Осциллограф

Содержание

Типовые примеры использования технологии цифрового люминофора (DPO)

Существуют десятки практических задач, которые могут очень эффективно решаться при использовании осциллографа с технологией цифрового фосфора DPO. Чтобы наглядно продемонстрировать преимущества этой технологии, рассмотрим несколько самых распространённых примеров.

На этом скриншоте показан экран осциллографа серии Tektronix MDO4000C. Точка запуска по каналу 1 установлена на 470 мВ. На экране мы видим сигнал в диапазоне от 1 мкс до момента запуска и до 1 мкс после момента запуска. Одновременно на экране представлены результаты срабатывания тысяч запусков. То есть статистическая картина изменения сигнала очень подробная. Как мы видим по градациям цветности, небольшой процент времени сигнал имеет сниженное значение амплитуды — она плавает, периодически уменьшаясь приблизительно в два раза. На такое измерение осциллографу с DPO надо менее 1 секунды.

Пример быстрого обнаружения плавающей амплитуды сигнала с помощью технологии DPO.

А вот ещё один пример работы технологии DPO в осциллографе серии Tektronix MDO4000C. В данном случае измеряемый меандр имеет стабильную амплитуду, но плавающую частоту. Судя по уровню размытия фронта пятого от точки запуска периода меандра, частота изменяется приблизительно на 10%. С помощью маркеров осциллографа можно провести более точные измерения. Также на осциллограмме виден небольшой переходной процесс, возникающий при резком изменении амплитуды из одного состояния в другое.

Пример обнаружения с помощью технологии DPO изменяющейся частоты сигнала.

Как уже упоминалось выше, технология цифрового люминофора DPO великолепно справляется с поиском редко возникающих аномалий сигналов: глитчей, рантов, сбоев синхронизации и т.п. На этом скриншоте осциллографа серии Tektronix DPO7000C чётко видно два дефекта сигнала: короткий глитч в начале сигнала и через 150 нс после глитча второй дефект — рант сигнала (импульс, имеющий меньший уровень, чем все остальные импульсы последовательности). Судя по голубому цвету глитча и ранта, они возникают неоднократно, однако значительно реже, чем основной сигнал.

Пример обнаружения глитча и ранта сигнала с помощью технологии DPO.

Ещё одно распространённое применение технология DPO находит в проверке соответствия стандартам формы сигналов скоростных цифровых интерфейсов: PCI Express, USB, Serial ATA, Ethernet IEEE 802.3, ANSI X3.263, Sonet/SDH, Fibre Channel, InfiniBand, Serial Attached SCSI, ITU-T/ANSI T1.102, IEEE 1394b, RapidIO, OIF Standards, Open Base Station Architecture Initiative (OBSAI), Common Public Radio Interface (CPRI) и др.

На этом скриншоте осциллографа серии Tektronix DPO70000 показан пример тестирования сигнала шины PCI Express. В качестве критериев соответствия используется маска, параметры которой прописаны в соответствующем международном стандарте. Высокая достоверность проверки достигается за счёт анализа сотен тысяч осциллограмм в секунду, что гарантирует обнаружение даже самых неуловимых отклонений.

Пример проверки соответствия формы сигнала шины PCI Express с помощью технологии DPO.

И, конечно, эффект цифрового люминофора DPO можно в любой момент отключить. Например, при захвате и декодировании длительных цифровых последовательностей он просто не нужен. Для этого на передней панели DPO осциллографов есть специальная кнопка или отдельный пункт меню. На этом скриншоте показан экран осциллографа серии Tektronix MDO3000 при выключенном цифровом фосфоре. Мы видим «обычный» меандр без градаций цветности. Под сигналом располагается таблица с автоматически измеренными параметрами этого меандра: частотой, напряжением от пика до пика и количеством положительных импульсов.

Пример экрана DPO осциллографа с отключённым эффектом цифрового фосфора.

Существует множество других реальных задач, в которых технология цифрового фосфора DPO существенно упрощает работу разработчика и делает её более эффективной. Если сравнивать аналоговый осциллограф, обычный цифровой DSO и осциллограф с поддержкой DPO, то DPO является наиболее универсальным решением, которое полностью обеспечивает все возможности аналоговых и обычных цифровых моделей, плюс содержит дополнительные мощные инструменты.

