Свойства магнитного поля
Великому французскому ученому Андре Амперу удалось выяснить два основополагающих свойства магнитного поля:
- Основное отличие магнитного поля от электрического и его основное свойство состоит в том, что оно носит относительный характер. Если вы возьмете заряженное тело, оставите его неподвижным в какой-либо системе отсчета и поместите рядом магнитную стрелку, то она будет, как обычно, указывать на север. То есть она не обнаружит никакого поля, кроме земного. Если же вы начнете перемещать это заряженное тело относительно стрелки, то она начнет поворачиваться – это говорит о том, что при движении заряженного тела возникает еще и магнитное поле, кроме электрического. Таким образом, магнитное поле появляется тогда и только тогда, когда есть движущийся заряд.
- Магнитное поле действует на другой электрический ток. Так, обнаружить его можно, проследив движение заряженных частиц, – в магнитном поле они будут отклоняться, проводники с током будут двигаться, рамка с током поворачиваться, намагниченные вещества смещаться. Здесь следует вспомнить магнитную стрелку компаса, обычно окрашенную в синий цвет, – ведь это просто кусочек намагниченного железа. Он всегда ориентируется на север, потому что Земля обладает магнитным полем. Вся наша планета является огромным магнитом: на Северном полюсе находится южный магнитный пояс, а на Южном географическом полюсе находится северный магнитный полюс.
Кроме этого, к свойствам магнитного поля относят следующие характеристики:
- Сила магнитного поля описывается магнитной индукцией – это векторная величина, определяющая, с какой силой магнитное поле влияет на движущиеся заряды.
- Магнитное поле может быть постоянного и переменного типа. Первое порождается не изменяющимся во времени электрическим полем, индукция такого поля также неизменна. Второе чаще всего генерируется при помощи индукторов, питающихся переменным током.
- Магнитное поле не может быть воспринято органами чувств человека и фиксируется только специальными датчиками.
Физический смысл магнитной индукции
Прежде, чем перейти к рассмотрению формулы магнитной индукции, нужно выяснить, чем объясняется возникновение самого явления в системе. Соленоид не является плоским элементом и включает в себя спираль из проводника (металла). При отсутствии воздействующих на него магнитных явлений находящиеся в кристаллической решетке материала спирали электрозаряды ведут себя статично. Когда в соленоиде движется постоянный магнитный элемент, формирующий поле, под его влиянием движутся и заряженные частицы, тогда в индуктивном элементе появляется электрический ток, сила которого определяется характеристиками магнитного и спирального элемента и тем, как быстро происходит движение.
Важно! Имеющие одинаковую ориентацию поля суммируются, образуя общее поле. Когда передвижение заряженных частиц в соленоиде прекращается, сердечник перестает проявлять магнитные характеристики, если он выполнен из мягкого металла (к стальным изделиям это правило не относится)
Решение задач на нахождение энергии магнитного поля
Пример 1
Условие: у нас есть соленоид с током без сердечника. Плотность энергии создаваемого им магнитного поля равна ,1 Джм3. Найдите увеличение плотности энергии при включении в соленоид железного сердечника. Сила тока при этом останется прежней.
Решение
Сразу отметим, что магнитная проницаемость среды для соленоида без сердечника будет равна единице. Чтобы найти напряженность магнитного поля соленоида, используем следующую формулу:
w=μμH22.
Выразим напряженность из формулы и получим:
H=2wμμ.
При включении в соленоид сердечника напряженность поля останется прежней, а для вычисления индукции возьмем эту формулу:
H=2·,14π·10-7=,4·103.
Для нахождения индукции по напряженности магнитного поля в железном сердечнике нам нужно будет заглянуть в справочник. Он может быть представлен как в табличной, так и графической форме. Найдем там нужную величину, равную B≈1 Тл. Теперь перейдем к вычислению плотности магнитной энергии поля соленоида с железным сердечником:
w’=BH2.
Теперь вычисляем значение w’:
w’=1·4002=200.
После чего найдем искомое соотношение плотностей:
w’w=200,1=2000.
