Термистор ntc и особенности его применения

Понятие NTC температурных датчиков

При обычном применении резисторов не нужно, чтобы их сопротивление (R) менялось с изменением температуры. Зависимость минимальная, иначе элемент влиял бы на схему, например, диод не контролировано менял бы интенсивность свечения. Но если требуется, чтобы его яркость была функцией температуры, то применяют термистор — резистор, сопр. которого чувствительное даже к небольшим сдвигам t°. Такое свойство отображается основной характеристикой — кривой графика зависимости R/T.

Negative Temperature Coefficient — «отрицательный (минусовый) коэффициент t°», он же NTC. Это наиболее часто встречающийся тип температурных сенсоров, так как они дешевле всех прочих, с хорошей эффективностью, достаточной для большинства приборов.

Преимущества, сравнение с иными термодатчиками

Достоинства:

  • значительная крутизна кривой R/T, малые отклонения от номиналов, что свидетельствует о хорошей сенситивности;
  • минимальное время отклика;
  • значительные величины ТКС, то есть большая чувствительность, увеличенная степень изменения R в зависимости от t° (порядка 2–10 % на Кельвин);
  • сопротивление демонстрирует большое, точное, прогнозируемое уменьшение по мере роста рабочих температур на ядре резистора;
  • чрезвычайная компактность, терморезисторы подойдут на любые платы, даже на пространства, измеряющиеся в мм (есть типоразмеры в виде бусинок), поэтому датчики с ними компактные;
  • лучшая прочность, надежность, стабильность, приспособленность для экстремальных сред, помехоустойчивость в своих рабочих диапазонах;
  • экономичность, менее трудозатратные в обслуживании. Если кривая правильная, то калибровки не потребуется при монтаже и на всем сроке эксплуатации;
  • по кривой легко узнать нужное сопротивление при конкретной температуре.

Преимущества и недостатки:

По сравнению с RTD По сравнению с термопарами
Недостатки Достоинства Достоинства Недостатки
менее точные (но не намного)диапазон по t° меньше, чем у RTD отклик быстрее точность аналогичная при наличии иных плюсов Меньший диапазон, термопары работают с t° выше (+600° C)
большая сенситивность, стабильность, корректность в своих рабочих рамках;
простая эксплуатация, что снижает цену, не требуются усилители, интерпретаторы и прочее
меньший, удобный размер
низкая стоимость (один их главных плюсов)
стойкость к ударам, вибрациям выше

Коэффициенты параметров, токоограничивающие свойства лучше в несколько раз, чем у термодатчиков из Si. На порядок выше (от 10 раз), чем у RTD (металлические термодетекторы).

Если сравнивать с RTD (платиновыми), то линия R/T более крутая, что отображает лучшую сенситивность. Но все-таки первые наиболее точные (±0.5 % от замеряемой t°) и они лучшие для границ −200…+800° C, что шире, чем у NTC, но преимущество последних в дешевизне и простоте.

Измерения

 
   
 
 

Для измерения температуры в качестве термопреобразователей можно использовать полупроводниковые диоды и транзисторы. Это объясняется тем, что при постоянном значении тока, протекающего в прямом направлении, например через переход диода, напряжение на переходе практически линейно изменяется с изменением температуры.

Для того чтобы значение тока было постоянно, последовательно с диодом достаточно включить большое активное сопротивление. При этом ток, проходящий через диод, не должен вызывать его нагрева.

Построить градуировочную характеристику такого термодатчика можно по двум точкам — в начале и в конце измеряемого диапазона температур. На рисунке 1, а показана схема измерения температуры при помощи диода VD. Источником питания может служить батарейка.

Рис. 1. Схема измерения температуры при помощи диода (а) и транзисторов (б, в). Мостовые съемы позволяют увеличивать относительную чувствительность устройства, компенсируя начальное значение сопротивления датчика.

Аналогично влияет температура на сопротивление перехода эмиттер — база транзисторов. При этом транзистор может одновременно действовать и как датчик температуры, и как усилитель собственного сигнала. Поэтому применение транзисторов в качестве термодатчиков имеет преимущество перед диодами.

