Как сделать осциллограф из компьютера своими руками?

Содержание

Описание работы осциллографа из компьютера

Для осуществления обмена данными, между USB осциллографом и персональным компьютером, применен интерфейс Universal Serial Bus (USB). Данный интерфейс функционирует на базе микросхемы FT232BM (DD2) фирмы Future Technology Devices. Она представляет собой преобразователь интерфейса . Микросхема FT232BM может функционировать как в режиме прямого управления битами BitBang (при использовании драйвера D2XX), так и в режиме виртуального COM-порта (при применении драйвера VCP).

В роли АЦП применена интегральная микросхема AD7495 (DD3) фирмы Analog Devices. Это не что иное, как аналого-цифровой преобразователь с 12 разрядами, с внутренним источником опорного напряжения и последовательным интерфейсом.

В микросхеме AD7495 также есть синтезатор частот, который определяет, с какой скоростью будет происходить обмен информацией между FT232BM и AD7495. Для создания необходимого протокола обмена данными, программа USB осциллографа наполняет выходной буфер USB отдельными значениями битов для сигналов SCLK и CS так, как указано на следующем рисунке:

Измерение одного цикла определяется серией из девятьсот шестидесяти последовательных преобразований. Микросхема FT232BM с частотой, определяемой встроенным синтезатором частот, отправляет электрические сигналы SCLK и CS, параллельно с передачей данных преобразования по линии SDATA. Период 1-го полного преобразования АЦП FT232BM, устанавливающий частоту выборки, соответствует продолжительности периода отправки 34 байтов данных, выдаваемых микросхемой DD2 (16 бит данных + импульс линии CS). Поскольку быстрота передачи данных FT232BM обусловливается частотой внутреннего синтезатора частот, то для модификации значений развертки нужно всего лишь менять значения синтезатора частот микросхемы FT232BM.

Данные, принятые персональным компьютером, после определенной переработки (изменение масштаба, корректировка нуля) выводятся на экран монитора в графическом виде.

Исследуемый сигнал поступает на разъем XS2. Операционный усилитель OP747 предназначен для согласования входных сигналов с остальной схемой USB осциллографа.

На модулях DA1.2 и DA1.3 построена схема сдвига двухполярного входного сигнала в зону положительного напряжения. Поскольку внутренний источник опорного напряжения микросхемы DD3 имеет напряжение 2,5 вольт, то без использования делителей охват входных напряжений равен -1,25..+1,25 В.

Чтобы была возможность исследовать сигналы, имеющие отрицательную полярность, при фактически однополярном питании от разъема USB ( а), использован преобразователь напряжения DD1, который для питания ОУ OP747 вырабатывает напряжение отрицательной полярности. Для защиты от помех аналоговой части осциллографа применены компоненты R5, L1, L2, C3, C7-C11.

Для вывода информации на экран монитора компьютера предназначена программа uScpoe. При помощи данной программы появляется возможность визуально оценивать величину исследуемого сигнала, а так же его форму в виде осциллограммы.

Для управления разверткой осциллографа предназначены кнопки ms/div. В программе можно сохранять осциллограмму и данные в файл при помощи соответствующих пунктов меню. Для виртуального включения и выключения осциллографа используются кнопки Power ON/OF. При отсоединении схемы осциллографа от компьютера, программа uScpoe автоматически переводится в режим OFF.

В режиме записи электрического сигнала (recorder), программа создает текстовый файл, имя которого можно задать по следующему пути: File->Choice data file. изначально формируется файл data.txt. Далее файлы можно импортировать в другие приложения (Excel, MathCAD) для дальнейшей обработки.

(3,0 Mb, скачано: 5 285)

Как можно получить осциллограф

Оборудование можно заполучить несколькими способами и все зависит исключительно от размера денежных средств, которые можно потратить на приобретение оборудования или деталей.