Ответ: при включении железного сердечника плотность энергии возрастет в 2 тысячи раз.
Пример 2
Условие: у нас есть квадратная железная рамка с обмоткой из n-ного количества витков, по которой течет ток с силой I. В ней есть прорезь шириной a. Вычислите величину энергии магнитного поля в зазоре рамки, если длина ее средней линии равна d, а площадь поперечного сечения – S. Магнитную проницаемость рамки взять равной μ, рассеяние поля в краях прорези не учитывать.
Решение
Начнем с вычисления напряженности магнитного поля в самой рамке и ее зазоре. Для этого нам понадобится теорема о циркуляции:
∮LH→dl→=∑k=1NIk.
Согласно условиям нашей задачи, основная формула будет иметь следующий вид:
H(d-a)+Ha=IN→H=INd.
Теперь найдем величину магнитной индукции в зазоре:
B→=μH→.
Подставим нужные значения и вычислим:
H(d-a)+Bμa=IN→B=μINa-μ(d-a)Ha.
Энергия магнитного поля в зазоре будет равна:
Wm1=BH2S·a=12μINa-μ(d-a)INdaINd·S·a=12μa(IN)2Sd.
Теперь вычислим магнитную энергию в сердечнике:
Wm2=μμH22S(d-a)=μμH22INd2(d-a).
Нам осталось только найти полную энергию поля:
Wm=Wm1+Wm2=12μa(IN)2Sd+μμH22INd2(d-a)=12μS(IN)2da+μd(d-a).
Ответ: Wm1=12μa(IN)2Sd, Wm=12μS(IN)2da+μd(d-a).
Всё ещё сложно?
Наши эксперты помогут разобраться
Все услуги
Решение задач
от 1 дня / от 150 р.
Курсовая работа
от 5 дней / от 1800 р.
Реферат
от 1 дня / от 700 р.
Работа электрического поля по перемещению заряда
Понятие работы A{\displaystyle A} электрического поля E{\displaystyle E} по перемещению заряда Q{\displaystyle Q} вводится в полном соответствии с определением механической работы:
A=∫F(x)dx=∫Q⋅E(x)dx=Q⋅U,{\displaystyle A=\int F(x)\,dx=\int Q\cdot E(x)\,dx=Q\cdot U,}
где U=∫Edx{\displaystyle U=\int E\,dx} — разность потенциалов (также употребляется термин напряжение).
Во многих задачах рассматривается непрерывный перенос заряда в течение некоторого времени между точками с заданной разностью потенциалов U(t){\displaystyle U(t)}, в таком случае формулу для работы следует переписать следующим образом:
A=∫U(t)dQ=∫U(t)I(t)dt,{\displaystyle A=\int U(t)\,dQ=\int U(t)I(t)\,dt,}
где I(t)=dQdt{\displaystyle I(t)={dQ \over dt}} — сила тока.
Линии напряженности магнитного поля
Магнитное поле не влияет на неподвижный заряд, действует на движущееся электричество. Когда Био экспериментально, Савар позже математически сформулировали закон, понадобились модели, описывающие взаимодействие нового явления с объектами материального мира. Следует четко понимать, хотя закон Био-Савара содержит величину магнитной индукции, на момент 1820 года попросту отсутствовала в научной сфере. Некая мера поля, что именно представляла, никто в точности сказать не мог. Гауссова СГС появилась в 1832 году, лишена многих физических величин.
Трактат 1600 года Гильберта высказал предположение о структуре линий напряженности. Для выяснения обстоятельств активно использовал магнитную стрелку, создал шар руды, доказал подобие поля объекта Земному. По характеру взаимодействия выдвинул идею: один полюс испускает некую субстанцию, другой – поглощает. Довольствуясь доводами, Рене Декарт в 1644 году создал одну из первых картин магнитного поля, использовав мелкие металлические опилки. Опытом не брезгают сегодняшние учебники физики. Линии напряженности магнитного поля являются плавными, замыкаются на полюсах, вектор индукции направлен касательно в каждой точке.