На рисунке 1, б показана схема термометра, в которой в качестве преобразователя температуры используется транзистор (германиевый или кремниевый).

При изготовлении термометров как на диодах, так и на транзисторах требуется построить градуировочную характеристику, при этом в качестве образцового средства измерений можно использовать ртутный термометр.

Инерционность термометров на диодах и транзисторах небольшая: на диоде — 30 с, на транзисторе — 60 с.

Практический интерес представляет мостовая схема с транзистором в одном из плеч (рис. 1, в). В этой схеме эмиттерный переход включен в одно из плеч моста R4, на коллектор подано небольшое запирающее напряжение.

Здесь Ваше мнение имеет значение

 —
 поставьте вашу оценку (оценили — 6 раз)

   

Ключевые теги: диод, транзистор, температура

 
 
 
Смотри также:
 
   
  • Простой терморегулятор для строительного вагончика или аквариума
  • Источник питания для приборов на ОУ
  • Портативный прибор для подбора пары мощных транзисторов KB усилителя мощнос …
  • Простой цифровой термометр на КР572ПВ5
  • Цифровой термометр с полупроводниковым датчиком
  • Термометр для газового водонагревателя
  • Простые полупроводниковые термометры
  • Частотомер с линейной шкалой
  • Вольтметры постоянного и переменного тока
  • Ультралинейный бестрансформаторный усилитель НЧ на 10 вт
  • Простой электротермометр
  • Эфирная радиоточка на двух транзисторах
  • Вольтметры-индикаторы на светодиодах
  • Электронный термометр на аналоговой микросхеме
  • Компания National Semiconductor представила цифровой датчик температуры, ко …
 

Литература

  1. http://www.epcos.com/web/generator/Web/Sections/ProductCatalog/NonlinearResistors/NTCThermistors/PDF/PDF__General__technical__information,property=Data__en.pdf;/PDF_General_technical_information.pdf
  2. http://www.epcos.com/web/generator/Web/Sections/ProductCatalog/NonlinearResistors/NTCThermistors/ PDF/PDF__SelectorGuide,property=Data__en.pdf;/PDF_SelectorGuide.pdf
  3. http://www.epcos.com/web/generator/Web/Sections/ProductCatalog/NonlinearResistors/NTCThermistors/PDF/PDF__Standardized,property=Data__en.pdf;/PDF_Standardized.pdf
  4. http://www.epcos.com/web/generator/Web/Sections/DesignTools/NTCThermistors/Page__License2,locale=en.html

Скачать статью в формате PDF  

PTC

В отличие от рассмотренных выше терморезисторов, PTC — термисторы, имеющие положительный коэффициент сопротивления. Это означает, что в случае нагрева детали увеличивается и ее сопротивление. Такие изделия активно применялись в старых телевизорах, оборудованных цветными телескопами.

Сегодня выделяется два типа PTC-терморезисторов (от числа выводов) — с двумя и тремя отпайками. Отличие трехвыводных изделий заключается в том, что в их состав входит два позитрона, имеющих вид «таблеток», устанавливаемых в одном корпусе.

Внешне может показаться, что эти элементы идентичны, но на практике это не так. Одна из «таблеток» имеет меньший размер. Отличается и сопротивление — от 1,3 до 3,6 кОм в первом случае, и от 18 до 24 Ом для второй такой таблетки.

Двухвыводные терморезисторы производятся с применением полупроводникового материала (чаще всего Si — кремний). Внешне изделие имеет вид небольшой пластинки с двумя выводами на разных концах.

Терморезисторы PTC применяются в разных сферах. Чаще всего их используют для защиты силового оборудования от перегруза или перегрева, а также поддержания температуры в безопасном режиме.

Главные направления применения:

  1. Защита электрических двигателей. Задача изделия состоит в защите обмотки от перегорания при клине ротора или в случае поломки системы охлаждения. Позистор играет роль датчика, подключаемого к управляющему прибору с исполняющим реле, контакторами и пускателями. При появлении форс-мажорной ситуации сопротивление растет, а сигнал направляется к управляющему элементу, дающему команду на отключение мотора.
  2. Защита трансформаторных обмоток от перегрева или перегруза. В такой схеме позистор устанавливается в цепи первичной обмотки.
  3. Нагревательный узел в пистолетах для приклеивания.
  4. В машинах для нагрева тракта впуска.
  5. Размагничивание ЭЛТ-кинескопов и т. д.