Интерфейс

Программное обеспечение AKTAKOM Oscilloscope Pro имеет понятный и удобный интерфейс, который может настраиваться пользователем. Приложение позволяет пользователю вручную настроить цвета элементов графика и толщину линий осциллограмм или загрузить эти настройки из ранее сохранённых файлов цветовых схем, выбрать язык интерфейса (русский или английский), записать свой вариант звукового сопровождения событий и др.
Размер, расположение и прозрачность всех окон приложения также могут настраиваться пользователем. К услугам пользователя — всплывающие подсказки, «прилипающие» панели (прилипшие панели располагаются вплотную друг к другу и перемещаются совместно, как одно окно).
Каждый режим работы осциллографа выполнен в виде отдельного окна, которые пользователь может располагать в удобном для себя участке экрана монитора.
Главное окно осциллографа — масштабируемое и может работать в полноэкранном режиме. В этом окне можно изменить масштаб, установить масштаб по области графика, ограниченной курсорами. Для того, чтобы пользователь мог иметь общее представление о характере информации полного буфера и выбрать нужную часть для подробного отображения, служит дополнительный обзорный отключаемый график в нижней части панели, индицирующий всегда полный буфер собранных данных.

Панель масштабирования внизу главного окна программы служит для быстрого и наглядного управления графиком и отображения информации о нем. Управление разверткой в обычном режиме осуществляется из панели Управление. В панели Измерения отображаются заданные параметры управления разверткой и результаты курсорных измерений параметров сигнала по времени и значению.
Все настройки прибора можно сохранить в специальном конфигурационном файле, который при необходимости можно загрузить при следующем сеансе работы.

Спектральный анализ

Программа позволяет провести спектральный анализ выделенного участка сигнала. Для этого используются алгоритмы прямого и обратного быстрого преобразования Фурье (БПФ). Пользователь может установить число первых коэффициентов разложения, отображаемых на графике спектра. Это число не может быть больше половины базы. График БПФ отображает спектр выбранного сигнала в логарифмической шкале «частота-амплитуда». По желанию пользователя может также отображаться фазо-частотная зависимость. Для измерений используется вертикальный курсор.

В панели Результаты вкладки БПФ окна модуля анализа пользователь может видеть:
• Число точек дискретизации сигнала, по которым проводится преобразование.
• Число точек для преобразования после передискретизации (ближайшее сверху число — степень двойки).
• Осн. частота — основная частота сигнала. Определяется по максимальному модулю коэффициентов разложения.
• Коэфф. н. и. (%) — коэффициент нелинейных искажений в процентном выражении.
• Частота — частота, соответствующая точке спектра, отмеченной курсором.
• Уровень — уровень в точке спектра, отмеченной курсором, относительно максимума (принимается за 0 дБ).
• Мощ. фильтра (%) — мощность фильтра в процентном выражении. Отношение мощности пропускаемых фильтром гармоник к полной мощности сигнала.
Дополнительно перед преобразованием можно наложить на исследуемый участок оконную (весовую) функцию. При этом величина сигнала для каждой из N исследуемых выборок умножается на соответствующий весовой коэффициент. На иллюстрации ниже приведен результат БПФ сигнала синусоидальной формы с применением функции Хемминга.

При включенном режиме преобразования Фурье Вы можете использовать возможность спектральной фильтрации сигнала. Суть его в том, что перед обратным преобразованием анализируемого сигнала Вы можете оставить в нем только те частоты, которые Вам нужны, и подавить нежелательные. Спектральный фильтр реализуется с помощью графического эквалайзера в нижней части вкладки БПФ окна модуля анализа. Для каждой составляющей спектра можно установить желаемый коэффициент усиления (ослабления) в диапазоне ±50 дБ, которые используются в обратном преобразовании Фурье. Результатом обратного преобразования Фурье является отфильтрованный сигнал, воспроизводимый на графике основного окна программы. Ниже приведена иллюстрация результата обратного преобразования Фурье синусоидального сигнала с ослаблением и усилением ряда частот, выполненного через эквалайзер настройки спектрального фильтра.

По желанию пользователя на графике возможно отображение фазо-частотной зависимости.

