Измерение электрического сопротивления, емкости, индуктивности с помощью обычного пk

Содержание

Сопротивление резисторов

Сопротивлением обладают все тела, способные проводить электрический ток. Но в электрической цепи есть специальный элемент, отвечающий за создание сопротивления свободному течению тока. Он называется резистором. Такое название является производным от латинского «resisto», что означает — сопротивляюсь.

В измерении величины сопротивления нет ничего сложного. С этим справится любой мультиметр. Но в случае с аналоговым устройством возникают проблемы из-за того, что для измерения сопротивления резистора в цепи должно присутствовать напряжение. А механические тестеры, не имея батареи, работают без подачи в цепь электричества. Поэтому приходится прибегать к помощи резистивного делителя, подавая в цепь электрический ток от внешнего источника.

Недостатком большинства цифровых мультиметров является их ограниченные возможности при фиксации сопротивления резисторов. Максимальный показатель, который может измерить средний тестер, равен 2000 кОм. А это явно недостаточно для измерения рабочих параметров резисторов, которые могут выдавать сопротивление в 10 раз превышающие возможности мультиметра

Поэтому нужно обращать внимание на соответствие шкалы значению проверяемого резистора

Для этого нужно определить, каким является номинал электротехнического изделия, создающего сопротивление в цепи. Ранее этот показатель наносился на корпус резисторов в виде конкретных цифр. Это было достаточно удобно. Элементы в те времена выпускались габаритными и надпись легко можно было прочитать, даже глядя невооруженным глазом.

Сейчас размеры деталей стали микроскопическими и разместить, а тем более увидеть написанные цифры, стало невозможно. Поэтому номинал резисторов обозначается с помощью цветной маркировки — в виде четырех или пяти полосок. Смысл маркировки можно найти в специальных таблицах. Но запоминать значения полосок на корпусе элемента сопротивления совсем не обязательно. Гораздо проще воспользоваться онлайн-калькулятором.

Для определения значения имеющегося резистора, нужно выбрать из предложенных вариантов элемент с 4 или 5 кольцами и поставить соответствующую метку. Затем, кликая на каждую полоску, выбирается цвет из предложенной гаммы. Для некоторых полосок предлагается сделать выбор из 8 цветов, для других из 10, а для третьих из 12. После того, как все цвета будут проставлены, внизу слева появится номинал сопротивления.

Здесь же показывается и возможная погрешность резистора. В приведенном примере точность составляет 0.25%. Это означает, что отклонение в показаниях сопротивления может быть достаточно сильным. Для некоторых электронных устройств это недопустимо и необходимо точно знать, какое сопротивление выдает резистор. Поэтому и прибегают к помощи мультиметра.

Для осуществления замеров на шкале мультиметра нужно установить предел, примерно подходящий найденному номиналу. Черный провод тестера вставляется в гнездо «COM» или «–», а красный в «VΩmA». Буква «Ω» означает, что через это гнездо замеряется сопротивление.

Частные случаи: как мерить сопротивление мультиметром для заземления и резисторов

Удобно выставлять примерный диапазон, если на обследуемой детали есть маркировка с номинальным значением параметра. Например, на резисторе указано сопротивление R82, то есть 82 Ом.

При установке щупов на оба конца детали полученное значение должно быть максимально близким к номинальному.

Если встал вопрос о том, как проверить сопротивление резистора мультиметром при стертой маркировке, следует действовать по общей схеме – с постепенным увеличением или уменьшением диапазона в зависимости от показаний прибора.

Для резисторов с переменным сопротивлением сначала замеряется показатель между крайними контактами в крайнем правом положении его регулятора (число должно примерно соответствовать номинальному), потом в крайнем левом (число должно быть близко к нулю или указанному минимальному сопротивлению детали, если оно отлично от нуля).

Потом аналогично проверяется значение в не вывернутом до конца положении регулятора между крайним правым и средним, крайним левым и средним контактами.

Далее для проверки работоспособности складываются два последних полученных значения – сумма должна быть примерно равна первому полученному показателю.