Схемы подключения

Подключение термистора

Схема A
Схема B
Схема C
Схема D

Наиболее простым вариантом подключения является схема A. При выборе номинала резистора RA примерно равным сопротивлению термистора в районе измеряемых температур, значения U будут изменяться ближе к линейным, что обеспечит большую точность при интерполяции табличных значений.

Выбирая номиналы RA и термистора, следует учесть, что протекающий через термистор ток вызывает его нагрев и, как следствие, искажение показаний. Желательно чтобы мощность на термисторе не превышала 1 мВт. А значит, при напряжении U0 = 5В, RA должен быть как минимум, 10 килоОм. Сопротивление термистора в измеряемом диапазоне должно иметь примерно тот же порядок.

Схема B призвана ограничить мощность, рассеиваемую на термисторе.

Схемы C и D являются обратными к A и B. Их имеет смысл использовать, если требуется измерять низкие температуры, когда референтное значение АЦП (Uref) ниже U0.

Подключение к АЦП микроконтроллера ATmega

Подключение АЦП микроконтроллеров ATmega

У контроллеров ATmega для снижения шумов используется отдельная линия питания для модуля АЦП. Инструкция рекомендует подключать эти входы через фильтр: индуктивность L = 10мкГн, и конденсатор C2 = 0,1мкФ.

Микроконтроллер может использовать либо внешнее референтное напряжение для АЦП, либо внутреннее (2,56В или 1,1В), либо, в качестве такового, использовать напряжение питания АЦП: AVCC. При использовании внешнего напряжения, оно должно быть подано на вход AREF. При использовании AVCC, или внутреннего напряжения 2,56В, между этим входом и землёй должен быть размещён конденсатор (на схеме C1). Инструкция не даёт чёткого указания для выбора ёмкости конденсатора, рекомендую использовать керамический конденсатор 0,1мкФ и более.

Для снижения измеряемых шумов, рекомендую термистор также подключать к фильтрованному напряжению параллельно AVCC, и настроить на использование этого напряжения в качестве референтного.

Дополнительно, для подавления шумов возникающих на линиях, можно установить конденсатор C3 в диапазоне 1-100нФ.

Следует учесть, что помимо модуля АЦП, вход AVCC запитывает также некоторые из портов ввода/вывода (как правило, на тех же выводах, что используются для АЦП). Использование этих портов на вывод и подключение к ним нагрузки может создать дополнительные шумы в работе АЦП.

Чтобы нивелировать шумы, возникающие на АЦП, рекомендую провести замеры несколько раз подряд и просуммировать полученные значения. В микроконтроллерах ATmega АЦП – 10-разрядный. Просуммировав результаты 64 подряд идущих измерений, результат остаётся в пределах 16-битного беззнакового целого, что не потребует дополнительной памяти для сохранения таблицы значений. При большем числе измерений также можно оставаться в пределах 16 бит, соответствующим образом сдвигая или деля результат.

Измерение сопротивления с помощью Arduino

Теперь, когда мы выбрали метод построения кривой, мы должны выяснить, как реально измерить сопротивление с помощью Arduino, прежде чем мы сможем передать информацию о сопротивлении в β-уравнение. Мы можем сделать это используя делитель напряжения:

Делитель напряжения для измерения сопротивления термистора

Это будет наша схема взаимодействия с термистором. Когда термистор определит изменение температуры, это отразится на выходном напряжении.

Теперь, как обычно, мы используем формулу для делителя напряжения.