  • Купить готовый прибор в специализированном магазине или заказать его по сети;
  • Купить конструктор, например, широкой популярностью сейчас пользуются наборы радиодеталей, корпусов, которые продаются на китайских сайтах;
  • Самостоятельно собрать полноценный портативный прибор;
  • Смонтировать только приставку и щуп, а подключение организовать к персональному компьютеру.

Эти варианты приведены в порядке снижения затрат на оборудование. Покупка готового осциллографа будет стоить дороже всего, так как это уже доставленный и работающий блок со всеми необходимыми функциями и настройками, а в случае некорректной работы можно обратиться в центр продажи.

Сборка прибора самому по имеющимся схемам и приобретенных в разных точках радиодеталях не всегда может оказаться дешевле, чем приобретение конструктора, поэтому необходимо предварительно оценивать стоимость затеи, ее оправданность.

Наиболее дешевым способом заполучить осциллограф станет спаять только приставку к нему. Для экрана использовать монитор компьютера, а программы для снятия и трансформации получаемых сигналов можно скачать с разных источников.

Как сделать модель на 15 В?

Собирается осциллограф своими руками при помощи линейных резисторов. Предельное сопротивление они способны выдерживать на уровне 5 Мм. За счет этого на стабилитрон не оказывается большого давления. Дополнительно следует позаботиться о выборе конденсаторов для устройства. С этой целью необходимо сделать замеры порогового напряжения. Специалисты для этого используют тестер.

Если применять для осциллографа настроечные резисторы, то можно столкнуться с повышенной вертикальной чувствительностью. Таким образом, полученные данные вследствие тестирования могут быть некорректными. Учитывая все вышесказанное, необходимо применять только линейные аналоги. Дополнительно следует позаботиться об установке порта, который подсоединяется в микросхеме через щуп. Делитель в данном случае целесообразнее устанавливать через шину. Чтобы амплитуда колебаний не была слишком большой, многие советуют использовать диоды вакуумного типа.

Сборка осциллографа из планшета

Для стабилизации сигнала и расширения диапазона входного напряжения можно использовать схему осциллографа для планшета. Она долго и успешно используется для сборки устройств для компьютера.

Для этого применяются стабилитроны КС 119 А с резисторами на 10 и 100 кОм. Первый резистор и стабилитроны подключают параллельно. Второй и более мощный резистор подключается на вход электросхемы. Это расширяет максимальный диапазон напряжений. В конечном счёте пропадают дополнительные помехи и повышается напряжение до 12 вольт.

Нужное программное обеспечение для сборки осциллографа на основе планшета и андроида

Чтобы работать с подобной схемой потребуется программа, которая способна нарисовать графики на основе входящего звукового сигнала. Множество таких вариантов легко найти в «Маркете». С помощью них можно выбрать дополнительную калибровку и добиться максимальной точности для профессионального осциллографа из планшета или другого функционального устройства.

Широкодиапазонная частота с помощью отдельного гаджета

Широкий диапазон частот с помощью отдельного гаджета достигается его приставкой с аналогово-цифровым преобразователем, который обеспечивает передачу сигнала в цифровом варианте. За счёт этого достигается более высокая точность измерений. На практике — это портативный дисплей, который аккумулирует информацию с отдельных устройств.

Что нужно использовать?

Одним из наиболее оптимальных вариантов является программа Osci, которая имеет интерфейс, схожий со стандартным осциллографом: на экране есть стандартная сетка, при помощи которой вы можете самостоятельно измерить длительность, или же амплитуду.

Из недостатков данной утилиты можно отметить то, что она работает несколько нестабильно. В процессе своей работы программа может иногда зависать, а для того, чтобы потом ее сбросить, нужно будет использовать специализированный Task Manager. Однако все это компенсируется тем, что утилита имеет привычный интерфейс, является достаточно удобной в использовании, а также отличается достаточно большим количеством функций, которые позволяют сделать полноценный осциллограф из компьютера.