Важно: точность замеров можно повысить тщательно зачисткой контактов детали. Руками касаться щупов нельзя – поскольку тело человека имеет собственное сопротивление (примерно 1 кОм), оно влияет на результат измерений.

Как измерить сопротивление заземления мультиметром

Если планируется померить сопротивление мультиметром заземления, следует помнить – результат будет только приблизительным. Для официальных замеров используется специализированная тестирующая аппаратура. Такая политика обусловлена тем, что для правильной оценки качества заземления используется контроль в четырех точках на расстоянии 30 плюс/минус 10 метров друг от друга. Так замерить сопротивление мультиметром, конечно, не получится. Кроме того, учитывается большая погрешность замеров.

Для замеров необходимо:

  • подобрать качественный, точный, откалиброванный мультиметр;
  • выяснить расположение заземляющего проводника и базовых элементов. При новой застройке это не представляет сложности, при старой требуется найти место вывода на поверхность заземлителя (обычно это проволока диаметром 6…8 мм, тянущаяся к дому);
  • вогнать в землю металлический штырь (подойдет арматура) на расстоянии 5…10 м от основного заземлителя.

Далее проверка сопротивления мультиметром ведется по схеме.

Полученный результат не должен превышать 0,05 Ом. В противном случае заземление считается недостаточным для обеспечения безопасности.

Типовые конструкции платиновых термосопротивлений

Наиболее распространение получило исполнение ЧЭ в ПТС, называемое «свободной от напряжения спиралью», у зарубежных изготовителей оно проходит под термином «Strain free». Упрощенный вариант такой конструкции представлен ниже.


Конструктивное исполнение «Strain free»

Обозначения:

  • А – Выводы термоэлектрического элемента.
  • В – Защитный корпус.
  • С – Спираль из платиновой проволоки.
  • D – Мелкодисперсный наполнитель.
  • E – Глазурь, герметизирующая ЧЭ.

Как видно из рисунка, четыре спирали из платиновой проволоки, размещают в специальных каналах, которые потом заполняются мелкодисперсным наполнителем. В роли последнего выступает очищенный от примесей оксид алюминия (Al2O3). Наполнитель обеспечивает изоляцию между витками проволоки, а также играет роль амортизатора при вибрациях или когда происходит ее расширение, вследствие нагрева. Для герметизации отверстий в защитном корпусе применяется специальная глазурь.

На практике встречается много вариаций типового исполнения, различия могут быть в дизайне, герметизирующем материале и размерах основных компонентов.

Исполнение Hollow Annulus.

Данный вид конструкции относительно новый, она разрабатывалась для использования в атомной индустрии, а также на объектах особой важности. В других сферах датчики данного типа практически не применяются, основная причина этого высокая стоимость изделий

Отличительные особенности высокая надежность и стабильные характеристики. Приведем пример такой конструкции.


Пример исполнения «Hollow Annulus»

Обозначения:

  • А – Выводы с ЧЭ.
  • В – Изоляция выводов ЧЭ.
  • С – Изолирующий мелкодисперсный наполнитель.
  • D – Защитный корпус датчика.
  • E – Проволока из платины.
  • F – Металлическая трубка.

ЧЭ данной конструкции представляет собой металлическую трубку (полый цилиндр), покрытый слоем изоляции, сверху которой наматывается платиновая проволока. В качестве материала цилиндра используется сплав с температурным коэффициентом близким к платине. Изоляционное покрытие (Al2O3) наносится горячим напылением. Собранный ЧЭ помещается с защитный корпус, после чего его герметизируют.

Для данной конструкции характерна низкая инерционность, она может быть в диапазоне от 350,0 миллисекунд до 11,0 секунд, в зависимости от того используется погружаемый или монтированный ЧЭ.

Пленочное исполнение (Thin film).

Основное отличие от предыдущих видов заключается в том, что платина тонким слоем (толщиной в несколько микрон) напыляется на керамическое или пластиковое основание. На напыление наносится стеклянное, эпоксидное или пластиковое защитное покрытие.


