Колебательный контур
Емкость и индуктивный элемент, соединенные в цепь, образуют колебательный контур с резко выраженными частотными свойствами и будут являться резонансной системой. В качестве системы используется конденсатор, изменяя емкость которого, можно производить коррекцию частотных свойств.
Последовательный и параллельный колебательные контуры
Если измерить резонансную частоту, используя известный конденсатор, то можно определить индуктивность катушки.
Индуктивность – важнейший элемент в разных областях электротехники. Для правильного применения нужно знать все параметры используемых элементов.
Устройство, которое позволяет определить параметры катушек индуктивности, в том числе добротность, может называться L-метр или Q-метр.
Q-метр для измерения добротности
Катушка индуктивности
Самым распространенным элементом, обладающим индуктивностью, является катушка индуктивности. Что она из себя представляет? Как правило, для намотки используют каркас из диэлектрического материала. Он может быть круглый, прямоугольный или квадратный.
Если диаметр провода большой, а число витков незначительно, то можно обойтись и без каркаса. Несколько слов о самой намотке, она может быть:
- однослойной или многослойной;
- провод может быть одножильным или многожильным;
- есть несколько способов намотки (внавал, универсал и подобные);
- сами секции нередко делают раздельными;
- для увеличения индуктивного сопротивления катушки индуктивности добавляют ферромагнитный сердечник, который перемещается внутри корпуса
- относительно катушки, оказывая влияние на магнитное поле;
- чтобы индуктивность понизить, используют диамагнитный сердечник.
Основные параметры катушек индуктивности
Свойства катушек могут быть охарактеризованы четырьмя основными параметрами: индуктивностью, добротностью, собственной емкостью и стабильностью.
1. Индуктивность.
Индуктивность (коэффициент самоиндукции) является основным электрическим параметром и характеризует величину энергии, запасаемой катушкой при протекании по ней электрического тока. Чем больше индуктивность катушки, тем больше энергии она запасает в своем магнитном поле.
Индуктивность зависит от размеров каркаса, формы, числа витков катушки, диаметра и марки провода, а также от формы и материала магнитопровода (сердечника).
В радиолюбительских схемах, как правило, величину индуктивности не указывают, так как радиолюбителя интересует не эта величина, а количество витков провода в катушке, диаметр и марка провода, способ намотки (внавал, виток к витку, крест на крест, секционная намотка) и размеры каркаса катушки.
2. Добротность.
Добротность (Q) характеризуется качеством работы катушки индуктивности в цепях переменного тока и определяется как отношение реактивного сопротивления катушки к ее активному сопротивлению потерь.
Активное сопротивление включает в себя сопротивление провода обмотки катушки; сопротивление, вносимое диэлектрическими потерями в каркасе; сопротивление, вносимое собственной емкостью и сопротивления, вносимые потери в экраны и сердечники.
Чем меньше активное сопротивление, тем выше добротность катушки и ее качество. В большинстве случаев добротность катушки определяют резонансные свойства и к.п.д. контура. Современные катушки средних размеров имеют добротность около 50 – 300.
3. Собственная емкость.
Катушки индуктивности обладают собственной емкостью, которая увеличивается по мере увеличения числа витков и размеров катушки. Между соседними витками существует межвитковая емкость, из-за которой некоторая часть тока проходит не по проводу, а через емкость между витками, отчего сопротивление между выводами катушки уменьшается.
Все дело в том, что общее напряжение, приложенное к катушке, разделяется на межвитковые напряжения из-за чего между витками образуется электрическое поле, вызывающее скопление зарядов. Витки, разделенные слоями изоляции, образуют обкладки множества маленьких конденсаторов, через которые протекает часть тока, из общей емкости которых и складывается собственная емкость катушки. Таким образом катушка обладает не только индуктивными но и емкостными свойствами.
Собственная емкость является вредным параметром и ее стремятся уменьшить применением специальных форм каркаса и способом намотки провода.
4. Стабильность.
Стабильность катушки характеризуется изменением ее параметров под воздействием температуры, влажности и во времени.