Сообразно закону Био-Савара, имеющимся знаниям Пуассон в 1824 году создает первую модель поля. Оперирует с диполями, отстраняется от среды распространения явления. Ампер идет иным путем, представляя источники магнитного поля, элементарными циркулирующими зарядами. Проводя опыты, замечает: сила взаимодействия зависит от среды, вносит таким образом лепту. Правы оказались оба.
Магнитное поле планеты Земля
Существование магнитного поля независимо от среды, сила действия на объекты в некоторых материалах изменяется. Для описания количественной меры изменения ввели единицу относительной магнитной проницаемости. Показывает отличие силы взаимодействия в сравнении с процессом, идущим в вакууме. Согласно такому подходу, материалы формируют три группы:
- Парамагнетики немного усиливают напряженность Н, индукция магнитного поля немного больше, нежели в вакууме. Вещества теряют приобретенные в результате взаимодействия свойства так скоро, как пропадает источник изменений.
- Диамагнетики ослабляют действие поля. Напряженность Н выше индукции В. Класс веществ включает: поваренную соль, нафталин, висмут. Поле ослабляется, магнитная восприимчивость отрицательная.
- Ферромагнетики многократно усиливают напряженность, индукция намного превышает H. По этой причине идут на изготовление сердечников трансформаторов.
Теперь поясним: напряженность поля H характеризует свойства источника магнетизма, существует в любой среде. Индукция показывает способность явления индуцировать в проводниках ЭДС. Откуда произошло название. Хотя на практике индукция играет первостепенную роль, рассмотрение случаев с одновременным использованием разных сред удобно вести с позиций напряженности поля. Значение домножается величиной магнитной проницаемости среды.
Кстати, Майкл Фарадей, не зная фактов, выбрал для удачного опыта с тороидальным трансформатором ферромагнетик (мягкая сталь). Благодаря этому удачно удалось зафиксировать явление индукции. Оно имеет место быть в воздухе, но не так заметно. Ферромагнетик умножает многократно способность поля индуцировать отклик в виде ЭДС вторичной обмотки трансформатора. Коэффициент проницаемости некоторых материалов составляет тысячи единиц.
Законы, связанные с магнитной индукцией
На чертежах условились линии магнитного поля наносить тем плотнее, чем выше индукция. На единицу площади (например, квадратный сантиметр) приходится столько, каково значение физической величины в Тл. Помогает визуально оценить плотность поля. Количество линий, охваченных площадью фигуры, отражает величину работы по перемещению в пределах нее электрического заряда. Тезис отражен законом Фарадея (см. рис.), где фигурирует величина плотности магнитной индукции, измеряемой веберами.
Энергия магнитного поля в соленоиде. Плотность энергии магнитного поля.
2018-01-08 4677 Рассмотрим цепь, изображенную на рис. 67.1 (Сав. 195). При замкнутом ключе в соленоиде установится ток I, который обусловит магнитное поле, сцепленное с витками соленоида. Если разомкнуть ключ, то через сопротивление R будет некоторое время течь постепенно убывающий ток, поддерживаемый возникающей в соленоиде э. д. с. самоиндукции. Работа, совершаемая этим током за время dt, равна .
Если индуктивность соленоида не зависит от I (L=const), то =L dI и выражение
Проинтегрировав это выражение по l в пределах от первоначального значения I до нуля, получим работу, совершаемую в цепи за все время, в течение- которого происходит исчезновение магнитного поля, . Работа идет на приращение внутренней энергии сопротивления R, соленоида и соединительных проводов (т. е. на их нагревание). Совершение этой работы сопровождается исчезновением магнитного поля, которое первоначально существовало в окружающем соленоид пространстве. Поскольку никаких других изменений в окружающих электрическую цепь телах не происходит, ос-
тается заключить, что магнитное поле является носителем энергии, за счет которой и совершается работа.
Таким образом, мы приходим к выводу, что проводник с индуктивностью L, по которому течет ток силы I, обладает энергией ,
которая локализована в возбуждаемом током магнитном поле.