Миниатюрный пленочный датчик

Это наиболее распространенный тип конструкции, основные достоинства которой заключаются в невысокой стоимости и небольших габаритах. Помимо этого пленочные датчики обладают низкой инерционностью и относительно высоким внутренним сопротивлением. Последнее практически полностью нивелирует воздействие сопротивления выводов на показания прибора (таблицы термосопротивлений можно найти в сети).

Что касается стабильности, то она уступает проволочным датчикам, но следует учитывать, что пленочная технология усовершенствуется год от года, и прогресс довольно ощутим.

Стеклянная изоляция спирали.

В некоторых дорогих ТС платиновую проволоку покрывают стеклянной изоляцией. Такое исполнение обеспечивает полную герметизацию ЧЭ и увеличивает влагостойкость, но сужает диапазон измеряемой температуры.

Топ лучших на рынке

Омметр — это прибор, который измеряет сопротивление участка цепи, или конкретного ее элемента. Он может быть, как отдельным аппаратом, так и частью многофункционального измеряющего оборудования. В представленном ТОПе, будут рассмотрены все варианты на основе востребованности моделей на рынке, согласно информации, специализированных СМИ и персональных отзывов покупателей.

Мегаомметры

Модель Тип Пределы измерений (МОм) Вольтаж измерений (В) Погрешность Тип повышающего ток источника Дополнительные возможности Цена (руб)
МЕГЕОН 13125 Цифровой 0–49900 2500 10% Преобразователь энергии батарей АА Измерение переменного напряжения 30–600 В 8980
МЕГЕОН 13500 Аналоговый 0.1–2500 1 % Рукоятка Нет 10569
МЕГЕОН 131100 Цифровой 0.1–2000 4 % Преобразователь энергии батарей АА Определение напряжения постоянного и переменного тока 6890
UNI-T UT511 Цифровой 0.1–2000 1000 2–3 % Преобразователь энергии батарей АА Аналоговая гистограмма, подсветка экрана, таймер, сохранение результатов, ведение журнала (18 показаний), дополнительные вычисления 9269
Радио-Сервис Е6-32 Цифровой 1–10000,

10000–99900

100000–300000

50–2500 3 %,

5 %,

15%

Преобразователь энергии батарей АА, блок питания Журнал (10000 показаний), сохранение 100 настроек, связь с ПК через Bluetooth 28710

Среди упомянутых в таблице мегаомметров, лучшим по характеристикам, возможностям и защите корпуса выглядит Радио-сервис E6-32, несмотря на свою высокую цену.

Специализированные омметры

Модель Тип Пределы измерений Погрешность Дополнительные возможности Цена (руб)
UNI-T UT522 Цифровой 0.004 МОм 5 % Фиксация (Hold) результатов теста, измерение напряжения 13190
RGK RT-25 -//- 20000 МОм 3 % Нет 9900
CEM DT-5500 -//- 2000 МОм 3.5 % Фиксация (Hold) результатов теста, измерение напряжения переменного до 750 В и постоянного до 1000 В 12100
SEW 1800IN Аналоговый 200 МОм 5 % Измерят напряжение переменного тока до 600 В 12150
HR390 Цифровой 120 Ом–1 МОм <1 % Доступно измерение емкости конденсаторов, подсветка дисплея 3600

Некоторые модели списка способны взять на себя функции мегаомметров (измерителей сопротивления диэлектриков).  Лучшим, именно по возможностям, для измерения сопротивления участков цепи, здесь будет GEM DT-5500.