История

Ондограф Госпиталье

Электрический колебательный процесс изначально фиксировался вручную на бумаге. Первые попытки автоматизировать запись были предприняты Жюлем Франсуа Жубером в 1880 году, который предложил пошаговый полуавтоматический метод регистрации сигнала. Развитием метода Жубера стал полностью автоматический ондограф Госпиталье. В 1885 году русский физик Роберт Колли создал осциллометр, а в 1893 году французский физик Андре Блондель изобрел магнитоэлектрический осциллоскоп с бифилярным подвесом.

Подвижные регистрирующие части первых осциллографов обладали большой инерцией и не позволяли фиксировать быстротечные процессы. Этот недостаток был устранён в 1897 годуУильямом Дадделлом, который создал светолучевой осциллограф, использовав в качестве измерительного элемента небольшое лёгкое зеркальце. Запись производилась на светочувствительную пластину. Вершиной развития этого метода стали в середине XX века многоканальные ленточные осциллографы.

Практически одновременно с Дадделлом Карл Фердинанд Браун использовал для отображения сигнала изобретённый им кинескоп. В 1899 году устройство было доработано Йонатаном Зеннеком, добавившим горизонтальную развертку, что сделало его похожим на современные осциллографы. Кинескоп Брауна в 1930-е годы заменил кинескоп Зворыкина, что сделало устройства на его основе более надёжными.

В конце XX века на смену аналоговым устройствам пришли цифровые. Благодаря развитию электроники и появлению быстрых аналого-цифровых преобразователей, к 1990-м годам они заняли доминирующую позицию среди осциллографов.

Основы использования осциллографов, анализаторов спектра и генераторов

Работа с осциллографом. Всё начинается с измерительного щупа!

Провод щупа коаксиальный. Центральная жила щупа сигнальная, оплётка земля (минус или общий провод).

На некоторых щупах, особенно на современных осциллографах, внутри встроен делитель напряжения (1:10 или 1:100), который позволяет измерять широкий диапазон напряжений

Перед проведением измерений обращайте внимание на положение тумблера на щупе, во избежании ошибок измерения

В осциллографах имеется внутренний генератор меандра, сигнал которого выведен на переднюю панель, на клемму «калибровка». Калибровочный сигнал предусмотрен специально для подстройки компенсационной емкости. Частота этого сигнала обычно равна 1кГц, при размахе в 1В. Щуп подключается к клемме «калибровка» и подстраивается для получения наиболее правильной формы сигнала.

Подключаем щуп к осциллографу.

Вход осциллографа может быть закрытым или открытым. Это позволяет подключать сигнал к усилителю Y либо напрямую, либо через разделительный конденсатор. Если вход открытый, то на усилитель Y будет подана и постоянная составляющая и переменная. Если закрытый только переменная.

Пример 1. Нам нужно посмотреть уровень пульсаций блока питания. Допустим, что напряжение блока питания 12 вольта. Величина пульсаций может быть не более 100 милливольт. На фоне 12 вольт пульсации будут совсем незаметны. В таком случае мы используем закрытый вход. Конденсатор отфильтровывает постоянное напряжение. На усилитель Y поступает только переменный сигнал. Теперь пульсации можно усилить и проанализировать!

Ручка Усиление масштабирует сигнал по оси Y. Она определяет цену деления одной клетки по вертикали в вольтах.

Ручка Длительность масштабирует сигнал по оси X. Она определяет цену деления одной клетки по горизонтали в секундах.

Пример 2. Основываясь на значениях которые указывают эти ручки и количество клеток занимаемых сигналом можно определить временные параметры сигнала в секундах и его амплитуду в вольтах. Основываясь на этих данных можно вычислить длительность импульса, паузы, периода и частоту сигнала.

Режим развёртки определяет поведение осциллографа. Предполагается три режима: автоматический (AUTO), ждущий (Normal), и однократный (Single).

Автоматический режим позволяет получать изображения входного сигнала даже когда не происходит выполнения условий запуска. Осциллограф ожидает выполнения условий запуска в течении определённого периода времени и при отсутствии требуемого пускового сигнала производит автоматический запуск регистрации.

Ждущий режим позволяет осциллографу регистрировать форму сигналов только при выполнении условий запуска. При отсутствии выполнения этих условий осциллограф ждёт их появления, на экране сохраняется предыдущая осциллограмма, если она была зарегистрирована.