Аналоговый осциллограф

Что такое осциллограф

Осциллограф – прибор, используемый для наблюдения формы сигнала напряжения во времени. Выглядеть он может примерно вот так:

Здесь мы видим экран, на котором отображается сигнал. Форма сигнала на осциллографе называется осциллограммой.

Ниже на картинке можно увидеть щуп для осциллографа.

Если у мультиметра щуп состоит из простого провода, то щуп осциллографа состоит кабеля. А в кабеле два провода-щупа, которые в конце разветвляются. Этот кабель способен измерять высокочастотные напряжения без помех. Пипочка посередине – это сигнальный щуп, а экран – это щуп масса или земля. Электронщики по разному его называют, но я привык так. На конце щупа зажим белый крокодильчик – это земля, а сигнальный – с иголочкой.

Подключаем кабель в разъем. На моем осциллографе имеется два разъема. В моем случае осциллограф двухканальный. На некоторых крутых осциллографах можно увидеть даже по 4 и более каналов.

Бывает ситуация, когда надо определить сигнальный провод, для этого берем один из проводов, касаемся пальцем и смотрим на дисплей осциллографа. Если сигнал не исказился – это земля. Если исказился – это сигнальный. На фото ниже пример определения сигнального провода.

Как пользоваться осциллографом

Осциллографом мы можем измерять только форму напряжения, силу тока измерять напрямую не можем! Если только косвенно, используя шунт. Для того, чтобы измерить величину напряжения постоянного тока, нам понадобится источник постоянного напряжения. Это может быть простая батарейка или блок питания. В моем случае – это Блок питания. Для наглядности выставляем 1 Вольт.

Единица измерения осциллографа – сторона квадратика на дисплее. Для того, чтобы измерять в масштабе 1:1, мы ставим щелкунчик по У на 1.

Цепляемся землей на “минус” блока питания, сигнальным на “плюс” блока питания. Видим такую картину:

Линия сдвинулась вверх на 1 квадратик. Это значит, что во времени сигнал с блока питания все время 1 Вольт.

А как же измерить сигналы, которые скажем 100 Вольт? Для этого и придуман щелкунчик по У :-). Оставляем на блоке питания 1 Вольт и щелкаем на риску “2”.

Что это значит? Это значит, что полученный сигнал на дисплее надо умножить на 2.

На осциллограмме мы видим значение по У=0,5. Умножаем это значение на то, которое на риске осциллографа и получаем искомое значение. То есть 2х0,5=1 Вольт.

А вот такой будет сигнал, если мы поставим щелкунчик на 5.

Если же прикладываем щупы наоборот, то ничего страшного не происходит. Например, выставляем 2 Вольта на блоке питания. Земля осциллографа к “плюсу” блока, а сигнальный к “минусу” блока – то есть все подцеплено наоборот. Линия у нас просто ушла вниз, но от этого ничего не меняется. 2 Вольта как есть , так и осталось.

А вот для практики, как я уже говорил, требуется знать форму сигнала. В электронике используются на 90 % периодические сигналы. Это значит, что они повторяются через какой-то промежуток времени. Очень часто нужно узнать период и частоту переменного сигнала. Для этого и используется наш электронно-лучевой приборчик.

Для того, чтобы не спалить осциллограф, я взял трансформатор. Благодаря понижающему трансформатору, на выходе у меня амплитуда напряжения (это значит от нуля и до самого верхнего или нижнего пика) в пределах 1,5 Вольта, а заходит на первичную обмотку напряжение 220 Вольт.

Цепляемся ко вторичной обмотке трансформатора щупами осциллографа и выводим показания на дисплей.

В идеале нам должна доставляться в розетки чистая синусоида. Россия, что же еще сказать))). Ну и ладно. Думаю в ваших дом в розетку идет синусоида почище моей :-).

Период и частота сигнала

В периодическом сигнале нам важны такие параметры, как частота сигнала и его форма. Поэтому, чтобы определить частоту, мы должны знать период. T – период, V – частота. Они взаимосвязаны между собой формулами:

Определим период сигнала. Период – это время, через которое сигнал опять повторяется.