Мультиметры

Характеристика  РЕСАНТА

DT 838

RGK

DM-10

ELITECH

ММ 300

Tesla

DT832

Mastech

MY-68

Измерение переменного напряжения 200–750 В 200–600 В 20–750 В 200–750 В 200–750 В
Погрешность вольтажа переменного тока 1.2 % 1.2 % 1.2 % 1.2 % 1.2 %
Определение силы переменного тока Нет Нет До 20 A Нет До 10 А
Измерение постоянного напряжения 200 мВ–1000 В 20 мВ–600 В 200 мВ–1000 В 200 мВ–1000 В 20 мВ–600 В
Погрешность вольтажа постоянного тока 0.5 % 0.5 % 0.5 % 0.5 % 0.5 %
Определение силы постоянного тока 2000 μА–10 А 2000 μА–10 А 20 μА–20 A 2000 μА–10 А 2000 μА–10 А
Погрешность силы постоянного тока 1 % 2 % 2 % 1 % 2 %
Чувствительность к сопротивлению 200 Ом–2000 кОм 200 Ом–20 МОм 200 Ом–200 МОм 200 Ом–2000 кОм 200 Ом–32.6 МОм
Погрешность значения сопротивлений 1 % 1 % 1 % 1 % 1 %
Прозвонка Есть Есть Есть Есть Есть
Звуковой сигнал Есть Есть Нет Есть Есть
Проверка транзисторов Есть Есть Есть Есть Есть
Проба температуры ºC ºF и ºC ºC Нет Нет
Измерение частоты Нет Нет До 10 Гц До 10Гц До 10 Гц
Определение емкости конденсаторов Нет Нет До 20 μF Нет 32.6 μF
Hold Нет Есть Есть Нет Есть
Подсветка Нет Есть Нет Нет Нет
Дополнительно Нет Нет Раздельная кнопка включения Нет Авто выбор глубины измерений
Цена (руб) 640 1190 890 429 2888

Здесь устройства универсальны, и определяют не только сопротивление, но и большую часть характеристик схем, необходимых знать электронщику. Все представленные мультиметры – цифровые. В перечне, самой интересной и полной функционально моделью можно назвать ELITECH ММ 300. Недорогой аппарат, со множеством дополнительных возможностей и неплохой точностью.

Существующие варианты омметров и их внутреннее устройство

Омметры делятся на множество категорий. По реализации — на щитовые, лабораторные или переносные. В соответствии с чувствительностью к величинам Ом. Или по технологии определения — на магнитоэлектрические, логометрические, аналоговые и цифровые.

Не редкость, что современные омметры интегрированы в более универсальные измерители, позволяющих кроме сопротивления, определять исходящее от внешней цепи напряжение и силу тока.

Магнитоэлектрические

Омметры настоящего типа подключаются в цепь к потребителю и работают на основе определения приходящей силы тока (ампер), при известных характеристиках изначального, поступающего на линию напряжения. Для точности, учитывается и уменьшение значения за счет самого измерительного прибора. Математический базис функциональности описывается формулой:

Где I — получаемая сила тока на входе омметра, U — изначальное напряжение, Rизмерителя — сопротивление прибора, Rцепи — искомое потребление участка прохождения тока в Ом. Неудобство аппарата подобного типа в его нелинейности показаний, необходимости выставлять «0» на индикаторе перед началом работы, и обратной шкале, где минимальные потери энергии отображаются крайне-правым положением стрелки прибора.

Логометрические мегаомметры

Работает прибор на принципе противостояния двух магнитных полей, создаваемых на внутренних катушках. Входящее напряжение отклоняет стрелку измерителя в одну сторону, внутреннее в другую. Разница сил и дает угол индикатора, указывающий визуально на соответствующее значение.

Чем выше сопротивление подключенного потребителя, тем меньше будет получаемое напряжение одной катушкой, относительно другой — берущей энергию с линии до момента ее исхода. Соответственно и стрелка будет сильнее отклонятся по шкале.

Аналоговые электронные

Омметры указанного класса, преобразуют разницу между входящим током цепи и выходящим из нее, в напряжение через операционный усилитель. Объект измерений подключается к цепи обратной связи, или на вход ОУ.

