Как рассчитать падение напряжения по длине кабеля в электрических сетях

Содержание

Калькулятор расчета сечения кабеля по мощности и току

Алгоритм подбора сечения проводки по мощности нагрузки включает в себя следующие этапы:

  1. Вычисление общей мощности (Pобщ) всех подключаемых при помощи проводника электроприборов (P1 – Pn) по приведенной ниже формуле:

Pобщ= P1+ P2+ P3+ Pn.

При этом для таких потребителей, как электродвигатели, трансформаторы, приведенная в паспорте реактивная мощность переводится в активную по следующей формуле:

P = Q / cosφ.

  1. Поиск значений коэффициентов одновременности (К) и запаса (J). В практических расчетах используют значение К, равное 0,8-0,85, J – 2,0.
  2. Вычисление суммарной активной мощности (Pа) с учетом поправочных коэффициентов K и J по следующей формуле:

Pа = Pобщ• K• J.

  1. Выбор по справочной таблице (рис. ниже) проводника с оптимальной площадью сечения жилы.

Пример №1

Необходимо отдельной проложенной в стене кабельной линией подключить к вводному трехфазному щитку группу электроприборов общей мощностью 5000 Вт.

На заметку. Мощность любого электроприбора можно найти в его техническом паспорте, руководстве по эксплуатации или на специальной табличке, прикрепленной к его корпусу.

Суммарная активная мощность данной группы приборов с учетом коэффициентов одновременности и запаса будет равна:

Pа = Pобщ• K• J = 5000 • 0,8•2= 8 000 Вт или 8,0кВт.

Для такого значения мощности оптимальным будет медный проводник с сечением жилы 2,5 мм кв.

Расчёт сечения линии по подаваемому на нее току через кабельный калькулятор имеет схожий с предыдущим порядок действий:

  1. По каждому потребителю с помощью формулы I=P/U рассчитывается потребляемая сила тока;
  2. Рассчитанные для каждого прибора значения силы тока суммируются и умножаются на коэффициенты K и J;
  3. По справочной таблице (рис. ниже) подбирается проводник, имеющий сечение, способное пропускать расчетную силу тока.

Выбор сечения проводника по мощности и силе тока подключаемых с его помощью электроприборов

Пример №2

Суммарная сила тока подключаемых к однофазной сети приборов – 15 А. С учетом коэффициентов K и J она будет равна 18 А. Для прокладки такой закрытой проводки и подключения приборов с данным суммарным значением силы тока подходит медный провод сечением 4,1 мм кв.

Варианты определения ΔU

Метод векторов

В ходе проектирования электрической сети в основе лежит нагрузка, работоспособность которой необходимо обеспечить. Если кабель будет выбран неправильно, ΔU на нем не позволит правильно работать этой нагрузке. Асинхронные двигатели не достигнут заданных оборотов, трансформаторы на вторичных обмотках не обеспечат номинальные напряжения и т.д., и т.п. Для однофазной сети нагрузка разделяется на активную и реактивную составляющие.

Трехфазная сеть представляется как три самостоятельные однофазные сети. Они называются схемами замещения. Этот метод обеспечивает достаточно точные результаты, если нагрузка симметрична. Если симметрия нарушается, то анализ причин, которые этот процесс вызвали, также можно выполнить, используя этот метод. На основании известных величин можно построить векторную диаграмму и, меняя длину векторов соответственно поставленной задаче, определять те величины, которые необходимы.

Схема 1

Например, известны параметры, которые необходимы для нормальной работы нагрузки. Параметры линии также известны. Следовательно, задача сводится к определению векторного напряжения U1. Шаги, приводящие к появлению искомого вектора, показаны далее.  

Схема 2

Длина вектора и его направление определяются исходя из закона Ома и направления вектора напряжения, определяющего ток (векторы тока и напряжения по направлению совпадают). Вектор напряжения, который получается как результат сложения активной и реактивной составляющих нагрузки (IR+IХ), – это и есть ΔU в линии, соединяющей источник напряжения U1 с нагрузкой. Из полученных векторов просто получить также и потери напряжения. Для этого векторы U1 и U2 совмещаются так, чтобы направление обоих было таким же, как у вектора U2. Разница между ними в длине – это будут потери напряжения.