Изменение индуктивности под влиянием температуры характеризуют температурным коэффициентом индуктивности (ТКИ), равным относительному изменению индуктивности при изменении температуры на 1°С. ТКИ катушки определяется способом намотки и качеством диэлектрика каркаса.
Влажность вызывает увеличение собственной емкости и диэлектрических потерь, а также понижает стабильность катушки. Для защиты от действия влажности применяется герметизация или пропитка и обволакивание обмотки негигроскопичными составами.
Такие катушки обладают более низкой добротностью и большой собственной емкостью, но при этом они более устойчивы к воздействию влаги.
Расчёт катушки с броневым сердечником
Броневые сердечники представляют собой сборную конструкцию, состоящую из двух чашеобразных частей. В центре каждой чашки имеется центральный керн, в большинстве случаев имеющий осевое отверстие, используемое для подстройки величины индуктивности.
Такие сердечники имеют универсальное применение благодаря высокой добротности в заданной полосе частот, низким искажениям, отсутствие полей рассеяния и небольшими габаритами.
Расчёт постоянных С1 и С2 данного типа сердечника выполняется по аналогии с предыдущими типами, но в связи с формой броневого сердечника имеются свои особенности. Рассмотрим сечение броневого сердечника
Разделим данный сердечник на простейшие линейные и угловые участки с различным сечением: линейные – l1, l2, l3 и угловые – l4, l5, так же выделим соответствующие им поперечные сечения: S1, S2, S3, S4, S5. Длины линейных участков достаточно просто определить, для нахождения длины угловых участков и сечений на всех участках можно используя следующие выражения
Таким образом, вычислив длину и площадь поперечного сечения отдельных участков, можно вычислить постоянные для данного типа сердечников
Данные выражения определяют параметры сердечника без технологических пазов и вырезов. При желании их учитывать необходимо, внести следующие поправки
где n – число пазов,
g – ширина паза.
Пример. В качестве примера рассчитаем индуктивность дросселя выполненного на броневом сердечнике, состоящем из двух чашек типа Ч22 из феррита марки 50ВН (μr = 50), количество витков ω = 100.
123412
С учётом конструктивных особенностей выразим величины заложенные в требуемые нам выражения:
Найдем длины и сечение участков магнитопровода. Расчёт будем вести без учёта технологических пазов и вырезов.
С учётом рассчитанных выше значений определим индуктивность исходного дросселя
На этом можно и остановиться с расчётами индуктивных элементов с замкнутыми сердечниками. В следующей статье я рассмотрю индуктивные элементы на разомкнутых сердечниках.
Катушка индуктивности
От чего зависит индуктивность
Катушкой индуктивности является компонент, состоящий из проводника, намотанного на сердечник, содержащий железо, либо без сердечника. Прибор мультиметр, или LC-метр, ответит на вопрос, как измерить индуктивность катушки. Этим прибором, в основном, пользуются радиолюбители.
Катушки индуктивности в виде тора и цилиндра
К исключительным классам катушек индуктивности относятся дроссели. Дроссель –это такая катушка, целью которой выступает создание в цепи огромного противодействия для переменного тока с целью подавления высокочастотных токов. Постоянный ток через такой дроссель проходит, не встречая препятствия.
При выборе конкретной катушки индуктивности необходимо обратить внимание на некоторые важные параметры, влияющие на работу компонента:
- Необходимый показатель индуктивности;
- Предельный ток, на который рассчитан компонент;
- Допустимый разброс характеристики катушки;
- Отклонение параметра при колебании температуры;
- Устойчивость характеристики катушки;
- Активное сопротивление провода обмотки катушки;
- Добротность компонента;
- Диапазон частот, при которых катушка работает без потерь.
Свое применение катушки индуктивности нашли, как в аналоговой, так и цифровой схемотехнике. Конструкция, собранная на катушках индуктивности и конденсаторах, именуемая колебательным контуром, способна усиливать или вырезать колебания определенной частоты. Использование дросселей в каскадах блоков питания позволяет устранить остатки помех и шумы. Построение таких компонентов, как трансформатор, полностью обязано физическим особенностям катушки индуктивности. Также катушки индуктивности подразделяются на компоненты с постоянным показателем индуктивности и катушки с переменным показателем индуктивности. Телефонные аппараты, сглаживающие фильтры, цепи высоких частот имеют в своем составе катушки с постоянным значением индуктивности. В свою очередь, резонансные цепи ВЧ и ВЧ тракты приемных устройств в своем составе имеют катушки с переменным значением индуктивности.