\

Но нам неинтересно выходное напряжение Vвыход, нас интересует сопротивление термистора Rтермистор. Поэтому мы выразим его:

\

Это намного лучше, но нам необходимо измерить наше выходное напряжение, а также напряжение питания. Так как мы используем встроенный АЦП Arduino, то можем представить напряжение, как числовое значение на определенной шкале. Итак, конечный вид нашего уравнения показан ниже:

\

Это работает потому, что не имеет значения, как мы представляем напряжение (в вольтах или в цифровых единицах), эти единицы сокращаются в числителе и знаменателе дроби, оставляя безразмерное значение. Затем мы умножаем его на сопротивление, чтобы получить результат в омах.

Dmax у нас будет равно 1023, так как это самое большое число, которое может выдать наш 10-разрядный АЦП. Dизмеренное – это измеренное значение аналого-цифровым преобразователем, которое может быть в диапазоне от нуля до 1023.

Всё! Теперь можно приступить к сборке!

Основные характеристики терморезисторов

Важно обращать внимание на характеристики термисторов NTC. Они могут меняться по ряду причин: производитель, тип и применяемый материал. В первую очередь покупатель должен изучить размер

Нужно, чтобы элемент подошел по габаритам, то есть, поместился на плате во время монтажа

В первую очередь покупатель должен изучить размер. Нужно, чтобы элемент подошел по габаритам, то есть, поместился на плате во время монтажа.

Следующие важные пункты:

  • сопротивление RT;
  • постоянная времени;
  • коэффициент рассеивания.

Это основные моменты, которые нужно учитывать при покупке детали.

Характеристики нагрева

Есть 2 типа терморезисторов, если полагаться на способ нагревания, положенный в основу их принципа действия:

  • косвенный;
  • прямой.

При косвенном нагреве будет изменяться температура термистора под воздействием элементов, размещенных рядом с ним.

При прямом она также меняется, но только под влиянием окружающего воздуха или тока, который проходит через элемент. В этом и заключается основное отличие.

Практическое применение

Для рассмотрения представленного метода линеаризации на практике вернемся к уже известному терморезистору В57861 (S861) с номинальным сопротивлением 10 кОм ±1%. Использование термистора предполагается в температурном диапазоне от 0 до 155 °С. Исходя из этого, номиналы резисторов для преобразователя R(Т) U(T) были взяты следующие: ROC = 1,62 кОм ±0,1%, R1 = 10 кОм ±0,1%, R2 = 1 кОм ±0,1%, а опорное напряжение UREF = (2,5 ±0,002) В.

Представленные данные (табл. 3) получены путем разбиения всего температурного диапазона на 8 поддиапазонов, для которых были вычислены соответствующие коэффициенты PT, QT и RT (табл. 4).

Таблица 3. Пример использования метода линеаризации

Таблица 4. Расчетные значения коэффициентов PT, QT и RT

Но даже применяя микроконтроллер, неудобно и программно неоправдано держать такое большое количество нецелочисленных коэффициентов. А переходя к аналого-цифровому преобразованию, для исключения дополнительной погрешности будет правильным в любую формулу подставлять дискреты, полученные от АЦП, а не пересчитанное значение напряжения. Поэтому конечная формула вычисления температуры для 12-битного АЦП будет выглядеть следующим образом:

где TU — вычисляемое значение температуры, iƒ (на английском «если») — условие использования одной из формул, ΔU — полученные дискреты от АЦП.

Соответственно, если ΔU < 391, то значение температуры ниже 0 °С, а если ΔU > 4022, то значение температуры выше 155 °С. Ну и, рассматривая каждый поддиапазон температур в отдельности, можно получить для него следующие точностные характеристики (табл. 5).

Таблица 5. Точностные характеристики поддиапазонов

Такая низкая разрешающая способность, а также ее неравномерность в интервале температур от 0 до 60 °С связана с нелинейностью выходной характеристики преобразователя R(Т)U(T).

Указанная в таблице 5 погрешность не является полной, так как она не учитывает отклонение сопротивления резисторов и опорного напряжения от номинальных значений. В таблице 6 представлены возможное отклонение истинной вычисленной температуры от истинного значения и погрешность системы без учета допустимого отклонения термосопротивлений от величин, предоставленных производителем в качестве стандартной температурной характеристики № 8016.

