управление из одной точки

Разнообразие способов подключения диммера позволяет подобрать оптимальный вариант для каждого помещения с учетом особенностей его эксплуатации.

Типы ламп и схемы подключения

Перед монтажом различных видов осветительных приборов желательно ознакомиться с принципом работы и их внутренним устройством, а также с особенностями схемы включения в питающую сеть

Также важно знать, что каждая из разновидностей способна работать длительное время лишь при строгом соблюдении правил эксплуатации

Люминесцентные лампы

Люминесцентные лампы часто устанавливают в служебных помещениях

Помимо традиционных ламп накаливания для освещения служебных и частично бытовых пространств нередко применяются их люминесцентные трубчатые аналоги. Они чаще всего устанавливаются на следующих объектах:

  • в цехах и на конвейерных линиях промышленных производств;
  • в административных зданиях и в различных боксах;
  • в гаражах, торговых залах и подобных им местах общественного пользования.

Значительно реже они используются в домашних условиях – иногда ставят на кухне для организации подсветки рабочей зоны.

Особенностью люминесцентных осветителей является невозможность прямого подключения к сети 220 Вольт, так как для пробоя газового столба требуется высокое напряжение. Для их включения используется особая электронная схема, в состав которой входят такие элементы запуска как дроссель, стартер и высоковольтный конденсатор (в некоторых случаях он не обязателен).

В последние годы неэкономичные и сильно гудящие во время работы дроссельные преобразователи заменяются так называемым «электронным балластом». Порядок его подключения обычно указывается в виде схемы, изображенной на корпусе прибора.

Галогенные источники и светодиодные лампы

При монтаже подвесных потолков традиционно устанавливают галогенные лампы

Осветители первого типа традиционно устанавливаются при монтаже подвесных и натяжных потолков. Они также идеально подходят при необходимости освещения зон с повышенной влажностью, так как выпускаются в нескольких модификациях. Одно из них рассчитано на работу от 12-ти Вольт. Для их получения в районе потолочных перекрытий устанавливается преобразователь, рассчитанный на соответствующее выходное напряжение.

Для светодиодных ламп характерно наличие встроенного драйвера, позволяющего получать нужное напряжение питания (12 или 24 Вольта). Образцы светодиодных осветителей, рассчитанные на работу от 220 Вольт, включаются подобно лампам накаливания. Но в отличие от обычных осветителей включать их в виде последовательной цепочки не рекомендуется.

Важно правильно подбирать тип ламп для определения нужного порядка их подключения. Не допускается соединять в последовательную цепочку энергосберегающие осветители, при монтаже люминесцентных и галогенных светильников руководствуются схемами их включения. При пониженном сетевом напряжении энергосберегающие лампы быстро выходят из строя, а люминесцентные осветители могут совсем не загореться

При пониженном сетевом напряжении энергосберегающие лампы быстро выходят из строя, а люминесцентные осветители могут совсем не загореться.

Медленное (плавное) включение ламп накаливания

Плавный пуск или розжиг ламп накаливания, легко сделать своими руками. Для этого существует не одна схема. В некоторых случаях, после отключения подачи напряжения, делают и плавное выключение ламп.

Основные схемы:

  • Тиристорная;
  • На симисторе;
  • С использованием микросхем.

Тиристорная схема подключения, состоит из нескольких основных элементов. Диод, в количестве четырех штук. Диоды в данной схеме образуют диодный мост. Для обеспечения нагрузки, используют лампочки накаливания.

К плечам выпрямителя, подключается тиристор и цепочка сдвигающая. В этом случае, используют диодный мост, так как это обусловлено работой тиристора.

После того, произведен запуск, и на блок подано напряжение, электричество, проходит через нить накаливания лампы и подается на диодный мост. Далее, при помощи тиристора, емкость электролита заряжается.

После того, как достигнута необходимая величина напряжения, тиристор открывается и через него начинает проходить ток от лампы. Таким образом, происходит плавный запуск лампы накаливания.