Считаем стороны квадратиков по Х. Я насчитал 4 стороны квадратика.

Далее смотрим на крутилку, по Х, которая у нас отвечает за временную развертку. Риска стоит на 5. Сверху написана цена этого деления – msec/div . То есть получается 5 миллисекунд на одну сторону квадратика.

Милли – это тысяча. Следовательно 0,005 сек. Это значение умножаем на наши сосчитанные стороны квадратов. 0,005х4=0,02. То есть один период у нас длится 0,02 сек или 20 миллисекунд. Зная период, находим по формуле выше частоту сигнала. V= 1/0,02=50 Гц. Частота напряжения в нашей розетке 50 Гц, что и требовалось доказать.

В настоящее время я себе купил уже цифровой осциллограф

Подробнее про цифровой осциллограф вы можете прочитать по этой ссылке.

Электрическая схема

Если вам необходим приставка к компьютеру, то сделать осциллограф будет гораздо сложнее. Сегодня в интернете можно отыскать довольно большое количество разных схем этих устройств, и для изготовления, например, двухканального осциллографа вам будет необходимо только их продублировать. Второй канал зачастую актуален в случае, когда надо сравнивать два сигнала или же осциллограф используется для подключения внешней синхронизации.

Как правило, схемы очень простые, но так, вы самостоятельно обеспечите очень большой диапазон доступных измерений, используя минимум радиодеталей. Причем аттенюатор, который изготавливается по классической схеме, потребовал бы от вас наличие узкоспециализированных высокомегаомных резисторов, а его сопротивление на входе все время менялось при переключении диапазона. Поэтому вы бы испытывали некоторые ограничения при использовании обычных осциллографических проводов, рассчитанных на импеданс входа не больше 1 мОм.

Как выбрать резисторы делителя напряжения

Из-за того, что зачастую радиолюбители испытывают сложности с тем, чтобы подобрать прецизионные резисторы, часто бывает так, что приходится выбирать устройства широкого профиля, которые надо максимально точно подогнать, иначе сделать своими руками осциллограф из компьютера не получится.

Подстроечные резисторы делителя напряжения

В этом случае каждое плечо делителя имеет два резистора, один является постоянным, второй – подстроечный. Минус этого варианта, это его громоздкость, но точность ограничивается лишь тем, какие доступные характеристики имеет измерительный аппарат.

Как выбрать обычные резисторы

Еще один вариант сделать осциллограф из компьютера – это выбрать пары резисторов. Точность в этом случае обеспечивается благодаря тому, что используются пары из двух комплектов с довольно приличным разбросом

Тут важно изначально выполнить тщательные замеры всех устройств, а после подобрать пары, суммарное сопротивление которых будет самым подходящим для вашей схемы

Сегодня подгонка резисторов с помощью удаления части пленки часто используется даже в современной промышленности, то есть так, нередко делается осциллограф из компьютера.

Но нужно сказать, что если вы хотите подгонять высокоомные резисторы, то резистивная пленка не должна быть разрезана насквозь. Так как в этих устройствах она находится на цилиндрической поверхности в виде спирали, потому делать подпил надо предельно аккуратно, чтобы не допустить разрыва цепи. Затем:

После, когда резистор полностью подогнан, место пропила покрывают слоем специального защитного лака.

Сегодня этот способ наиболее быстрый и простой, но при этом дает хорошие результаты, что и сделало его оптимальным для домашних условий.

Что нужно учесть

Существует ряд правил, которые необходимо выполнять в любом случае, если решили проводить эти работы:

  • Используемый компьютер для осциллографа обязательно нужно заземлить.
  • Нельзя подключать заземление к розетке. Оно подсоединяется через специальный корпус линейного входного разъема с корпусом системного блока. В данном случае, независимо, попадаете ли вы в фазу или ноль, у вас не будет замыкания.