Выразим энергию магнитного поля через величины, характеризующие само поле. В случае очень длинного (практически бесконечного) соленоида . Подставив эти значения L и I в выражение и произведя преобразования, получим
Магнитное поле бесконечно длинного соленоида однородно и отлично от нуля только внутри соленоида. Следовательно, энергия локализована внутри соленоида и распределена по его объему с постоянной плотностью w, которую можно найти, разделив W на V. Произведя это деление, получим
Плотность энергии магнитного поля можно записать в виде .
Зная плотность энергии поля в каждой точке, можно найти энергию поля, заключенную в любом объеме V. Для этого нужно вычислить интеграл .
Квазистационарный переменный электрический ток. Условие квазистационарности. Закон Ома для цепей квазистационарных токов. Активное и реактивное (емкостное, индуцированное) сопротивления, их зависимость от частоты тока.
В цепях постоянного тока распределение электрических зарядов на проводниках и токов на участках цепи стационарно, то есть неизменно во времени. Если на каком-то участке цепи происходят изменения силы тока или напряжения, то другие участки цепи могут «почувствовать» эти изменения только через некоторое время, которое по порядку величины равно времени τ распространения электромагнитного возмущения от одной точки цепи к другой. Так как электромагнитные возмущения распространяются с конечной скоростью, равной скорости света c , то где l – расстояние между наиболее удаленными точками цепи. Если это время τ много меньше длительности процессов, происходящих в цепи, то можно считать, что в каждый момент времени сила тока одинакова во всех последовательно соединенных участках цепи. Процессы такого рода в электрических цепях называются квазистационарными.
Использование плотности тока на практике
Очень часто возникает вопрос о возможности использования конкретного провода для тех или иных целей. То есть, способен ли он выдержать определенную нагрузку
В этих случаях, очень важно определить плотность электротока с допустимой величиной
Данный показатель очень важен, поскольку в каждом проводнике возникает сопротивление току, протекающему через него. Происходят потери тока, из-за чего проводник начинает нагреваться. При слишком больших потерях, наступает критическое нагревание, вызывающее расплавление проводника. Чтобы исключить подобные ситуации, каждому прибору или потребителю устанавливается наиболее оптимальная плотность тока, формула которой позволит рассчитать .
Когда возникает необходимость выбрать нужное сечение провода или кабеля, необходимо учитывать допустимое значение плотности электротока. Для практических расчетов во время проектирования используются специальные таблицы и формулы, позволяющие получить желаемый результат.
Для разных существуют различные значения плотности. В настоящее время используются только медные провода, в которых плотность электротока не должна превышать 6-10 А/мм2. Это особенно актуально для долговременной эксплуатации, когда проводке обеспечивается облегченный режим. Допускается эксплуатация и при повышенных нагрузках, только на очень короткое время.
Электрическим током называется направленное (упорядоченное) движение заряженных частиц.
Электрический ток в проводниках различного рода представляет собой либо направленное движение электронов в металлах (проводники первого рода), имеющих отрицательный заряд, либо направленное движение более крупных частиц вещества – ионов, имеющих как положительный, так и отрицательный заряд – в электролитах (проводники второго рода), либо направленное движение электронов и ионов обоих знаков в ионизированных газах (проводники третьего рода).
За направление электрического тока условно принято направление движения положительно заряженных частиц.
Для существования электрического тока в веществе необходимо:
- наличие заряженных частиц, способных свободно перемещаться по проводнику под действием сил электрического поля;
- наличие источника тока, создающего и поддерживающего в проводнике в течение длительного времени электрическое поле.
Количественными характеристиками электрического тока являются сила тока I и плотность тока j.
Сила тока – скалярная физическая величина, определяемая отношением заряда q, проходящего через поперечное сечение проводника за некоторый промежуток времени t, к этому промежутку времени.
Единицей силы тока в СИ является ампер (А).
Если сила тока и его направление со временем не изменяются, то ток называется постоянным.