Предоставленный материал в полной мере объясняет физические явления: индукция, магнитный поток и индуктивность. В статье рассмотрены разные виды катушек индуктивности, принципы их построения и особенности применения.
«Электромагнитная индукция»
Электромагнитная индукция — это явление, которое заключается в возникновении электрического тока в замкнутом проводнике в результате изменения магнитного поля, в котором он находится. Это явление открыл английский физик М. Фарадей в 1831 г. Суть его можно пояснить несколькими простыми опытами.
Описанный в опытах Фарадея принцип получения переменного тока используется в индукционных генераторах, вырабатывающих электрическую энергию на тепловых или гидроэлектростанциях. Сопротивление вращению ротора генератора, возникающее при взаимодействии индукционного тока с магнитным полем, преодолевается за счет работы паровой или гидротурбины, вращающей ротор. Такие генераторы преобразуют механическую энергию в энергию электрического тока.
Вихревые токи, или токи Фуко
Если массивный проводник поместить в переменное магнитное поле, то в этом проводнике благодаря явлению электромагнитной индукции возникают вихревые индукционные токи, называемые токами Фуко.
Вихревые токи возникают также при движении массивного проводника в постоянном, но неоднородном в пространстве магнитном поле. Токи Фуко имеют такое направление, что действующая на них в магнитном поле сила тормозит движение проводника. Маятник в виде сплошной металлической пластинки из немагнитного материала, совершающий колебания между полюсами электромагнита, резко останавливается при включении магнитного поля.
Во многих случаях нагревание, вызываемое токами Фуко, оказывается вредным, и с ним приходится бороться. Сердечники трансформаторов, роторы электродвигателей набирают из отдельных железных пластин, разделенных слоями изолятора, препятствующего развитию больших индукционных токов, а сами пластины изготовляют из сплавов, имеющих высокое удельное сопротивление.
Электромагнитное поле
Электрическое поле, созданное неподвижными зарядами, является статическим и действует на заряды. Постоянный ток вызывает появление постоянного во времени магнитного поля, действующего на движущиеся заряды и токи. Электрическое и магнитное поля существуют в этом случае независимо друг от друга.
Явление электромагнитной индукции демонстрирует взаимодействие этих полей, наблюдаемое в веществах, в которых есть свободные заряды, т. е. в проводниках. Переменное магнитное поле создает переменное электрическое поле, которое, действуя на свободные заряды, создает электрический ток. Этот ток, будучи переменным, в свою очередь порождает переменное магнитное поле, создающее электрическое поле в том же проводнике, и т. д.
Совокупность переменного электрического и переменного магнитного полей, порождающих друг друга, называется электромагнитным полем. Оно может существовать и в среде, где нет свободных зарядов, и распространяется в пространстве в виде электромагнитной волны.
Классическая электродинамика — одно из высших достижений человеческого разума. Она оказала огромное влияние на последующее развитие человеческой цивилизации, предсказав существование электромагнитных волн. Это привело в дальнейшем к созданию радио, телевидения, телекоммуникационных систем, спутниковых средств навигации, а также компьютеров, промышленных и бытовых роботов и прочих атрибутов современной жизни.
Краеугольным камнем теории Максвелла явилось утверждение, что источником магнитного поля может служить одно только переменное электрическое поле, подобно тому, как источником электрического поля, создающим в проводнике индукционный ток, служит переменное магнитное поле. Наличие проводника при этом не обязательно — электрическое поле возникает и в пустом пространстве. Линии переменного электрического поля, аналогично линиям магнитного поля, замкнуты. Электрическое и магнитное поля электромагнитной волны равноправны.