Цифровые

Работа цифрового омметра строиться на аналогичности измеряемого значения, характеристикам интегрированного в прибор моста, управляемого микроконтроллером. То есть, логическое устройство будет физически изменять параметры встроенного потребителя до тех пор, пока результаты его выхода не приблизятся к получаемым по внешней линии. Так как градация возможной смены известна и заложена в память микро-ЭВМ — микроконтроллеру останется только отобразить результат согласно записанных значений.

Литература и документация

Литература

  • Справочник по электроизмерительным приборам; Под ред. К. К. Илюнина — Л.:Энергоатомиздат, 1983
  • Справочник по радиоизмерительным приборам: В 3-х т.; Под ред. В. С. Насонова — М.:Сов. радио, 1979
  • Справочник по электроизмерительным приборам; Под ред. К. К. Илюнина — Л., 1973

Нормативно-техническая документация

  • ГОСТ 22261—94 «Средства измерений электрических и магнитных величин. Общие технические условия»
  • ГОСТ 23706—93 (МЭК 51-6—84) «Приборы аналоговые показывающие электроизмерительные прямого действия и вспомогательные части к ним. Часть 6. Особые требования к омметрам (приборам для измерения полного сопротивления) и приборам для измерения активной проводимости»
  • ГОСТ 8.366—79 «Государственная система обеспечения единства измерений. Омметры цифровые. Методы и средства поверки»
  • ГОСТ 8.409—81 «Государственная система обеспечения единства измерений. Омметры. Методы и средства поверки»

Как работает омметр?

А Вы знаете,  как работает омметр?

Омметр

Омметры – это электрические устройства, используемые для измерения сопротивления данного проводника. Этот измерительный прибор работает на основе закона Ома, который применяется к электрическим схемам.

Согласно этому закону ток (I), который течет между двумя точками в проводнике, прямо пропорционален напряжению (V) или разности потенциалов между двумя точками. Он также обратно пропорционален сопротивлению (R) между ними. Следовательно, математически V = IR.

Существуют так же такие устройства как мегаомметры, которые используются, чтобы измерить сопротивление изоляции в электрических цепях, которые не находятся под напряжением.

Чтобы измерить сопротивление данного проводника, красный и черный выводы омметра подключены соответственно к положительным и отрицательным выводам проводника. Сопротивление провода или цепи указано иглой, скользящей по шкале устройства. Эти метры измеряют сопротивление в Ом, обозначаемое греческой прописной буквой омега или Ω.

Какова правильная работа омметра?

Охметр никогда не должен подключаться к источнику напряжения, так как он может повредить оборудование. Это связано с тем, что устройство уже имеет источник, который подает напряжение для измерения сопротивления данного проводника.

Сопротивление измеряется в зависимости от падения напряжения на клеммах проводника. В аналоговом измерителе дальняя левая часть шкалы указывает на бесконечное сопротивление, а крайняя правая сторона обозначает нулевое сопротивление.

Цифровой мультиметр – это инструмент, который может использоваться как омметр.

Простое аналоговое устройство состоит из батареи, которая является источником напряжения, подключенной к движущемуся счетчику.

Переменный резистор также соединен последовательно с этой комбинацией так, чтобы игла точно показывала отклонение в полном масштабе и не превышала знак нулевого сопротивления.

Этот резистор также ограничивает ток и корректирует снижение напряжения, вызванное старением батареи. Перед использованием аналоговые омметры должны быть откалиброваны, а цифровые – обычно самокалиброваны.

Как откалибровать омметр для правильной работы?

Для калибровки аналогового счетчика оба провода должны удерживаться вместе. Регулятор регулировки помогает установить переменный резистор.

Его необходимо вручную поворачивать так, чтобы игла указывала на нулевое сопротивление; другими словами, теперь игла находится в крайнем правом углу.

Этот шаг известен как «обнуление» счетчика, и его следует повторять каждый раз до того, как будет измерено сопротивление любого провода или цепи. В случае цифрового устройства удерживание проводов вместе укажет 0 Ом, что достаточно для его калибровки.

В дополнение к измерению сопротивления, омметры могут использоваться для проверки целостности электрического соединения.