Схема падения и потери напряжения
Определение
ΔU и потерь напряжения

Таблицы Кнорринга

Но заниматься построением векторов довольно-таки нудно. Тем более что за время существования потребности в проектировании электросетей для стандартных ситуаций придуманы решения более быстрые. К ним относятся таблицы Кнорринга. Стандартность ситуации для них состоит в постоянстве напряжения на входе кабеля или иного проводника (переменное напряжение с действующим значением 220 В)

Это важно как для одной фазы, так и для трех фаз. То есть в трехфазной электросети нагрузка должна быть симметричной. Также необходимо располагать величиной сечения токопроводящей жилы (в квадратных миллиметрах), длиной проводника (в метрах) и мощностью в нагрузке (в киловаттах)

Получаем произведение мощности на длину, в столбце, начинающемся с подходящего сечения жилы, находим это значение, и в крайнем левом столбце смотрим ΔU на кабеле. Только и всего. Два варианта таблиц для напряжения однофазной и трехфазной электрической сети, а также одна для напряжения 12 В, показанные далее, читатель может использовать для расчетов

Также необходимо располагать величиной сечения токопроводящей жилы (в квадратных миллиметрах), длиной проводника (в метрах) и мощностью в нагрузке (в киловаттах). Получаем произведение мощности на длину, в столбце, начинающемся с подходящего сечения жилы, находим это значение, и в крайнем левом столбце смотрим ΔU на кабеле. Только и всего. Два варианта таблиц для напряжения однофазной и трехфазной электрической сети, а также одна для напряжения 12 В, показанные далее, читатель может использовать для расчетов.

Таблица 1
Таблица 2
Таблица 3

Для всех таблиц принято ограничение – жилы должны быть из меди. Если читателю встретится такое определение, как момент нагрузки, – это как раз и будет число из таблицы Кнорринга для провода, соответствующее произведению мощности на длину.

Точные расчеты по формулам

Если по тем или иным причинам метод векторов и таблицы не устраивают, можно использовать либо формулы, показанные далее, либо калькулятор онлайн, на них основанный. Таких калькуляторов в сети немало, и найти подходящий несложно.

Расчет по формулам ΔU по длине кабеля

Как найти падение напряжения и правильно рассчитать его потерю в кабеле

Одним из основных параметров, благодаря которому считается напряженность, является удельное сопротивление проводника. Для проводки от станции или щитка к помещению используются медные или алюминиевые провода. Их удельные сопротивления равны 0,0175 Ом*мм2/м для меди и 0,0280 Ом*мм2/м для алюминия.

Рассчитать падение электронапряжения для цепи постоянного тока в 12 вольт можно следующими формулами:

  • определение номинального тока, проходящего через проводник. I = P/U, где P – мощность, а U – номинальное электронапряжение;
  • определение сопротивления R=(2*ρ*L)/s, где ρ – удельное сопротивление проводника, s – сечение провода в миллиметрах квадратных, а L – длина линии в миллиметрах;
  • определение потери напряженности ΔU=(2*I*L)/(γ*s), где γ – это величина, которая равна обратному удельному сопротивлению;
  • определение требуемой площади сечения провода: s=(2*I*L)/(γ*ΔU).

Важно! Благодаря последней формуле можно рассчитать необходимую площадь сечения провода по нагрузке и произвести проверочный расчет потерь. Таблица значений индуктивных сопротивлений. Таблица значений индуктивных сопротивлений

Таблица значений индуктивных сопротивлений

В трехфазной сети

Для обеспечения оптимальной нагрузки в трехфазной сети каждая фаза должна быть нагружена равномерно. Для решения поставленной задачи подключение электромоторов следует выполнять к линейным проводникам, а светильников – между нейтральной линией и фазами.

Потеря электронапряжения в каждом проводе трехфазной линии с учетом индуктивного сопротивления проводов подсчитывается по формуле

Формула расчета

Первый член суммы – это активная, а второй – пассивная составляющие потери напряженности. Для удобства расчетов можно пользоваться специальными таблицами или онлайн-калькуляторами. Ниже приведен пример такой таблицы, где учтены потери напряжения в трехфазной ВЛ с алюминиевыми проводами электронапряжением 0,4 кВ.