Электромагнитная индукция в схемах и таблицах
(Явление электромагнитной индукции, опыты Фарадея, правило Ленца, закон электромагнитной индукции, вихревое электрическое поле, самоиндукция, индуктивность, энергия магнитного поля тока)
Дополнительные материалы по теме:
Конспект урока по физике в 11 классе «Электромагнитная индукция».
Следующая тема: «».
Постоянный и переменный
Сила тока и напряжение могут быть как постоянными, так и переменными. Постоянство величины говорит о ее неизменности во времени. Напротив, переменные величины периодически изменяют свое значение во времени. Если напряжение питания окажется переменным, то и сила тока, генерируемая им, будет переменной величиной. Это значит, что оба этих значения будут то увеличиваться, то уменьшаться. Форма сигнала может быть различной:
- Синусоидальный сигнал (плавное возрастание — убывание).
- Меандр (прямоугольный, треугольный сигнал), когда значение резко претерпевает изменение.
- Пульсирующий сигнал, изменяющийся то плавно, то резко, согласно некоторому закону.
Вне зависимости от того, постоянным или переменным является ток, его главное отличие от напряжения — то, что ток — это движение носителей заряда, а напряжение — причина этого движения.
Советуем изучить — Принцип работы токовой направленной защиты нулевой последовательности в электрических сетях 110 кВ
Что такое электрический дроссель?
Дросселем, в общем случае, называют катушку индуктивности, чаще всего с сердечником, которая служит для устранения или уменьшения переменного (импульсного) тока, разделения или ограничения сигналов различной частоты. Исходя из этого, дроссели условно можно разделить на следующие типы:
— сглаживающие дроссели, предназначены для ослабления переменной составляющей постоянного тока или напряжения различной частоты, то есть сглаживания пульсаций, на выходе и входе силовых преобразователей или выпрямителей;
— дроссели переменного тока, предназначены для ограничения электрического тока, при резких изменениях нагрузки, например, при пуске электродвигателей или источников питания;
— дроссели насыщения, или управляемые дроссели, предназначенные для регулирования индуктивного сопротивления за счёт изменения тока подмагничивания.
Дроссели, как и любая другая катушка индуктивности, может быть без сердечника, с замкнутым сердечником, с сердечником, имеющим малый зазор и с сердечником, имеющим большой зазор или разомкнутым сердечником. Поэтому в независимости от назначения дросселя его принцип действия основан на электромагнитных свойствах катушки индуктивности и сердечника, на котором она выполнена.
Для чего нужны и какие бывают
В зависимости от того, где применяется катушка индуктивности и её функциональных особенностей, она может называться по-разному: дроссели, соленоиды и прочее. Давайте рассмотрим, какие бывают катушки индуктивности и их сферу применения.
Дроссели. Обычно так называются устройства для ограничения тока, область применения:
- В пускорегулирующей аппаратуре для розжига и питания газоразрядных ламп.
- Для фильтрации помех. В блоках питания — фильтр электромагнитных помех со сдвоенным дросселем на входе компьютерного БП, изображен на фото ниже. Также используется в акустической аппаратуре и прочем.
- Для фильтрации определенных частот или полосы частот, например, в акустических системах (для разделения частот по соответствующим динамикам).
- Основа в импульсных преобразователях — накопитель энергии.
Токоограничивающие реакторы — используются для ограничения токов короткого замыкания на ЛЭП.
Примечание: у дросселей и реакторов должно быть низкое активное сопротивление для уменьшения их нагрева и потерь.
Контурные катушки индуктивности. Используются в паре с конденсатором в колебательном контуре. Резонансная частота подбирается под частоту приема или передачи в радиосвязи. У них должна быть высокая добротность.
Вариометры. Как было сказано — это настраиваемые или переменные катушки индуктивности. Чаще всего используются в тех же колебательных контурах для точной настройки частоты резонанса.
Соленоид — так называется катушка, длина которой значительно больше диаметра. Таким образом внутри соленоида образуется равномерное магнитное поле. Чаще всего соленоиды используются для совершения механической работы — поступательного движения. Такие изделия называют еще электромагнитами.
Рассмотрим, где используются соленоиды.