Например, если игла опирается на бесконечное сопротивление в крайнем левом углу шкалы, это указывает на отсутствие непрерывности цепи. Это означает, что в цепи есть открытая точка.

С другой стороны, если измеренное значение сопротивления равно нулю или намного меньше ожидаемого значения, это означает короткое замыкание в цепи.

Виды

Стрелочный (электромеханический или электромагнитный) омметр содержит электроизмерительную головку, или гальванометр. Тот, в свою очередь, является показывающим индикатором замеряемого сопротивления. К нему полагается минимальный набор навесных элементов (резисторы и переключатель). Один из резисторов – переменный, он выставляет условный ноль перед началом измерений. В состав цифрового прибора входят датчики тока, аналого-цифровой преобразователь (АЦП), микропроцессор, оперативная память, аналог ПЗУ на основе флеш-памяти (или перепрограммируемая микросхема) и проводной/беспроводной интерфейс для подключения к локальной компьютерной сети. Электронные схемы надёжно заизолированы и заземлены от цепи-замерителя в самом приборе. Калибровка нуля измерений «цифровику» не нужна.

Современные мультиметры позволяют измерить сопротивление до 200 МОм, что, по идее, делает их полноценными мегаомметрами. Из-за отсутствия источника повышенного напряжения (используется 9-вольтовая батарейка) их погрешность достигает нескольких процентов. Это не позволяет применять низковольтные мегаомметры в серьёзных электроцепях и сложной электронике, где люди имеют дело с тысячами вольт. Цифровые мегаомметры с малой погрешностью – чаще всего лабораторные стационарные приборы, достигающие размеров осциллографа старого поколения с электронно-лучевой трубкой, или 10-15 ноутбуков с диагональю экрана в 15 дюймов, поставленных друг на друга в закрытом состоянии.

Возможные погрешности

Как и любой тестер, мультиметр не даёт абсолютно точных результатов. Наибольшее значение они принимают в приближении к пределам диапазона измерения прибора. Самые распространённые сложности связаны с определением низких сопротивлений. Возможные причины искажений:

Грязные контакты

Чтобы правильно произвести замер, важно убедиться, что тестируемый компонент не покрыт окислами и другими загрязнениями. Высокое сопротивление контактов не позволит измерить значение без искажений

Наведённые помехи. Если тестирование производится под влиянием внешних магнитных полей, возможны отклонения результатов от действительности. Для минимизации эффекта в таких условиях применяют щупы с короткими идеально экранированными проводами. Кроме того, явление температурной ЭДС из-за образования термопар в месте контактов разнородных металлов также может искажать результаты.

ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЙ

Все сопротивления условно делятся на:

Ø малые (до 1 кОм);

Ø средние (от 1 до 100 кОм);

Ø большие (более 100 кОм).

Для измерения сопротивлений применяют следующие методы:

Ø косвенный метод (с помощью амперметра и вольтметра), с последующим вычислением сопротивления;

Ø метод непосредственной оценки (с помощью омметра)

Ø метод сравнения (с помощью моста постоянного тока).

Косвенный метод

Для измерения этим методом применяются следующие схемы измерений:

Но при этом в схеме на рисунке 1, а неточно измеряется напряжение на сопротивлении RX (оно меньше показания вольтметра на величину падения напряжения на амперметре IRA ), а в схеме на рисунке 1,б неточно измеряется ток (он меньше показания амперметра на значение тока, протекающего через вольтметр U / RV ).

В схеме на рисунке 1, а чем больше RX , тем ближе по значению напряжения вольтметра и резистора, т.е. меньше погрешность измерения напряжения. Поэтому данную схему применяют для измерения больших сопротивлений (например, сопротивления изоляции).

В схеме на рисунке 1, б чем меньше RX , тем ближе по значению токи амперметра и резистора, т.е. меньше погрешность измерения тока. Поэтому эту схему используют для определения малых сопротивлений.

Для измерения средних сопротивлений можно использовать любую из этих схем.