Единица силы тока – основная единица в СИ 1 А – есть сила такого неизменяющегося тока, который, проходя по двум бесконечно длинным параллельным прямолинейным проводникам очень маленького сечения, расположенным на расстоянии 1 м друг от друга в вакууме, вызывает силу взаимодействия между ними 2·10 -7 Н на каждый метр длины проводников.
Рассмотрим, как зависит сила тока от скорости упорядоченного движения свободных зарядов.
Выделим участок проводника площадью сечения S и длиной l (рис. 1). Заряд каждой частицы q 0 . В объеме проводника, ограниченном сечениями 1 и 2, содержится nSl частиц, где n – концентрация частиц. Их общий заряд
Если средняя скорость упорядоченного движения свободных зарядов , то за промежуток времени
все частицы, заключенные в рассматриваемом объеме, пройдут через сечение 2. Поэтому сила тока:
Таким образом, сила тока в проводнике зависит от заряда, переносимого одной частицей, их концентрации, средней скорости направленного движения частиц и площади поперечного сечения проводника.
Заметим, что в металлах модуль вектора средней скорости упорядоченного движения электронов при максимально допустимых значениях силы тока ~ 10 -4 м/с, в то время как средняя скорость их теплового движения ~ 10 6 м/с.
J – это векторная физическая величина, модуль которой определяется отношением силы тока I в проводнике к площади S поперечного сечения проводника, т.е.
В СИ единицей плотности тока является ампер на квадратный метр (А/м 2).
Как следует из формулы (1),
направление вектора плотности тока совпадает с направлением вектора скорости упорядоченного движения положительно заряженных частиц. Плотность постоянного тока постоянна по всему поперечному сечению проводника.
Постоянные магниты
Источником магнитного поля (МП) могут служить постоянные магниты. Они изготавливаются из магнетита. В природе он известен как оксид железа. Это минерал чёрной окраски, имеющий молекулярное строение FeO·Fe2O3. Свойства магнитов известны с давних времён. Магниты имеют два полюса – северный и южный.
Постоянные магниты можно классифицировать по следующим критериям:
- материал, из которого изготовлен магнит;
- форма;
- сфера использования.
Магниты с постоянными полюсами изготавливаются из различных материалов:
- ферритов – прессованных изделий из порошков оксида железа и оксидов иных металлов;
- редкоземельных – нодимовых (NdFeB), самариевых (SmCo), литых (сплавы металлов), полимерных (магнитопласты).
Форма магнитов самая различная:
- цилиндрическая (прямоугольная);
- подковообразная;
- кольцеобразная;
- дискообразная.
Направление линий МП в зависимости от формы магнита
Постоянные магниты нашли широкое применение в различных отраслях народного хозяйства:
- МРТ – медицинский прибор для диагностики человеческого организма;
- приводы жёстких дисков в современных компьютерах;
- в радиотехнике, при изготовлении динамиков;
- производство декоративных украшений с применением магнитов на полимерной основе.
В двигателях постоянного тока такие магниты вмонтированы в корпус индуктора.
Наличие магнитного поля вокруг проводника или катушки с током
При подключении соленоида (катушки) в электрическую цепь вокруг нее формируется поле. Характеристики поля зависят от ряда параметров: от средовых особенностей окружения, токовой силы (она измеряется в амперах) и материала, из которого изготовлен проводник или обмотка катушки. В полевом пространстве могут образовываться электромагнитные волны. Так как на полевой энергетический потенциал, прежде всего, оказывает влияние сила текущего в системе электротока, можно сделать вывод, что работа тока по генерированию магнитного пространства будет эквивалентной энергии последнего. Если в систему подключена катушка с магнитным сердечником, то на энергетическую плотность будет влиять полевая энергия в вакууме и в материале, из которого сделан сердечниковый элемент.