Это может быть активатор замка в автомобиле, шток которого втягивается после подачи на соленоид напряжения, и звонок, и различные исполнительные электромеханические устройства типа клапанов, грузоподъёмные магниты на металлургических производствах.
В реле, контакторах и пускателях соленоид также выполняет функцию электромагнита для привода силовых контактов. Но в этом случае его чаще называют просто катушка или обмотка реле (пускателя, контактора соответственно), как выглядит, на примере малогабаритного реле вы видите ниже.
Рамочные и кольцевые антенны. Их назначение — передача радиосигнала. Используются в иммобилайзерах автомобилей, металлодетекторах и для беспроводной связи.
Индукционные нагреватели, тогда она называется индуктором, вместо сердечника помещают нагреваемое тело (обычно металл).
Что такое индуктивность
Индуктивностью называется идеализированный элемент электрической цепи, в котором происходит запасание энергии магнитного поля. Запасания энергии электрического поля или преобразования электрической энергии в другие виды энергии в ней не происходит.
Наиболее близким к идеализированному элементу — индуктивности — является реальный элемент электрической цепи — индуктивная катушка.
В отличие от индуктивности в индуктивной катушке имеют место также запасание энергии электрического поля и преобразование электрической энергии в другие виды энергии, в частности в тепловую.
Количественно способность реального и идеализированного элементов электрической цепи запасать энергию магнитного поля характеризуется параметром, называемым индуктивностью.
Таким образом термин «индуктивность» применяется как название идеализированного элемента электрической цепи, как название параметра, количественно характеризующего свойства этого элемента, и как название основного параметра индуктивной катушки.
Рис. 1. Условное графическое обозначение индуктивности
Связь между напряжением и током в индуктивной катушке определяется законом электромагнитной индукции, из которого следует, что при изменении магнитного потока, пронизывающего индуктивную катушку, в ней наводится электродвижущая сила е, пропорциональная скорости изменения потокосцепления катушки ψ и направленная таким образом, чтобы вызываемый ею ток стремился воспрепятствовать изменению магнитного потока:
Потокосцепление катушки равно алгебраической сумме магнитных потоков пронизывающих ее отдельные витки:
где N — число витков катушки.
В системе единиц СИ магнитный поток и потокосцепление выражают в веберах (Вб).
Магнитный поток Ф, пронизывающий каждый из витков катушки, в общем случае может содержать две составляющие: магнитный поток самоиндукции Фси и магнитный поток внешних полей Фвп: Ф — Фси + Фвп.
Первая составляющая представляет собой магнитный поток, вызванный протекающим по катушке током, вторая — определяется магнитными полями, существование которых не связано с током катушки — магнитным полем Земли, магнитными полями других катушек и постоянных магнитов. Если вторая составляющая магнитного потока вызвана магнитным полем другой катушки, то ее называют магнитным потоком взаимоиндукции.
Потокосцепление катушки ψ , так же как и магнитный поток Ф, может быть представлено в виде суммы двух составляющих: потокосцепления самоиндукции ψси , и потокосцепления внешних полей ψ вп
Наведенная в индуктивной катушке ЭДС е, в свою очередь, может быть представлена в виде суммы ЭДС самоиндукции, которая вызвана изменением магнитного потока самоиндукции, и ЭДС, вызванной изменением магнитного потока внешних по отношению к катушке полей:
здесь еси — ЭДС самоиндукции, евп — ЭДС внешних полей.
Если магнитные потоки внешних по отношению к индуктивной катушке полей равны нулю и катушку пронизывает только поток самоиндукции, то в катушке наводится только ЭДС самоиндукции.
Потокосцепление самоиндукции зависит от протекающего по катушке тока. Эта зависимость, называемая вебер — амперной характеристикой индуктивной катушки, в общем случае имеет нелинейный характер (рис. 2, кривая 1 ).
В частном случае, например для катушки без магнитного сердечника, эта зависимость может быть линейной (рис. 2, кривая 2).
Рис. 2. Вебер-амперные характеристики индуктивной катушки: 1 — нелинейная, 2 — линейная.
В системе единиц СИ индуктивность выражают в генри (Гн).