Схема с использованием симистора простая, так как симисторы является силовым ключом в схеме. Для регулировки тока управляющего электрода, используют резистор. Время срабатывания, задается при помощи нескольких элементов схемы, резистора и емкости, питающиеся от диода.

Для работы нескольких мощных ламп накаливания, используют различные микросхемы. Это достигается путем добавления в схему дополнительного силового симистора. Стоит отметить, что данные схемы работают не только с обычными лампами, но и с галогенными.

Использование электронного балласта для подключении люминесцентных ламп

На сегодняшний день подобные схемы подключения светильников c лампами дневного света наиболее распространены. Они лишены тех недостатков, которые присущи работе светильников c применением электромагнитного балласта. Среди преимуществ – такие схемы не требует наличия стартера.

Современные электронные балласты дают возможность экономить электроэнергию, увеличить срок работы светильников. При этом свет при таких схемах подключения в отличие от схем с использованием дросселей, не мигающий эффект стробоскопа отсутствует. Это достигается благодаря тому, что рабочее напряжение для ламп имеет частоту, отличную от частоты в сетях – до 133 kGz.

Применение микросхем позволило значительно снизить вес пусковых устройств, уменьшить их габариты. Это дало возможность непосредственно встраивать балласт непосредственно в цоколь лампы, предложить потребителям люминесцентные лампы, которые можно прямо вкручивать в обычный патрон подобно лампочке накаливания.

Использование микросхем дало возможность обеспечить плавный нагрев электродов в лампах, а это не только повышает эффективность их работы, но и значительно удлиняет время эксплуатации.

Электронный балласт дает возможность применять люминесцентные лампы совместно c устройствами, которые предназначены для плавной регулировки освещенности – диммерам.

К достоинствам светильников, в которых применяется такая схема можно отнести нанесение изображения порядка подключения контактов на устройство, что делает такие приборы очень удобными для пользователей, которые не являются электриками-профессионалами.

Типы используемых ламп

Как разобрать выключатель света

В быту используется несколько типов ламп освещения:

  • Обычные лампы накаливания;
  • Галогенные лампы;
  • Люминесцентные (экономки);
  • Светодиодные.

Каждый тип ламп требует своего подхода к регулировке. Для ламп накаливания и галогенных регуляторы не отличаются. Основной критерий выбора состоит в учете возможной коммутируемой мощности ламп и подключаемого регулятора.

Основная часть регуляторов предназначена для управления лампами накаливания, поскольку здесь наиболее просто манипулировать регулировкой. Обычно используется симисторный метод управления с отсечкой части синусоиды переменного тока.

Недостатком ламп накаливания является тот факт, что при снижении напряжения понижается температура спирали, и спектр излучения смещается в красную область.

Изменение яркости светодиодных источников света встречает ряд затруднений, в частности такие:

  • LED элементы имеют узкий диапазон допустимых значений токов и, соответственно, малые пределы регулировки. При их превышении светодиод выходит из строя, а при значительном снижении просто перестает излучать световую энергию, поскольку имеет некоторое пороговое значение открытия;
  • LED лампы выпускаются в трех вариантах питания:
  1. Непосредственно от сети переменного тока 220В;
  2. Через понижающий трансформатор;
  3. При помощи постоянного тока.

Светодиоды для включения в сеть 220В имеют собственный драйвер, поэтому использование обычного диммера невозможно. Трансформатор низковольтных ламп нельзя подключать к регулятору по той причине, что выходное напряжение отличается от синусоидального, на работу в котором рассчитан трансформатор.

Единственно возможный вариант управления – использование широтно-импульсной модуляции. Здесь регулируется не уровень напряжения, а длительность подаваемых импульсов. Это стало возможным благодаря тому, что светодиоды не имеют задержки на включение и могут работать при подаче импульсов сколь угодно малой длительности. Чтобы не было заметным мерцание, частота следования импульсов питания делается высокой. Диммеры, работающие по такому принципу, имеют специальную маркировку и требуют для управления LED лампы, которые могут использоваться в регулируемых системах освещения.