Пример таблицы

Потери напряжения определены следующей формулой:

ΔU = ΔUтабл * Ма;

Здесь ΔU—потеря напряжения, ΔUтабл — значение относительных потерь, % на 1 кВт·км, Ма — произведение передаваемой мощности Р (кВт) на длину линии, кВт·км.

Однолинейная схема линии трехфазного тока

На участке цепи

Для того, чтобы провести замер потери напряжения на участке цепи, следует:

  • Произвести замер в начале цепи.
  • Выполнить замер напряжения на самом удаленном участке.
  • Высчитать разницу и сравнить с нормативным значением. При большом падении рекомендуется провести проверку состояния проводки и заменить провода на изделия с меньшим сечением и сопротивлением.

Важно! В сетях с напряжением до 220 в потери можно определить при помощи обычного вольтметра или мультиметра. Базовым способом расчета потери мощности может служить онлайн-калькулятор, который проводит расчеты по исходным данным (длина, сечение, нагрузка, напряжение и число фаз). Базовым способом расчета потери мощности может служить онлайн-калькулятор, который проводит расчеты по исходным данным (длина, сечение, нагрузка, напряжение и число фаз)

Базовым способом расчета потери мощности может служить онлайн-калькулятор, который проводит расчеты по исходным данным (длина, сечение, нагрузка, напряжение и число фаз).

Советуем изучить — Влияние изменения частоты на работу электрических систем

Образец калькулятора для вычисления потерь

Таким образом, вычислить и посчитать потери напряжения можно с помощью простых формул, которые для удобства уже собраны в таблицы и онлайн-калькуляторы, позволяющие автоматически вычислять величину по заданным параметрам.

Справочник электрика. Потери напряжения, мощности и энергии

Основной причиной появления отклонений напряжения в электрической сети являются потери напряжения в линиях электропередачи и силовых трансформаторах

, причем, главное значение имеют потери напряжения в линиях. На рис. 1, а приведены электрическая схема, включающая в себя источник питания С и две подстанции, связанные линией W без ответвлений. Здесь U1 — напряжение в начале, U2 — в конце линии.

Векторная диаграмма электрических величин для линии W, построенная на основе ее схемы замещения (рис. 1, б), приведена на рис. 1, в. Обычно нагрузка линии имеет активно-индуктивный характер, поэтому вектор тока İ отстает по фазе от вектора напряжения Ú2 конца линии на угол φ. Вектор напряжения в начале линии Ú1, получается в результате суммирования вектора напряжения в конце линии Ú2 с активной ΔÚwa =İR и реактивной ΔÚwp = jİX составляющими падения напряжения на линии İZw, где R, jX, Z — соответственно активное, индуктивное и полное сопротивления линии.

Модуль (длину) вектора İZw называют падением напряжения на линии

. Вектор падения напряжения на линии можно разложить на две составляющие:

направленную по вектору Ú2 — продольную составляющую падения напряжения ΔÚw;

направленную перпендикулярно вектору Ú2 — поперечную составляющую падения напряжения δÚw.

Рис. 1. Потеря напряжения в линии

Из точки 0 на рис. 1, в радиусом, равным длине вектора 0, можно провести дугу окружности до пересечения в точке b с прямой Оα (по направлению вектора Ú2). Отрезок 0b равен модулю вектора Ú1 т. е. напряжению в начале линии. Потеря напряжения в линии равна длине отрезка cb, т. е. арифметической разности U1 – U2 Для упрощения потерю напряжения вычисляют приближенно и полагают ее равной не отрезку cb, а отрезку cd. Ошибка, получающаяся в результате такой замены, относительно невелика и допустима в расчетах. Тогда можно получить следующее выражение для потери напряжения в линии:

где Р, Q — соответственно, активная Р и реактивная Q мощности нагрузки в конце линии; U2 — напряжение в конце линии.

Таким образом, нужно различать падение напряжения и потерю напряжения

на линии.Падение напряжения — это модуль геометрической разности векторов напряжения по концам линии

|ΔÚw| = |Ú1 — Ú2|.

Потеря напряжения

— это арифметическая разность напряжений по концам линии, т. е. ΔUw = U1 — U2.