При анализе цепей обычно рассматривают не значение ЭДС, наведенной в катушке, а напряжением на ее зажимах, положительное направление которого выбирают совпадающим с положительным направлением тока:
Идеализированный элемент электрической цепи — индуктивность, можно рассматривать как упрощенную модель индуктивной катушки, отражающую способность катушки запасать энергию магнитного поля .
Для линейной индуктивности напряжение на ее зажимах пропорционально скорости изменения тока. При протекании через индуктивность постоянного тока напряжение на ее зажимах равно нулю, следовательно, сопротивление индуктивности постоянному току равно нулю.
Катушка индуктивности в цепи переменного тока.
Рассмотрим цепь, в которой на катушку индуктивности подается переменный ток:
Давайте посмотрим на зависимости тока и ЭДС самоиндукции от времени, а затем уже разберемся, почему они выглядят именно так:
Как мы уже выяснили ЭДС самоиндукции у нас прямо пропорциональна и противоположна по знаку скорости изменения тока:
\varepsilon_L = -L\medspace\frac{dI}{dt}
Собственно, график нам и демонстрирует эту зависимость! Смотрите сами – между точками 1 и 2 ток у нас изменяется, причем чем ближе к точке 2, тем изменения меньше, а в точке 2 в течении какого-то небольшого промежутка времени ток и вовсе не изменяет своего значения. Соответственно скорость изменения тока максимальна в точке 1 и плавно уменьшается при приближении к точке 2, а в точке 2 равна 0, что мы и видим на графике ЭДС самоиндукции. Причем на всем промежутке 1-2 ток возрастает, а значит скорость его изменения положительна, в связи с этим на ЭДС на всем этом промежутке напротив принимает отрицательные значения.
Аналогично между точками 2 и 3 – ток уменьшается – скорость изменения тока отрицательная и увеличивается – ЭДС самоиндукции увеличивается и положительна. Не буду расписывать остальные участки графика – там все процессы протекают по такому же принципу
Кроме того, на графике можно заметить очень важный момент – при увеличении тока (участки 1-2 и 3-4) ЭДС самоиндукции и ток имеют разные знаки (участок 1-2: \varepsilon < 0, i > 0, участок 3-4: \varepsilon > 0, i < 0). Таким образом, ЭДС самоиндукции препятствует возрастанию тока (индукционные токи направлены “навстречу” току источника).
А на участках 2-3 и 4-5 все наоборот – ток убывает, а ЭДС препятствует убыванию тока (поскольку индукционные токи будут направлены в ту же сторону, что и ток источника и будут частично компенсировать уменьшение тока).
И в итоге мы приходим к очень интересному факту – катушка индуктивности оказывает сопротивление переменному току, протекающему по цепи. А значит она имеет сопротивление, которое называется индуктивным или реактивным и вычисляется следующим образом:
X_L = w\medspace L
Где w – круговая частота: w = 2 \pi f. f – это частота переменного тока. Таким образом, чем больше частота тока, тем большее сопротивление будет ему оказывать катушка индуктивности. А если ток постоянный (f = 0), то реактивное сопротивление катушки равно 0, соответственно, она не оказывает влияния на протекающий ток.
Давайте вернемся к нашим графикам, которые мы построили для случая использования катушки индуктивности в цепи переменного тока. Мы определили ЭДС самоиндукции катушки, но каким же будет напряжение u? Здесь все на самом деле просто! По 2-му закону Кирхгофа:
u + \varepsilon_L = 0
А следовательно:
u = – \varepsilon_L
Построим на одном графике зависимости тока и напряжения в цепи от времени:
Как видите ток и напряжение сдвинуты по фазе (ссылка) друг относительно друга, и это является одним из важнейших свойств цепей переменного тока, в которых используется катушка индуктивности:
Вот и с включением катушки в цепь переменного тока мы разобрались!
На этом, пожалуй, закончим сегодняшнюю статью, она получилась уже довольно объемной, поэтому разговор о катушках индуктивности мы продолжим в следующий раз. Так что до скорых встреч, будем рады видеть вас на нашем сайте!