LED диммер

Важно! Специальные модели LED ламп имеют особые драйверы для питания от сети 220В при помощи классических диммеров. Данные драйверы сами выполняют широтно-импульсную модуляцию, в зависимости от уровня питающего напряжения

Не существует регуляторов, предназначенных для регулировки яркости люминесцентных ламп. Это связано с особенностями их работы и включения:

  • Для поджига разряда требуется импульс высокого напряжения, который вырабатывается пускорегулирующей аппаратурой лампы;
  • Дуговой разряд работоспособен в узком диапазоне режима питания.

Варианты схем

В магазинах предлагается широкий выбор устройств плавного пуска для ламп от российских и зарубежных производителей. Монтаж не требует особой квалификации. Нужно сделать разрыв провода фазы, ведущего к лампе накаливания, и подключить прибор при помощи клеммников.

При отсутствии клеммников провода спаиваются.

Чаще всего на производствах используется одна из трех схем:

  • туристорная;
  • симисторная;
  • специализированная (обычно микросхема КР1182ПМ1или DIP8).

В сети 220 В

Самая простая схема плавного включения ламп туристорная.

Для самостоятельного изготовления требуются:

  • лампа накаливания;
  • 4 диода (для создания выпрямительного моста);
  • туристор;
  • конденсатор (10 мкФ);
  • 2 резистора (один из них переменной емкости).

Время включение определяет переменное сопротивление.

В момент включения ток проходит через лампочку, выпрямляется мостом, проходит через резистор и начинает скапливаться в конденсаторе. После достижения определенного порога зарядки ток подается на туристор, он немного открывается. По мере наполнения конденсатора туристор открывается все больше, лампочка постепенно загорается. Максимальная мощность света достигается при полной зарядке конденсатора.

Лампочки накаливания рассчитаны на 220 В (на практике может быть до 240 В). Диоды и туристор выбираются, базируясь на этот показатель. При самостоятельном изготовлении необходимо учесть, что можно использовать любые диоды с напряжением от 300 В и туристор, способный выдерживать мощность от 2 кВт. Емкость накопителя тоже большого значения не имеет

Важно знать, что при ее уменьшении лампочка будет зажигаться быстрее

Использование симистора (попупроводникового ключа) позволяет уменьшить количество элементов в туристорной схеме.

Используется:

  • дроссель;
  • 2 резистора;
  • конденсатор;
  • диод;
  • симистор.

По принципу действия эта схема мало отличается от предыдущей. Время включения определяет цепочка из резистора и конденсатора, которые подключены через диод. По мере наполнения емкости конденсатора постепенно открывается симистор, через который подпитана лампочка накаливания. Она загорается не мгновенно, а плавно. Такой прибор более удобен в использовании благодаря небольшим размерам.

Плавный пуск ламп при помощи приборов, созданных на основе микросхемы КР1182ПМ1(DIP8), можно использовать с источниками освещения, обладающими мощностью до 150 Ватт.

Основа этого прибора – 2 туристора и 2 системы управления. Время регулируется резистором и конденсатором. Силовую часть от управляющей отделяет симистор, подключенный через задающий ток резистор. Работу внутренних туристоров регулируют 2 наружных конденсатора, от помех, создаваемых сетью, защищает дополнительный конденсатор и резистор.

При использовании этой схемы свет не только плавно включается, но и плавно выключается. Длительность загорания и затухания регулируется подбором емкости конденсаторов.

Плавное включение обладает существенным недостатком – снижением яркости светового потока. Для достижения оптимального уровня освещения требуются лампы с максимальной мощностью.