Для изучения динамики явления можно рассмотреть электроцепь, включающую в себя дроссель, лампу, замыкающий ключ и источник постоянного электротока. Когда ключик замыкается, токовый путь будет идти от «положительного» зажима источника через лампу и индуктивную катушку. Поначалу лампа накаливания загорится ярче, что связано со значительной величиной сопротивления дроссели. По мере того, как сопротивление будет падать, а проходящий через обмотку ток увеличиваться, интенсивность горения лампочки будет понижаться. Связано это с тем, что первое время подаваемый на дроссель ток имеет значение, пропорциональное току высокой частоты.
Чтобы практически построить цепь, подходящую для расчета, нужно, чтобы энергетический ресурс источника питания затрачивался на генерирование магнитного поля. Поэтому параметрами внутреннего сопротивления дроссели и питательного источника допустимо пренебрегать.
Советуем изучить Как делятся электроустановки по условиям электробезопасности
Важно! Согласно второму закону Кирхгофа, сумма подсоединенных к электрической цепи напряжений равняется сумме снижений напряжения для всех компонентов цепочки. Второй закон Кирхгофа. Второй закон Кирхгофа
Второй закон Кирхгофа
Индуктивность человеческого тела
Наше тело является электрическим проводником, а все проводники, в той или иной степени, обладают индуктивностью. Это значит, что мы подвержены воздействию электромагнитного поля, под его воздействием в нашем теле могут индуцироваться переменные токи.
Индуктивность человеческого тела значительно меньше. чем индуктивность антенны или дросселя, и небольшие электромагнитные поля практически не влияют на нас. Но чем выше мощность излучения, а главное – чем выше частота электромагнитного поля, тем воздействие сильнее. Сильное поле СВЧ диапазона представляет смертельную опасность.
Для защиты людей на производствах, связанных с сильными электромагнитными полями, применяют специальную экранирующую одежду, экранированные помещения. Существуют зоны, закрытые для посещения – вокруг мощных антенн, радиолокаторов.
Периодически появляется информация о вреде длительных разговоров по мобильному телефону, когда трубка прижата к голове. Телефон излучает высокочастотный электромагнитный сигнал небольшой мощности, из-за малой мощности его влияние незначительно. Но при длительном воздействии это излучение может нанести вред здоровью. Использовать скайп, установленный на компьютер, предпочтительнее.
Характеристики конденсатора
Основной характеристикой данного элемента является емкость, или С. Она определяет способность устройства собирать электрический заряд, зависит от геометрической конфигурации крышек и от электрической проницаемости диэлектрика между крышками.
Важно! Емкость зависит от типа используемого диэлектрика, а также от геометрических размеров элемента. Для того, чтобы описать принцип работы устройства формулой, необходимо понять, что это постоянная пропорциональность в уравнении, представляющая собой взаимную зависимость накопленного заряда q от площади пластинок и от разности потенциалов V между ними. Для того, чтобы описать принцип работы устройства формулой, необходимо понять, что это постоянная пропорциональность в уравнении, представляющая собой взаимную зависимость накопленного заряда q от площади пластинок и от разности потенциалов V между ними
Для того, чтобы описать принцип работы устройства формулой, необходимо понять, что это постоянная пропорциональность в уравнении, представляющая собой взаимную зависимость накопленного заряда q от площади пластинок и от разности потенциалов V между ними.
Мощность выражается в единицах, называемых фарадами F. Но на практике используются и более мелкие единицы, такие как микрофарады и пикофарады.
Таким образом, если напряжение U приложено к конденсатору, электрический заряд накапливается на крышках детали. Значение накопленного заряда на каждой пластинке одинаково, они отличаются только знаком. Этот процесс накопления электрического показателя на называется зарядкой.
Другим параметром детали является номинальное напряжение, а именно, его максимальное значение, которое может подаваться на конденсатор. При подключении более высокого напряжения возникает пробой диэлектрика. Это приводит к короткому замыканию элемента. Каким будет номинальное значение напряжения, зависит от типа диэлектрика и его толщины.
Важно! Чем толще диэлектрик, тем выше номинальное напряжение, которое он выдерживает. Условные обозначения
Ещё одним параметром является ток утечки -значение проводящего показателя, возникающее при подаче постоянного напряжения на концы элемента.