Потеря напряжения показывает, насколько напряжение в конце линии отличается от напряжения в ее начале. Падение напряжения обычно больше потери напряжения из-за сдвига по фазе векторов Ú1 и Ú2. Практику в ГРС интересует потеря напряжения, а не падение напряжения, потому что потеря напряжения связывает наиболее простой формулой напряжения в начале и конце линии.

Способы уменьшения потерь в электрических сетях

Пользователь сети не может повлиять на потери в ЛЭП, но может снизить падение напряжения на участке цепи, грамотно подключив ее элементы.

Медный кабель лучше соединять с медным, а алюминиевый — с алюминиевым. Количество соединений проводов, где материал жилы изменяется, лучше свести к минимуму, так как в таких местах не только рассеивается энергия, но и увеличивается тепловыделение, что при недостаточном уровне теплозоляции может быть пожароопасным. Учитывая показатели удельной проводимости и удельного сопротивления меди и алюминия, более эффективно в плане энергозатрат использовать медь.

Если это возможно, при планировании электрической цепи любые индуктивные элементы, такие как катушки (L), трансформаторы и электродвигатели, лучше подключать параллельно, так как согласно законам физики, общая индуктивность такой схемы снижается, а при последовательном подключении, наоборот, увеличивается.

Еще для сглаживания реактивной составляющей используют конденсаторные установки (или RC-фильтры в совокупности с резисторами).

В зависимости от принципа подключения конденсаторов и потребителя имеется несколько типов компенсации: личная, групповая и общая.

  1. При личной компенсации емкости присоединяют непосредственно к месту появления реактивной мощности, то есть собственный конденсатор — к асинхронному мотору, еще один — к газоразрядной лампе, еще один — к сварочному, еще один — для трансформатора и т.д. В этой точке приходящие кабели разгружаются от реактивных токов к отдельному пользователю.
  2. Групповая компенсация включает в себя присоединение одного или нескольких конденсаторов к нескольким элементам с большими индуктивными характеристиками. В данной ситуации регулярная одновременная деятельность нескольких потребителей связана с передачей суммарной реактивной энергии между нагрузками и конденсаторами. Линия, которая подводит электрическую энергию к группе нагрузок, разгрузится.
  3. Общая компенсация предусматривает вставку конденсаторов с регулятором в основном щите, или ГРЩ. Он производит оценку по факту текущего потребления реактивной мощности и быстро подсоединяет и отсоединяет нужное число конденсаторов. В результате берущаяся от сети общая мощность приводится к минимуму в согласии с моментальной величиной необходимой реактивной мощности.
  4. Все установки компенсации реактивной мощности включают в себя пару ветвей конденсаторов, пару ступеней, которые образуются специально для электрической сети в зависимости от потенциальных нагрузок. Типичные габариты ступеней: 5; 10; 20; 30; 50; 7,5; 12,5; 25 квар.

Для приобретения больших ступеней (100 и больше квар) соединяют параллельно небольшие. Нагрузки на сети уменьшаются, токи включения и их помехи снижаются. В сетях с множеством высоких гармоник сетевого напряжения конденсаторы защищают дросселями.

Автоматические компенсаторы обеспечивают сети, снабженной ими, такие преимущества:

  • уменьшают загрузку трансформаторов;
  • делают более простыми требования к сечению кабелей;
  • дают возможность загрузить электросети больше, чем можно без компенсации;
  • ликвидируют причины уменьшения напряжения сети, даже когда нагрузка подсоединена протяженными кабелями;
  • увеличивают КПД мобильных генераторов на топливе;
  • упрощают запуск электрических двигателей;
  • увеличивают косинус фи;
  • ликвидируют реактивную мощность из контуров;
  • защищают от перенапряжений;
  • совершенствуют регулировку характеристик сетей.

Нормативные ссылки:

ПУЭ 7-го издания.
Уровни и регулирование напряжения, компенсация реактивной мощности.

1.2.22. Для электрических сетей следует предусматривать технические мероприятия по обеспечению качества электрической энергии в соответствии с требованиями ГОСТ 13109.