Для одноклавишных выключателей существует схема на основе транзистора. Когда лампочка накаливания выключена, он закрыт. После включения напряжение через резистор и диод поступает на конденсатор, он начинает заряжаться. Максимальный уровень (9,1 В) ограничивает стабилитрон.

После достижении оптимального напряжения транзистор начинает открываться, нить накаливания лампочки, подключенной последовательно, постепенно нагревается. Обязателен второй резистор у конденсатора, обеспечивающий его разрядку после выключения. Основное преимущество использования транзистора – отсутствие мерцания лампочки накаливания.

При напряжении 12 В

Если светильник точечный, то используется трансформатор, преобразующий 220 вольт в 12 вольт. Для подключения к 12 В устройства плавного пуска он устанавливается перед преобразователем напряжения.

Если такой прибор необходим для автомобиля, требуются специальные схемы – импульсные или линейные (ШИМ-регуляторы).

Линейные подключаются к источникам света параллельно. После включения ток проходит через резистор, лампы тусклые. После подключения реле они загораются на всю мощность.

Резистор должен быть керамический, мощность примерно 5 Вт, сопротивление 0,1-0,5 Ом.

Импульсные схемы создаются на основе полевого транзистора, подающего ток короткими импульсами. За счет этого нити накаливания не нагреваются до уровня, при котором возможен разрыв. В перерывах между импульсами ток успевает равномерно распределиться по нити, выравнивая сопротивление.

Сборка дистанционного регулятора

При программировании микроконтроллера, необходимо запомнить калибровочную константу, которая находится по адресу 3FF и имеет вид 34хх (например, 347F). Если калибровочная константа отсутствует в ячейке 3FF, то это приведет к неработоспособности устройства.

Расположение элементов (Рис.2)

При распайке деталей плату обратите внимание, чтобы элементы находились на своих местах; диод, стабилитрон, транзистор, тиристор и электролитические конденсаторы припаяйте, строго соблюдая полярность. Не впаивайте сам микроконтроллер в плату, а установите так называемую панельку под нее

Тем самым вы избежите порчи микроконтроллера.

Необходимые инструменты и материалы

Внутри корпуса выключателя присутствуют токопринимающие элементы и прерывающая клавиша (одна или две). По типу выделяют следующие двухпозиционные коммутационные аппараты:

  • импульсные (диммеры);
  • сенсорные;
  • проходные;
  • клавишные.

В процессе установки могут понадобиться следующие материалы и инструменты:

  1. Перфоратор. С его помощью можно сделать отверстия («проштробить») в стене. Если планируется перенос коробки на другое место, то понадобится еще и фреза, размер которой совпадает с дном коробки.
  2. Подрозетники. Специальное устройство, отдаленно напоминающее стакан. Выполнено оно из полимерного пластика. Внутрь подрозетника устанавливают розетки или выключатели.
  3. Элементы для крепежа. Если работы ведутся на поверхностях из дерева, гофру крепят при помощи хомутов. Чтобы прикрепить кабель к бетону, используют дюбели, саморезы или клипсы. Если под рукой нет крепежных элементов, то можно использовать продетый сквозь алюминиевую полоску гвоздь.
  4. Изолирующие элементы. Оголенные провода должны быть заизолированы. Для этих целей используют специальную клейкую ленту – изоленту. Поверх нее на провод надевают сиз (колпачок из полимерного материала).
  5. Плоскогубцы. Инструмент помогает скручивать провода.
  6. Кусачки. С их помощью можно разрезать кабель или провод.
  7. Коробки. Внутрь приспособлений укладывают скрутки проводов. Распределительные коробки защищают целостность соединений и минимизируют риск замыканий электропроводки.
  8. Провода. Электропровод может быть алюминиевый или медный (в зависимости от того, из какого материала выполнена вся электросеть).

Процесс монтажа одно- и двухклавишных выключателей примерно одинаков. Производителями предусмотрено наличие специального механизма, позволяющего надежно прикрепить коробку внутри подрозетника.