Таблица 6. Погрешность системы для каждой контрольной точки

В начале статьи говорилось, что терморезистор, как и любой резистор, имеет отклонение ΔR/RN от номинального значения сопротивления, обусловленное технологией изготовления, и что этот параметр дается производителем на точку 25 °С. Однако, в отличие от простых резисторов, эта величина у терморезистора во всем температурном диапазоне не одинакова, и что еще важней — она увеличивается. Компания Epcos для упрощения вычислений и исключения необходимости самостоятельного определения отклонений в нужном температурном диапазоне предоставляет программу “NTC R/T Calculation” , которая позволяет в автоматическом режиме проводить все необходимые расчеты по определению отклонений сопротивления и температуры.

Исходя из данных таблицы 7, можно посчитать тотальную погрешность рассмотренной измерительной системы с учетом всех отклонений и допусков от соответствующих номинальных значений, ошибки АЦП и расчетов математической модели (табл. 8).

Таблица 7. Отклонения для терморезистора В57861S0103F040

Таблица 8. Абсолютная погрешность измерительной системы для каждой контрольной точки

Классификация термисторов

Габариты и конструкция терморезисторов различны и зависят от области их применения.

Форма термисторов может напоминать:

  • плоскую пластину;
  • диск;
  • стержень;
  • шайбу;
  • трубку;
  • бусинку;
  • цилиндр.

Самые маленькие терморезисторы в виде бусинок. Их размеры меньше 1 миллиметра, а характеристики элементов отличаются стабильностью. Недостатком является невозможность взаимной подмены в электрических схемах.

Классификация терморезисторов по числу градусов в Кельвинах:

  • сверх высокотемпературные — от 900 до 1300;
  • высокотемпературные — от 570 до 899;
  • среднетемпературные — от 170 до 510;
  • низкотемпературные — до 170.

Какие параметры влияют на подбор терморезисторов

Рассмотрим, какие параметры надо определить и учесть при выборе PTC, позистор, терморезистор с положительным коэффициентом.

Габариты. Деталь должна поместиться на плате, не мешать иным деталям.

Сопротивление, оно же номинал, RT, в Омах. Указывается на элементе на его маркировке вместе с температурой в Цельсиях или Кельвинах. Надо также читать таблицы данных и спецификацию детали. Например, если ТР рассчитан на функционирование при −100…+200° C, режим для окружающих условий использования принимают как +20…+25° C;

Временная переменная температуры в сек. Отражает тепловую инерционность: период, необходимый для изменения t° теплового резистора на 63% от разницы t° на нем и окружающей среды. Обычно принимается равным +100° C;

ТКС он же TCR (в % на 1 градус С°), αR или αRT. Это основная характеристика — тепловой (термический) коэффициент сопротивления. Прописывается для той же t°, что и «холодное» R. Цифры значения могут быть с «+», «–» или «±», что показывает, в какую сторону учитывают изменения температуры (это не отклонения точности). По данной характеристике выделяют определенные группы терморезисторов (А, Б, В и так далее).

Предельная интенсивность рассеивания Pmax, Вт. Порог, до которого нет необратимых трансформаций в детали. По этой характеристике главное исключить ситуации, когда tmax превышает предел, Pmax.

Tmax — наибольшее значение, при котором свойства детали определенное время остаются неизменными (эти две составляющие устанавливаются изготовителем).

Коэффициенты G и H. Данные характеристики зависимы от свойств используемого сплава, нюансов теплообмена между ТР и средой. Характеристики взаимосвязанные, что отображает уравнение G=H/100а:

  • G. Энергочувствительность в Вт/%×R. Означает сколько надо рассеять Ватт для понижения R (Ом) на 1 процент;
  • H. Рассеивание (в Вт на 1° C). Это мощность, нивелируемая деталью при разнице t° ее режима и среды на 1°.

Теплоемкость (Дж на 1° C), «C» — количество тепла для нагрева терморезистора на 1°.

Временная постоянная τ = отношению между C и H. Подбирая изделие, надо учесть промежуток температурного сопротивления и кратность колебаний R на участке положительного ТКС.