1.2.23. Устройства регулирования напряжения должны обеспечивать поддержание напряжения на шинах напряжением 3-20 кВ электростанций и подстанций, к которым присоединены распределительные сети, в пределах не ниже 105 % номинального в период наибольших нагрузок и не выше 100% номинального в период наименьших нагрузок этих сетей. Отклонения от указанных уровней напряжения должны быть обоснованы.

1.2.24. Выбор и размещение устройств компенсации реактивной мощности в электрических сетях производятся исходя из необходимости обеспечения требуемой пропускной способности сети в нормальных и послеаварийных режимах при поддержании необходимых уровней напряжения и запасов устойчивости.

Отклонение напряжения характеризуется показателем установившегося отклонения напряжения, для которого установлены следующие нормы: 

  • нормально допустимые и предельно допустимые значения установившегося отклонения напряжения δUу на выводах приемников электрической энергии равны соответственно ± 5 и ± 10% от номинального напряжения электрической сети по ГОСТ 721 и ГОСТ 21128 (номинальное напряжение);
  • нормально допустимые и предельно допустимые значения установившегося отклонения напряжения в точках общего присоединения потребителей электрической энергии к электрическим сетям напряжением 0,38 кВ и более должны быть установлены в договорах на пользование электрической энергией между энергоснабжающей организацией и потребителем с учетом необходимости выполнения норм настоящего стандарта на выводах приемников электрической энергии.

РД 34.20.185-94
Инструкция по проектированию городских электрических сетей.
Гл. 5.2 Уровни и регулирование напряжения, компенсация реактивной мощности

5.2.4. Предварительный выбор сечений проводов и кабелей допускается производить исходя из средних значений предельных потерь напряжения в нормальном режиме: в сетях 10(6) кВ не более 6 %, в сетях 0,38 кВ (от ТП до вводов в здания) не более 4-6 %.

Большие значения относятся к линиям, питающим здания с меньшей потерей напряжения во внутридомовых сетях (малоэтажные и односекционные здания), меньшие значения — к линиям, питающим здания с большей потерей напряжения во внутридомовых сетях (многоэтажные многосекционные жилые здания, крупные общественные здания и учреждения).

СП 31-110-2003
Проектирование и монтаж электроустановок жилых и общественных зданий.
7. Схемы электрических сетей.

7.23 Отклонения напряжения от номинального на зажимах силовых электроприемников и наиболее удаленных ламп электрического освещения не должны превышать в нормальном режиме ±5 %, а предельно допустимые в послеаварийном режиме при наибольших расчетных нагрузках — ±10 %. В сетях напряжением 12-50 В (считая от источника питания, например понижающего трансформатора) отклонения напряжения разрешается принимать до 10 %.

Для ряда электроприемников (аппараты управления, электродвигатели) допускается снижение напряжения в пусковых режимах в пределах значений, регламентированных для данных электроприемников, но не более 15 %.

С учетом регламентированных отклонений от номинального значения суммарные потери напряжения от шин 0,4 кВ ТП до наиболее удаленной лампы общего освещения в жилых и общественных зданиях не должны, как правило, превышать 7,5 %. Размах изменений напряжения на зажимах электроприемников при пуске электродвигателя не должен превышать значений, установленных ГОСТ 13109.

ГОСТ Р 50571.15-97 (МЭК 364-5-52-93). Электроустановки зданий.
Часть 5. Выбор и монтаж электрооборудования. Глава 52. Электропроводки.
525. Потери напряжения в электроустановках зданий.

МЭК 60364-7-714-1996, IEC 60364-7-714 (1996). Электрические установки зданий.
Часть 7. Требования к специальным установкам или помещениям.
Раздел 714. Наружные осветительные установки.

в свободном переводе автора статьи:

714.512. Падение напряжения в нормальных рабочих условиях должно быть совместимо с условиями, возникающими от пускового тока ламп.

РД 34.20.501-95
Правила технической эксплуатации электрических станций и сетей РФ.
5. Электрическое оборудование электростанций и сетей.

ГОСТ Р МЭК 60204-1-99 (МЭК 60204-1). Безопасность машин.
Электрооборудование машин и механизмов. Общие требования.
13 Кабели и провода. 13.5 Падение напряжения на проводах

РМ 2559
Инструкция по проектированию учета электропотребления в жилых и общественных зданиях.