В режиме однократной регистрации после нажатия кнопки RUN/STOP осциллограф будет ожидать выполнения условий запуска. При их выполнении осциллограф произведёт однократную регистрацию и остановится.

Осциллограф поддерживает ряд видов запуска развёртки : запуск по фронту, запуск по срезу, запуск произвольным фронтом.

Уровень запуска – это значение напряжения, по достижении которого осциллограф начинает прорисовывать осциллограмму.

Работа с анализатором спектра.

Существует общая методика исследования сигналов, которая основана на разложении сигналов в ряд Фурье при помощи алгоритма быстрого вычисления дискретного преобразования Фурье, Fast Fourier Transform ( FFT ).

Данная методика основывается на том, что всегда можно подобрать ряд сигналов с такими амплитудами, частотами и начальными фазами, алгебраическая сумма которых в любой момент времени равняется величине исследуемого сигнала.

Благодаря этому стало возможным анализировать спектр сигналов в реальном времени.

На его вход поступает исследуемый сигнал. Анализатор выбирает из сигнала последовательные интервалы («окна»), в которых будет вычисляться спектр, и производит FFT в каждом окне для получения амплитудного спектра.

Вычисленный спектр отображается в виде графика зависимости амплитуды от частоты.

Для достижения более высокого частотного разрешения приходится анализировать более длинные участки сигнала.

Осциллографы на 10 В

В схемах с подобным напряжением применяются резисторы закрытого типа и стабилитрон. Их параметры чувствительности по вертикали подбираются до 2 мВ. При расчёте полосы пропускания максимальное сопротивление устройства согласовывается с ёмкостью проводных конденсаторов. Диоды подбирают с напряжением 2 В, резисторы желательно выбирать полевые. Выбор диодов на такое напряжение позволит снизить частоту дискретизации до минимума и увеличить скорость передачи. Из-за быстрой развёртки данных предельная частота резко падает. Использование стабилитрона или делителя, выполненного из модулятора, поможет решить эту проблему.


Схема на 10 В

Органы управления на передней панели

Как правило, для управления осциллографом используются регуляторы и клавиши на передней панели. В дополнение к органам управления на передней панели многие современные высокопроизводительные осциллографы теперь оснащаются операционными системами, в результате чего они ведут себя как компьютеры. Вы можете подключить к осциллографу мышь и клавиатуру и использовать их для настройки органов управления с помощью выпадающих меню и кнопок на дисплее. Кроме того, некоторые осциллографы имеют сенсорные экраны, поэтому для доступа к меню вы можете использовать стилус или прикосновение пальцами.

Перед началом измерений…

Когда вы приступаете к работе с осциллографом, прежде всего проверьте, что используемый входной канал включен. Для установки осциллографа в исходное состояние по умолчанию нажмите клавишу (Настройки по умолчанию), если она есть. Затем, при ее наличии, нажмите клавишу (Автоматическое масштабирование). Это позволяет автоматически настроить вертикальный и горизонтальный масштаб, так, чтобы сигнал отображался на дисплее наилучшим образом. Эти настройки могут рассматриваться в качестве отправной точки, и в них затем можно вносить необходимые изменения. Если сигнал вдруг будет потерян, или возникнут проблемы с отображением сигнала, рекомендуется повторить эти шаги. Передние панели большинства осциллографов включают, по крайней мере, четыре основных блока: органы управления системами вертикального и горизонтального отклонения, органы управления системой запуска и органы управления входными каналами.

Органы управления системой вертикального отклонения

Органы управления системой вертикального отклонения осциллографа обычно объединяются в блок, который обозначен как «Vertical». Эти элементы позволяют настраивать параметры отображения сигнала по вертикальной оси дисплея. Так, например, среди них есть регуляторы, с помощью которых задается число вольт на деление (коэффициент отклонения) по оси Y сетки экрана. Вы можете растягивать осциллограмму по вертикали, уменьшая значение коэффициента отклонения, или, наоборот, сжимать ее, увеличивая эту величину. Кроме того, в блок «Vertical» входят органы управления положением (смещением) сигнала по вертикали. Эти регуляторы позволяют просто перемещать всю осциллограмму вверх или вниз по дисплею. На рисунке 7 показан блок органов управления системой вертикального отклонения осциллографа Keysight серии InfiniiVision 2000 Х.