Говоря иначе, в розетку может подсоединяться только провод, который соединяется с резистором, и находится в схеме адаптера с номинальным значением один мегом. Если же вы попробуете включить в сеть провод, который контактирует с корпусом, то почти во всех случаях это обязательно приведет к самым плачевным последствиям.

В наше время использование различных измерительных устройств, построенных на базе взаимодействия с персональным компьютером, достаточно много. Значительным преимуществом их использования является возможность сохранения полученных значений достаточно большого объема в памяти устройства, с последующим их анализом.

Цифровой USB осциллограф из компьютера, описание которого мы приводим в данной статье, является одним из вариантов подобных измерительных инструментов радиолюбителя. Его можно применить в качестве осциллографа и устройства записывающего электрические сигналы в оперативную память и на жесткий диск компьютера.

Схема не сложная и содержит минимум компонентов, в результате чего удалось добиться хорошей компактности устройства.

Как подобрать или подогнать резисторы делителя напряжения?

Так как радиолюбители часто испытывают трудности при поиске прецизионных резисторов, я расскажу о том, как можно с высокой точностью подогнать обычные резисторы широкого применения.

Высокоточные резисторы всего в несколько раз дороже обычных, но на нашем радиорынке их продают по 100 штук, что делает их покупку не очень целесообразной.

Использование подстроечных резисторов.

Как видите, каждое плечо делителя состоит из двух резисторов – постоянного и подстроечного.

Недостаток – громоздкость.
Точность ограничена только доступной точностью измерительного прибора.

Подбор резисторов.

Другой способ – подбор пар резисторов. Точность обеспечивается за счёт подбора пар резисторов из двух комплектов резисторов с большим разбросом. Сначала все резисторы промеряются, а затем подбираются пары, сумма сопротивлений которых наиболее соответствует схеме.

Именно этим способом, в промышленных масштабах, подгонялись резисторы делителя для легендарного тестера «ТЛ-4».

Недостаток метода – трудоёмкость и потребность в большом количестве резисторов.

Чем длиннее список резисторов, тем выше точность подбора.

Подгонка резисторов при помощи наждачной бумаги.

Подгонкой резисторов, путём удаления части резистивной плёнки, не брезгует даже промышленность.

Однако при подгонке высокоомных резисторов не допускается прорезать резистивную плёнку насквозь. У высокоомных плёночных резисторов МЛТ, плёнка нанесена на цилиндрическую поверхность в виде спирали

Подпиливать такие резисторы нужно крайне осторожно, чтобы не разорвать цепь

Точную подгонку резисторов в любительских условиях можно осуществить при помощи самой мелкой наждачной бумаги – «нулёвки».

Сначала с резистора МЛТ, у которого заведомо меньшее сопротивление, при помощи скальпеля аккуратно удаляется защитный слой краски.

Затем резистор подпаивается к «концам», которые подключаются к мультиметру. Осторожными движениями шкурки-«нулёвки» сопротивление резистора доводится до нормы. Когда резистор подогнан, место пропила покрывается слоем защитного лака или клея.

Что такое шкурка-«нулёвка» написано .

На мой взгляд, это самый быстрый и простой способ, который, тем не менее, даёт очень хорошие результаты.

Как рассчитать делитель напряжения (аттенюатор)?

Максимальная неограниченная амплитуда входного напряжения аудиокарты, при максимальном уровне записи, около 250мВ. Делитель же напряжения, или как его ещё называют, аттенюатор позволяет расширить диапазон измеряемых напряжений осциллографа.

Аттенюатор можно построить по разным схемам, в зависимости от коэффициента деления и необходимого входного сопротивления.

Вот один из вариантов делителя, позволяющих сделать входное сопротивление кратным десяти. Благодаря добавочному резистору Rдоб. можно подогнать сопротивление нижнего плеча делителя до какой-нибудь круглой величины, например, 100 кОм. Недостаток этой схемы в том, что чувствительность осциллографа будет слишком сильно зависеть от входного сопротивления аудиокарты.