Для правильного выбора позисторов надо изучить все варианты терминологии: другие и некоторые вышеуказанные позиции трактуются также следующим образом:

Температура и т. Кюри:

Базовые свойства позисторов

При расчете терморезисторов потребуется оценить следующее составляющие:

  • вольтамперная (ВАХ). Отображается кривой графика, показывающей, как зависит напряжение на приборе, участке цепи от тока, пропускаемого ТР, тепловое равновесие с окружающими условиями. Кривые PTC и NTC отличаются;
  • температурная. Это диаграмма зависимости значения Ом от t°. Координатная Линия R — это первые с принципом отображения десятикратно (10×), а по горизонтальной, температурной, оси пропускается промежуток 0…223 К. Термические резисторы типа PTC это позисторы, термисторы с положительным коэффициентом изменений при росте t°;
  • подогревная. Применяется для косвенных ТР. Покажет, как зависит сопротивление (берется тоже десятикратно, 10×) элемента от мощностей на нем.

Главные параметры терморезисторов

При выборе детали важно ориентироваться на ее показатели и характеристики, меняющиеся в зависимости от типа, производителя, исходного материала и других показателей. При выборе изделия нужно выяснить главные параметры и определить, подходят они для решения поставленной задачи или нет. При выборе изделия нужно выяснить главные параметры и определить, подходят они для решения поставленной задачи или нет

При выборе изделия нужно выяснить главные параметры и определить, подходят они для решения поставленной задачи или нет.

Параметры терморезисторов:

  1. ГАБАРИТЫ. При покупке нужно быть уверенным, что деталь подходит по размеру и поместится на плате (в схеме).
  2. СОПРОТИВЛЕНИЯ RT и RT. Параметры измеряются в Омах и указываются применительно к текущей температуре в градусах Цельсия или Кельвинах. Если деталь рассчитана на работу при температурах от -100 до +200 градусов Цельсия, температурный режим для окружающей среды принимается на уровне 20-25 градусов Цельсия.
  3. ПОСТОЯННАЯ ВРЕМЕНИ Τ (СЕК). Параметр отражает тепловую инерционность. При расчете учитывается время, которое необходимо для изменения температуры термического резистора на 63% от разницы t детали и окружающего воздуха. В большинстве случаев этот параметр принимается равным 100 градусов Цельсия.
  4. ТКС (в % на один градус Цельсия). Как правило, этот показатель прописывается для той же температуры t, что и холодное сопротивление. В такой ситуации при обозначении используются другие цифры — at.
  5. Мощность рассеивания Pmax (предельно допустимый параметр), Вт. По этому показателю можно судить о пределе, до достижения которого в полупроводнике не происходит необратимых изменений (параметры остаются прежними). При этом превышение температуры tmax при достижении Pmax исключено.
  6. Температура tmax — максимально допустимый параметр, при котором характеристики терморезистора длительное время остаются без изменений (на установленном производителем уровне).
  7. Коэффициент энергетической чувствительности (измеряется в Вт/проценты*R). Обозначение — G. Показатель отражает мощность, которую необходимо рассеять на детали для снижения параметра R на один процент.
  8. Коэффициент рассевания (измеряется в Вт на один градус Цельсия). Условное обозначение — H. Параметр отражает мощность, которая рассеивается на термическом резисторе при разнице в температурных режимах детали и окружающего воздуха на один градус.

Рассмотренные выше коэффициенты (G и H) зависят от характеристик применяемого полупроводника и особенностей обмена тепла между изделием и окружающей его средой. Параметры связаны друг с другом через специальную формулу — G=H/100а.

  1. Теплоемкость (измеряется в Джоулях на один градус Цельсия). Условное обозначение — C. Показатель отражает объем тепла (энергии), необходимой для нагрева терморезистора на один градус.

Некоторые рассмотренные параметры связаны друг с другом. В частности, постоянная времени τ равна отношению между теплоемкостью и коэффициентом рассеивания.

При покупке позитрона, кроме указанных выше параметров, нужно учесть интервал позитивного температурного сопротивления и кратность изменения R в секторе положительного ТКС.