Рис. 8. Блок органов управления системой вертикального отклонения осциллографа Keysight серии InfiniiVision 2000 X

Органы управления системой горизонтального отклонения

Органы управления системой горизонтального отклонения на передней панели осциллографа обычно объединяются в блок, который обозначен как «Horizontal». Эти органы управления обеспечивают настройку горизонтального масштаба осциллограммы. Один из элементов этого блока позволяет задавать масштаб по оси X — число секунд на деление (или коэффициент развертки). Уменьшая величину коэффициента развертки, вы можете уменьшить интервал времени, отображаемый на экране. Еще один регулятор этого блока предназначен для управления положением (смещением) осциллограммы по горизонтали. Он позволяет перемещать осциллограмму по экрану слева направо и наоборот точно в нужное положение. На рисунке 9 показан блок органов управления системой горизонтального отклонения осциллографа Keysight серии InfiniiVision 2000 Х.

Рис. 9. Блок органов управления системой горизонтального отклонения осциллографа Keysight серии InfiniiVision 2000 X

Электронный осциллограф (ЭО) — устройство, с помощью которого наблюдают, исследуют и измеряют амплитуды электрических сигналов и их временные параметры. Такой прибор является наиболее распространенным радиоизмерительным агрегатом, благодаря которому можно увидеть происходящие электрические процессы вне зависимости от момента появления импульса и его продолжительности. По передаваемому на экран изображению возможно с точностью определить амплитудные колебания исследуемого сигнала и их длительность на любом участке сети.

Осциллографы, работающие на основе электронно-лучевой трубки — громоздкие и маломобильные агрегаты. Однако они отличаются высокой точностью измерений. Такие приборы способны быстро обрабатывать входящие сигналы. Они имеют широкий частотный диапазон и отличную чувствительность.

Средний срок службы осциллографа

Согласно советскому ГОСТ, рассматриваемые контрольно-измерительные исследовательские приборы, должны иметь гарантийный срок службы не менее 18 месяцев со дня ввода в эксплуатацию. Однако этим же документом предусмотрена регулярность проверок приборов, которые должны проводиться каждые 5 лет. То есть минимальный рабочий ресурс осциллографа хотя бы при двух проверках, должен составлять 10 лет.

На корпусе этого прибора можно прочитать надпись: «сделано в СССР»

Учитывая количество предлагаемых в продажу устройств б/у 80-х годов выпуска, можно предположить, что сроки службы этих изделий значительно превышают ранее обозначенные временные границы.

Проверка малых значений

Зная величину допустимых помех на участке проверяемой схемы, можно проверить их соответствие. В качестве примера используется блок питания компьютера:

  1. При напряжении 12 В, допустимые помехи не должны превышать 0,3В. При проверке обычным способом, такое значение будет совершенно незаметным.
  2. Необходимо переключить тумблер входа из положения прямых измерений в емкостные, то есть, пропуская изучаемый сигнал через конденсатор.
  3. Основное постоянное напряжение 12 В, останутся на конденсаторе, а переменное значение помех 0,3 В отобразится на дисплее, где его можно увеличить с помощью коэффициента усиления Y и изучить.

Как подключить импортный осциллограф

Нужно внимательно ознакомиться с руководством пользователя, подготовить рабочее место для прибора, качественно его заземлить.

Важно! Заземление гарантирует, что при работе на корпусе не будет опасного статического заряда, коснувшись которого рукой можно получить удар. Далее нужно определить точки для снятия сигнала, нулевую магистраль, посредством щупа произвести их коммутацию с аттенюатором (при неизвестных уровнях сигнала выставить максимальную амплитуду). Включить прибор, дать ему прогреться, выставить необходимые режимы и произвести замеры

Снять показания, замеры повторить несколько раз

Включить прибор, дать ему прогреться, выставить необходимые режимы и произвести замеры. Снять показания, замеры повторить несколько раз

Далее нужно определить точки для снятия сигнала, нулевую магистраль, посредством щупа произвести их коммутацию с аттенюатором (при неизвестных уровнях сигнала выставить максимальную амплитуду). Включить прибор, дать ему прогреться, выставить необходимые режимы и произвести замеры. Снять показания, замеры повторить несколько раз.