Так, если входной импеданс равен 10 кОм, то коэффициент деления делителя увеличится в десять раз. Уменьшать же резистор верхнего плеча делителя не желательно, так как он определяет входное сопротивление прибора, да и является основным звеном защиты прибора от высокого напряжения.

Так что, я предлагаю Вам самостоятельно рассчитать делитель, исходя из входного импеданса Вашей аудиокарты.

На картинке нет ошибки, делитель начинает делить входное напряжение уже при выборе масштаба 1:1. Расчеты же, конечно нужно делать, опираясь на реальное соотношение плеч делителя.

На мой взгляд, это самая простая и вместе с тем самая универсальная схема делителя.

По представленным формулам можно рассчитать аттенюатор для адаптера, если Вы согласитесь с предложенной схемой.

Пример расчёта делителя.

Исходные значения.

R1 – 1007 кОм (результат замера резистора на 1 мОм).

Rвх. – 50 кОм (я выбрал более высокоомный вход из двух имеющихся на передней панели системного блока).

Расчёт делителя в положении переключателя 1:20.

Сначала рассчитаем по формуле (1) коэффициент деления делителя, определяемый резисторами R1 и Rвх.

(1007 + 50)/ 50 = 21,14 (раз)

Значит, общий коэффициент деления в положении переключателя 1:20 должен быть:

21,14*20 = 422,8 (раз)

Рассчитываем номинал резистора для делителя.

1007*50 /(50*422,8 –50 –1007) ≈ 2,507 (кОм)

Расчёт делителя в положении переключателя 1:100.

Определяем общий коэффициент деления в положении переключателя 1:100.

21,14*100 = 2114 (раз)

Рассчитываем величину резистора для делителя.

1007*50 / (50*2114 –50 –1007) ≈ 0,481 (кОм)

Для облегчения расчётов, загляните по этой ссылке: Как подружить Блокнот с Калькулятором Windows, чтобы облегчить расчёты?

Если вы собираетесь использовать только осциллограф «Авангард» и только в диапазонах 1:1 и 1:20, то точность подбора резистора может быть низка, так как «Авангард» можно откалибровать независимо в каждом из двух имеющихся диапазонов. Во всех остальных случаях придётся подобрать резисторы с максимальной точностью. Как это сделать написано в следующем параграфе.

Если Вы сомневаетесь в точности своего тестера, то можно подогнать любой резистор с максимальной точностью методом сравнения показаний омметра.

Для этого, вместо постоянного резистора R2 временно устанавливается подстроечный резистор R*. Сопротивление подстроечного резистора подбирается так, чтобы получить минимальную ошибку в соответствующем диапазоне деления.

Затем сопротивление подстроечного резистора измеряется, а постоянный резистор уже подгоняется под измеренное омметром сопротивление. Так как оба резистора измеряются одним и тем же прибором, то погрешность омметра не влияет на точность замера.

А это парочка формул для расчёта классического делителя. Классический делитель может пригодиться, когда требуется высокое входное сопротивление прибора (мОм/В), а применять дополнительную делительную головку не хочется.

Плюсы и минусы вышеприведенной схемы

К плюсам такого решения однозначно можно отнести простоту и дешевизну сборки. Старая гарнитура или один новый разъем практически ничего не стоят, а времени потребуется всего несколько минут.

Но у этой схемы есть ряд существенных недостатков, а именно:

  • Малый диапазон измеряемых частот (в зависимости от качества звукового тракта гаджета колеблется в пределах от 30 Гц до 15 кГц).
  • Отсутствие защиты планшета или смартфона (при случайном подключении щупов к участкам схемы с повышенным напряжением можно в лучшем случае сжечь микросхему, отвечающую за обработку аудиосигнала на вашем гаджете, а в худшем – полностью вывести из строя ваш смартфон или планшет).
  • На очень дешевых устройствах присутствует значительная погрешность в измерении сигнала, достигающая 10-15 процентов. Для точной настройки оборудования такая цифра недопустима.