Как определить исправность СМД-резисторов

SMD-резисторы являются компонентами поверхностного монтажа, основным отличием которых, является отсутствие отверстий в плате. Компоненты устанавливаются на токоведущие контакты печатной платы. Преимуществом СМД-компонентов являются их малые габариты, что даёт возможность уменьшить вес и размеры печатных плат.

Проверка SMD-резисторов мультиметром усложняется из-за мелкого размера компонентов и их надписей. Величина сопротивления на СМД-компонентах указывается в виде кода в специальных таблицах, например обозначение 100 или 10R0 соответствует 10 Ом, 102 указывает 1 кОм. Могут встречаться четырёхзначные обозначения, например 7920, где 792 является значением, а 0 — это множитель, что соответствует 792 Ом.

Проблемы с контролем температуры на вашем устройстве могут указывать на проблемы с термостатом, сопротивление которого можно проверить с помощью мультиметра.

Читать также: Расшифровка маркировки стали р6м5

Я подключил и настроил этот мультиметр в соответствии с инструкциями и повернул ручку на самый низкий предел измерения в Омах. Рабочий термостат показывает сопротивление ноль или близкое к нулю. Данный термостат имеет показания прибора 1.4, значит он рабочий. Если нет никаких показаний на приборе, то термостат неисправен и нуждается в замене.

Позистор – одна из деталей системы, которая отвечает за размагничивание. При высоком намагничивании, изображение телевизора искажается или появляются полосы. Их появление означает, что устройство вышло из строя. Необходимо проверить его работоспособность. При необходимости, осуществляется ремонт или замена позистора.

Виды по типу нагрева

Нагрев может быть таких типов (ему соответствует 2 типа термических резисторов):

  • прямой. Температура самого элемента меняется под воздействием тока на нем или воздуха окружающей среды (климатические условия, среда помещения, прибора);
  • косвенный. Температура повышается из-за элементов, окружающих датчик, находящихся непосредственного близко около него. При этом детали никак не связаны. Сопротивление полупроводника обусловлено трансформациями, модуляциями мощности, иных характеристик тока на ближайших элементах. Изделия с косвенным принципом применяются, например, в комбинированных мультиметрах.

Конструкция и разновидности терморезисторов

Термисторы с аксиальными выводами

SMD-термисторы

Резистивный элемент терморезистора изготавливают методом порошковой металлургии из оксидов, галогенидов, халькогенидов некоторых металлов, в различном конструктивном исполнении, например в виде стержней, трубок, дисков, шайб, бусинок, тонких пластинок, и размерами от 1—10 микрометров до нескольких сантиметров.

По типу зависимости сопротивления от температуры различают терморезисторы с отрицательным (NTC-термисторы, от слов «Negative Temperature Coefficient») и положительным (PTC-термисторы, от слов «Positive Temperature Coefficient» или позисторы) температурным коэффициентом сопротивления (или ТКС). Для позисторов — с ростом температуры растёт их сопротивление; для NTC-термисторов увеличение температуры приводит к падению их сопротивления.

Терморезисторы с отрицательным ТКС (NTC-термисторы) изготовляют из смеси поликристаллических оксидов переходных металлов (например, MnO, СoOx, NiO и CuO), полупроводников типа AIII BV, стеклообразных, легированных полупроводников (Ge и Si), и других материалов. PTC-термисторы изготовляют из твёрдых растворов на основе BaTiO3, что даёт положительный ТКС.

Условно терморезисторы классифицируют как низкотемпературные (предназначенные для работы при температуpax ниже 170 К), среднетемпературные (от 170 до 510 К) и высокотемпературные (выше 570 К). Выпускаются терморезисторы, предназначенные для работы при температурах от 900 до 1300 К.

Терморезисторы способны работать в различных климатических условиях и при значительных механических нагрузках. Однако, с течением времени, при жёстких условиях его эксплуатации, например, термоциклировании, происходит изменение его исходных термоэлектрических характеристик, таких как:

  • номинального (при 25 °C) электрического сопротивления;
  • температурного коэффициента сопротивления.