На что обратить внимание в Oscilloscope, ориентиры для выбора

Рассмотрим основы характеристик O-Scope, которые послужат также ориентирами, как выбрать осциллограф, надежную его модель.

Способы, чтобы проверить осциллограф:

  • встроенным генератором (Калибровка), все цифровые модели имеют его. Включают режим и смотрят, есть ли синусоида. Если магазин специализированный, там должен быть внешний генератор для проверки;
  • старые осциллографы начинают подвирать со временем, как проверить их есть простой способ: взять эталонный источник, например, ту же батарейку 1.5 В;
  • экран должен быть достаточной яркости, луч без артефактов;
  • дотронуться до щупа: фаза покажет синусоиду (правда с большими помехами), земля — ровную линию;
  • посредством ПК, специальным ПО.

Полоса пропускания

Это минимальная и максимальная частоты, амплитудность, то есть диапазон, который может измерить прибор. Достаточно учесть верхнюю черту; нижнюю рисуют все устройства.

Частота дискретизации (Sampling rate)

У цифровых моделей. Данный параметр связан с предыдущим. Чем выше, тем лучше (например, у Siglent SDS — 1×109). Это число считываний за единицу времени, определяет максимальные частоты без потерь на экране. У приборов с несколькими каналами может уменьшаться при задействовании их всех (при покупке надо учесть).

По теореме Котельникова част. дискр. должна превышать в 2 раза верхнюю рамку пропускания, но на практике потребуется превышение в 4–5 раза. На этом и основывается выбор

Пример для изделия с полосой до 200–800 МГц (важно учесть параметр при использовании 2 и больше каналов)

Число каналов

Многие модели способны обрабатывать больше сигналов вместе, одновременно раздельно показывая их на мониторе. Обычно от 2 до 4. Иногда включение других каналов сказывается на производительности. Выбор осциллографа рекомендовано делать среди изделий с двумя каналами, что позволит сравнивать исследуемые величины, исчислять фазные сдвиги. Три и больше входа, это хорошо, но для обычных задач иногда чрезмерно, цена прибора возрастет многократно.

Эквивалентная частота дискретизации

Когда недостаточно реальной част. дискр., итоговая картинка реконструируется по нескольким последовательным измерениям. Пример: анализируется сигнал 200 МГц на модели с част. дискр. 1 млрд. выборок/сек. (1 GSa/s) — получают всего 5 измерений. По теор. Котельникова этого хватает, но можно детализировать (алгоритмическим методом) и активировать опцию: будет не 1 GSa/s, а уже 2 GSa/s.

Глубина памяти

Всегда есть в цифровых моделях (DSO=Digital Storage Oscilloscope). Чем ниже скорость развертки, тем точнее показатели и тем больше значений приходится сохранять прибору в памяти. Чем глубже память — тем лучше. Но иногда наблюдается негативный момент: при медленных измерениях прибор подтормаживает, выбирая изделие, надо поинтересоваться этим нюансом.

Обновление экрана

Чем чаще обновляется монитор, тем короче «мертвое время», требуемое для обработки захватываемой информации, более оперативно происходит обновление осциллограмм. Больше шансов, что аппарат покажет малозаметный артефакт. Впрочем, это имеет значение только для фанатов-электронщиков.

Максимальное входное напряжение (питание)

Любой прибор имеет предел по мощности питания, при превышении которого без дополнительных мер он просто сгорит, выйдет из строя. Нужно учитывать параметры обслуживаемых цепей. Пример: макс. напр. в режиме щупа 1:1 — 40 В, в режиме 1:10 — 400 В, то есть лезть в цепь с 400 В и больше без предохранительных мер уже небезопасно.

Синхронизация с наблюдаемым сигналом

Получить заданное неподвижное изображение на дисплее позволяет особая двигательная траектория луча на экране в процессе развёртывания. Он должен перемещаться по одной и той же кривой линии. Обеспечением этого процесса занимается схема синхронизации, дающая старт развёртке на одинаковом фронте и уровне исследуемых сигналов.

В качестве примера допустимо рассмотрение ситуации исследования синусоидального сигнала при такой настройке схемы, что запуск развёртывания в нарастании синусоидов будет иметь значение ноль. В момент запускания узкий луч обрисует несколько схожих или одну единую волну, на что будет влиять настроенная заранее скорость. Отсутствие повторного запуска заставит дождаться очередного прохождения волны с нулевым значением при нарастающем фронте.

Аналоговый осциллограф

Что такое осциллограф

Осциллограф – прибор, используемый для наблюдения формы сигнала напряжения во времени. Выглядеть он может примерно вот так:

Здесь мы видим экран, на котором отображается сигнал. Форма сигнала на осциллографе называется осциллограммой.

Ниже на картинке можно увидеть щуп для осциллографа.

Если у мультиметра щуп состоит из простого провода, то щуп осциллографа состоит кабеля. А в кабеле два провода-щупа, которые в конце разветвляются. Этот кабель способен измерять высокочастотные напряжения без помех. Пипочка посередине – это сигнальный щуп, а экран – это щуп масса или земля. Электронщики по разному его называют, но я привык так. На конце щупа зажим белый крокодильчик – это земля, а сигнальный – с иголочкой.

Подключаем кабель в разъем. На моем осциллографе имеется два разъема. В моем случае осциллограф двухканальный. На некоторых крутых осциллографах можно увидеть даже по 4 и более каналов.

Бывает ситуация, когда надо определить сигнальный провод, для этого берем один из проводов, касаемся пальцем и смотрим на дисплей осциллографа. Если сигнал не исказился – это земля. Если исказился – это сигнальный. На фото ниже пример определения сигнального провода.

Как пользоваться осциллографом

Осциллографом мы можем измерять только форму напряжения, силу тока измерять напрямую не можем! Если только косвенно, используя шунт. Для того, чтобы измерить величину напряжения постоянного тока, нам понадобится источник постоянного напряжения. Это может быть простая батарейка или блок питания. В моем случае – это Блок питания. Для наглядности выставляем 1 Вольт.

Единица измерения осциллографа – сторона квадратика на дисплее. Для того, чтобы измерять в масштабе 1:1, мы ставим щелкунчик по У на 1.

Цепляемся землей на “минус” блока питания, сигнальным на “плюс” блока питания. Видим такую картину:

Линия сдвинулась вверх на 1 квадратик. Это значит, что во времени сигнал с блока питания все время 1 Вольт.

А как же измерить сигналы, которые скажем 100 Вольт? Для этого и придуман щелкунчик по У :-). Оставляем на блоке питания 1 Вольт и щелкаем на риску “2”.

Что это значит? Это значит, что полученный сигнал на дисплее надо умножить на 2.

На осциллограмме мы видим значение по У=0,5. Умножаем это значение на то, которое на риске осциллографа и получаем искомое значение. То есть 2х0,5=1 Вольт.

А вот такой будет сигнал, если мы поставим щелкунчик на 5.

Если же прикладываем щупы наоборот, то ничего страшного не происходит. Например, выставляем 2 Вольта на блоке питания. Земля осциллографа к “плюсу” блока, а сигнальный к “минусу” блока – то есть все подцеплено наоборот. Линия у нас просто ушла вниз, но от этого ничего не меняется. 2 Вольта как есть , так и осталось.

А вот для практики, как я уже говорил, требуется знать форму сигнала. В электронике используются на 90 % периодические сигналы. Это значит, что они повторяются через какой-то промежуток времени. Очень часто нужно узнать период и частоту переменного сигнала. Для этого и используется наш электронно-лучевой приборчик.

Для того, чтобы не спалить осциллограф, я взял трансформатор. Благодаря понижающему трансформатору, на выходе у меня амплитуда напряжения (это значит от нуля и до самого верхнего или нижнего пика) в пределах 1,5 Вольта, а заходит на первичную обмотку напряжение 220 Вольт.

Цепляемся ко вторичной обмотке трансформатора щупами осциллографа и выводим показания на дисплей.

В идеале нам должна доставляться в розетки чистая синусоида. Россия, что же еще сказать))). Ну и ладно. Думаю в ваших дом в розетку идет синусоида почище моей :-).

Период и частота сигнала

В периодическом сигнале нам важны такие параметры, как частота сигнала и его форма. Поэтому, чтобы определить частоту, мы должны знать период. T – период, V – частота. Они взаимосвязаны между собой формулами:

Определим период сигнала. Период – это время, через которое сигнал опять повторяется.

Считаем стороны квадратиков по Х. Я насчитал 4 стороны квадратика.

Далее смотрим на крутилку, по Х, которая у нас отвечает за временную развертку. Риска стоит на 5. Сверху написана цена этого деления – msec/div . То есть получается 5 миллисекунд на одну сторону квадратика.

Милли – это тысяча. Следовательно 0,005 сек. Это значение умножаем на наши сосчитанные стороны квадратов. 0,005х4=0,02. То есть один период у нас длится 0,02 сек или 20 миллисекунд. Зная период, находим по формуле выше частоту сигнала. V= 1/0,02=50 Гц. Частота напряжения в нашей розетке 50 Гц, что и требовалось доказать.

В настоящее время я себе купил уже цифровой осциллограф

Подробнее про цифровой осциллограф вы можете прочитать по этой ссылке.

Как измерить частоту

При помощи осциллографа можно провести измерения временных интервалов, в частности, периода сигнала. Вы понимаете, что частота любого сигнала всегда пропорциональна периоду. Измерение периода можно провести в любой области осциллограммы. Но удобнее и точнее провести замер в тех точках, в которых график пересекается с горизонтальной осью. Следовательно, перед началом измерений обязательно установите развертку четко на горизонтальную линию, расположенную по центру. Так как пользоваться портативным цифровым осциллографом намного проще, нежели аналоговым, последние давно канули в лету и редко используются для измерений.

Далее, используя рукоятку, обозначенную горизонтальной двунаправленной стрелкой, необходимо сместить начало периода с крайней левой линией на экране. После вычисления периода сигнала можно, используя простую формулу, рассчитать частоту. Для этого нужно единицу разделить на вычисленный ранее период. Точность измерений бывает различной. Чтобы увеличить ее, необходимо как можно сильнее растягивать график по горизонтали.

Обратите внимание на одну закономерность: при увеличении периода уменьшается частота (пропорция ведь обратная). И наоборот – при уменьшении периода происходит увеличение частоты. Низкое значение погрешности – это когда она составляет менее 1 процента

Но такую высокую точность не каждый осциллограф способен обеспечить. Только на цифровых, в которых линейная развертка, можно получить такие точные измерения

Низкое значение погрешности – это когда она составляет менее 1 процента. Но такую высокую точность не каждый осциллограф способен обеспечить. Только на цифровых, в которых линейная развертка, можно получить такие точные измерения.

Скрипт CSS Андрея Шульгина

Вот мы и добрались до самой сути диагностики автомобильных двигателей. Для диагностов любой марки это самый информативный скрипт. Он показывает работу форсунок, искры и компрессии за одну проверку. Для проведения этого теста достаточно снять сигнал с датчика положения коленвала и синхронизацию с искры первого цилиндра. Сложность может заключаться в подключении к ДПКВ некоторых марок, но это сглаживается информацией, которую дает скрипт.

Порядок записи сигнала применительно к осциллографу USB Autoscope:

  1. Подключиться параллельно сигнальным щупом осциллографа к выходу ДПКВ
  2. Если установлена система зажигания DIS поставить щуп синхронизации на первый цилиндр, индивидуальная катушка — воспользоваться индуктивным датчиком.
  3. Запустить двигатель и дать работать на холостом ходу.
  4. Активировать скрипт CSS
  5. Через 5-10 секунд плавно поднять обороты до 3000 и опустить.
  6. Спустя 5-10 секунд резко поднять обороты и выключить искру оставив педаль газа полностью нажатой.
  7. Остановить скрипт.

Анализ теста Андрея Шульгина

  1. Нажать кнопку «Выполнить скрипт»
  2. Задать входную информацию для анализа: количество и порядок работы цилиндров, угол опережения зажигания с погрешностью ±10°.
  3. Анализируем полученную картинку.

График скрипта CSS

  • Холостой ход — снижена эффективность 3 цилиндра.8.
  • Низкая компрессия в 3 цилиндре.

Таким образом, за 5 минут можно найти причину «троящего» двигателя, не откручивая свечи и не замеряя компрессию.