Также существуют комбинированные приборы, такие как терморезисторы с косвенным нагревом. В этих приборах в одном корпусе совмещены терморезистор и гальванически развязанный от него нагревательный элемент, задающий температуру терморезистора, и, соответственно, его электросопротивление. Такие приборы могут использоваться в качестве переменного резистора, управляемого напряжением, приложенным к нагревательному элементу такого комбинированного прибора.

Температура рассчитывается по уравнению Стейнхарта — Харта:

1T=A+Bln⁡(R)+Cln⁡(R)3{\displaystyle {1 \over T}=A+B\ln(R)+C^{3}}

где T — температура, К;
R — сопротивление, Ом;
A,B,C — константы термистора, определённые при градуировке в трёх температурных точках, отстоящих друг от друга не менее, чем на 10 °С.

Одним из существенных недостатков «бусинковых» термисторов, как температурных датчиков, является то, что они не взаимозаменяемы и требуют индивидуальной градуировки. Не существует стандартов, регламентирующих их номинальную характеристику сопротивление — температура. «Дисковые» термисторы могут быть взаимозаменяемыми, однако при этом лучшая допускаемая погрешность не менее 0,05 °С в диапазоне от 0 до 70 °С. Типичный 10-килоомный термистор в диапазоне 0—100 °С имеет коэффициенты, близкие к следующим значениям:

A=1,03∗10−3{\displaystyle A=1,03*10^{-3}};
B=2,93∗10−4{\displaystyle B=2,93*10^{-4}};
C=1,57∗10−7{\displaystyle C=1,57*10^{-7}}.

Как определить номинал по цветовым кольцам

В последнее время выводные сопротивления чаще обозначаются с помощью цветовых полос и это относится как к отечественным, так и к зарубежным элементам. В зависимости от количества цветовых полос меняется способ их расшифровки. В общем виде он собран в ГОСТ 175-72.

Цветовая маркировка резисторов может выглядеть в виде 3, 4, 5 и 6 цветовых колец. При этом кольца могут быть смещены к одному из выводов. Тогда кольцо, которое ближе всех к проволочному выводу, считают первым и расшифровку цветного кода начинают с него. Или одно из колец может отсутствовать, обычно предпоследнее. Тогда первое это то, возле которого есть пара.

Другой вариант, когда маркировочные кольца расположены равномерно, т.е. заполняют поверхность равномерно. Тогда первое кольца определяют по цветам. Допустим, одно из крайних колец (первое) не может быть золотого цвета, тогда можно определить с какой стороны идет отчет.

Обратите внимание при таком способе маркировки из 4-х колец третье кольцо – это множитель. Как разобраться в этой таблице? Возьмем верхний резистор первое кольцо красного цвета, это 2, второе фиолетового – это 7, третье, множитель красное – это 100, а допуск у нас коричневый – это 1%. Тогда: 27*100=2700 Ом или 2,7 кОм с допуском отклонения в 1% в обе стороны

Тогда: 27*100=2700 Ом или 2,7 кОм с допуском отклонения в 1% в обе стороны.

Второй резистор имеет цветовую маркировку из 5 полос. У нас: 2, 7, 2, 100, 1%, тогда: 272*100=27200 Ом или 27,2 кОм с допуском в 1%.

У резисторов из 3 полос цветовая маркировка производится по такой логике:

  • 1 полоса – единицы;
  • 2 полоса – сотни;
  • 3 полоса – множитель.

Точность таких компонентов равна 20%.

Расшифровать цветовое обозначение вам поможет программа ElectroDroid, она доступна для Android в Play Market, в её бесплатной версии есть данная функция.

Другой способ расшифровки цветового кода от компании Philips предполагает использование 4, 5 и 6 полос. Тогда последняя полоса несет информацию о температурном коэффициенте сопротивления (насколько изменяется сопротивление при изменении температуры).

Чтобы определить номинал воспользуйтесь таблицей

Обратите внимание на последнюю колонку – это ТКС

На корпусе цветные кольца распределяются, так как показано на этой схеме:

Более подробно узнать о том, как расшифровать маркировку резисторов, вы можете из данных видео: