Физические размеры конденсатора
Для большинства применений в электронике минимальный размер является целью для разработки компонентов. Чем меньшие по размеру компоненты можно изготовить, тем большая схема может быть встроена в меньший корпус, при этом, как правило, также уменьшается вес. В случае конденсаторов существуют два основных ограничивающих фактора для минимального размера устройства: рабочее напряжение и емкость. И эти два фактора, как правило, противоречат друг другу. Для любого конкретного выбранного диэлектрического материала единственный способ увеличить номинальное напряжение конденсатора – это увеличить толщину диэлектрика. Однако, как мы видели, это приводит к уменьшению емкости. Емкость можно восстановить, увеличив площадь пластины, но это делает компонент больше. Вот почему вы не можете судить о емкости конденсатора в фарадах просто по размеру. Конденсатор любого заданного размера может быть относительно высоким по емкости и с низким рабочим напряжением, или наоборот, или иметь некоторый компромисс между двумя этими крайностями. Посмотрим для примера следующие две фотографии:
Рисунок 3 – Масляный конденсатор высокого напряжения
Это довольно большой конденсатор по физическим размерам, но он имеет довольно низкое значение емкости: всего 2 мкФ. Тем не менее, его рабочее напряжение довольно высокое: 2000 вольт! Если бы этот конденсатор был перепроектирован так, чтобы между его пластинами был более тонкий слой диэлектрика, то могло бы быть достигнуто, по крайней мере, стократное увеличение емкости, но за счет значительного снижения его рабочего напряжения. Сравните приведенную выше фотографию с приведенной ниже. Конденсатор, показанный на нижнем рисунке, представляет собой электролитический компонент, по размерам подобный приведенному выше, но с очень отличающимися значениями емкости и рабочего напряжения:
Рисунок 4 – Электролитический конденсатор
Более тонкий слой диэлектрика дает ему гораздо большую емкость (20000 мкФ) и резко снижает рабочее напряжение (постоянное напряжение 35 В, напряжение 45 В в пике).
Вот некоторые образцы конденсаторов разных типов, все по размеру меньше, чем показанные ранее:
Рисунок 5 – Керамические конденсаторыРисунок 6 – Пленочные конденсаторыРисунок 7 – Электролитические конденсаторыРисунок 8 – Танталовые конденсаторы
Электролитические и танталовые конденсаторы являются полярными (чувствительны к полярности) и всегда помечаются как таковые. У электролитических конденсаторов отрицательные (-) выводы отмечаются стрелками на корпусе. У некоторых полярных конденсаторов полярность обозначена на положительном выводе. У большого электролитического конденсатора на 20 000 мкФ, показанного выше, положительный (+) вывод помечен знаком «плюс». Керамические, майларовые, пленочные и воздушные конденсаторы не имеют маркировки полярности, потому что эти типы являются неполярными (они не чувствительны к полярности).
Конденсаторы являются очень распространенными компонентами в электронных схемах. Внимательно посмотрите на следующую фотографию – каждый компонент, обозначенный на печатной плате буквой «С», является конденсатором:
Рисунок 9 – Конденсаторы на сетевой карте
Некоторые конденсаторы на плате – это стандартные электролитические конденсаторы: C30 (верхняя часть платы, в центре) и C36 (левая сторона, 1/3 от вершины). Некоторые другие представляют собой особый вид электролитических конденсаторов, называемый танталовым, потому что именно этот тип металла используется для изготовления пластин. Танталовые конденсаторы имеют относительно высокую емкость для своих физических размеров. На плате, показанной выше, танталовые конденсаторы: C14 (чуть ниже слева от C30), C19 (непосредственно под R10, который ниже C30), C24 (нижний левый угол платы) и C22 (внизу справа).
Примеры еще меньших по размеру конденсаторов можно увидеть на этой фотографии:
Рисунок 10 – Конденсаторы на жестком диске
Конденсаторы на этой печатной плате из соображений экономии места являются «устройствами поверхностного монтажа», как и все резисторы. В соответствии с соглашением о маркировке компонентов конденсаторы могут быть идентифицированы по меткам, начинающимся с буквы «C».
Понятие емкости, правила измерения
Данная величина показывает, какое количество электронов (или других заряженных частиц) должно переместиться от одного объекта к другому для получения необходимого значения напряжения. Последнее возникает по той причине, что при перемещении частиц между объектами образуется разница потенциалов.
Единицей измерения емкостного значения является фарад (на письме обозначается заглавной кириллической литерой Ф). Когда при перенесении заряда в 1 Кулон напряжение меняется на 1 Вольт, значение емкости между перенесенными объектами составляет 1 Фарад. Формула зависимости емкости от напряжения имеет такой вид:
С (емкость) = Q (заряд)/U(напряжение).
Если мастер собрался измерять емкость используемого в радиоэлектронной схеме конденсатора, ему потребуется такой прибор, как мультиметр. С задачей способен справиться даже бюджетный аппарат, при этом наибольшая точность демонстрируется при работе с пленочными конденсаторными элементами. Для максимально точных замеров можно воспользоваться измерителем иммитанса, но данный прибор отличается очень высокой ценой (около 120 тыс. руб.). При использовании мультиметра нужно придерживаться следующего алгоритма:
- Отсоединить электроцепь от источника нагрузки. Проверить отсутствие питания, установив на устройстве режим замера напряжения и поставив щупы к источнику: показатель должен быть равен нулю.
- Снять заряд с конденсатора пассивным способом (подождать 20-30 минут) или активным (с помощью резистора). Для маленьких элементов нужен прибор с сопротивлением более 2 кОм. С достаточно крупными конденсаторами (например, в фотоаппаратах и бытовой технике) лучше вообще не работать в домашних условиях без подготовки – они накапливают опасно высокий заряд. Для разрядки такого элемента требуется резистор на 20 кОм и 5 Вт, подсоединенный через изолированный провод диаметром 3,3 мм2, предназначенный для эксплуатации под напряжением до 600 В.
- Отключить конденсатор от цепи. После этого поставить мультиметр в режим замера емкости. Если прибор снабжен несколькими настроечными диапазонами, нужно поставить тот, что с наибольшей вероятностью окажется верным (сориентироваться можно по маркировке). При наличии клавиши Rel нужно нажать ее, чтобы емкость сошла со щуповых элементов.
- Щупы помещаются к выводам конденсатора. При тестировании поляризованных элементов надо обязательно соблюдать полярность. Теперь нужно дождаться вывода данных на дисплей. Если высветилось слово overload (или OL), показатель слишком высокий для обнаружения данным прибором или в данном диапазоне (во втором случае нужно выбрать другой диапазон).
Важно! Нельзя подключать мультиметр к конденсаторному элементу, на корпусе которого имеются проколы или выпуклые места. Такие элементы вообще не стоит эксплуатировать – при подключении питания они способны взорваться
Небольшие замечания и советы по работе с конденсаторами
Необходимо помнить, что следует выбирать конденсаторы с повышенным номинальным напряжением при возрастании температуры окружающей среды,создавая больший запас по напряжению, для обеспечения высокой надежности. Если задано максимальное постоянное рабочее напряжение конденсатора, то это относится к максимальной температуре (при отсутствии дополнительных оговорок). Поэтому, конденсаторы всегда работают с определенным запасом надежности. И все-же, желательно обеспечивать их реальное рабочее напряжение на уровне 0,5—0,6 номинального.
Если для конденсатора оговорено предельное значение переменного напряжения, то это относится к частоте (50-60) Гц. Для более высоких частот или в случае импульсных сигналов следует дополнительно снижать рабочие напряжения во избежание перегрева приборов из-за потерь в диэлектрике. Конденсаторы большой емкости с малыми токами утечки способны долго сохранять накопленный заряд после выключения аппаратуры. Что бы обеспечить более быстрый их разряд, для большей безопасности, следует подключить параллельно конденсатору резистор сопротивлением 1 МОм (0,5 Вт).
Маркировка ТКЕ
Конденсаторы с ненормируемым ТКЕ
* Современная цветовая кодировка. Цветные полоски или точки. Второй цвет может быть представлен цветом корпуса.
Конденсаторы с линейной зависимостью от температуры
* В скобках приведен реальный разброс для импортных конденсаторов в диапазоне температур -55…+85’С.
** Современная цветовая кодировка. Цветные полоски или точки. Второй цвет может быть представлен цветом корпуса.
Конденсаторы с нелинейной зависимостью от температуры
* Обозначение приведено в соответствии со стандартом EIA, в скобках — IEC.
** В зависимости от технологий, которыми обладает фирма, диапазон может быть другим.
Например, фирма PHILIPS для группы Y5P нормирует -55…+125 њС.
*** В соответствии с EIA. Некоторые фирмы, например Panasonic, пользуются другой кодировкой.
Особенности кодировки конденсаторов производства СССР
В СССР придерживались стандартов МЭК, поэтому можно пользоваться вышеприведенными данными, но были и незначительные отличия.
Кодированное обозначение номинальных емкостей состоит из двух или трех цифр и буквы. Буква кода является множителем, составляющим значение емкости (см. таблицу), и определяет положение десятичной дроби.
Допускаемое отклонение величины емкости в процентах от номинального значения указывают теми же буквами, что и допуски на сопротивление резисторов, однако, с некоторыми дополнениями (см. таблицу). Для конденсаторов емкостью менее 10 пФ допускаемое отклонение устанавливается в пикофарадах:
Конденсаторы маркируются кодом в следующем порядке:
- номинальная емкость;
- допускаемое отклонение емкости;
- ТКЕ и (или) номинальное напряжение.
Приведем примеры кодированной маркировки конденсаторов.
Сокращенная буквенно-цифровая маркировка на конденсаторе 33pKL обозначает номинальную емкость 33 пФ с допускаемым отклонением ±10% и температурной нестабильностью группы М75 (75х10-6 °C-1). Надпись m10SF обозначает 100 мкФ (0,1 миллифарады) с допуском -20…+50% и номинальным напряжением 20 В.
Номинальная емкость 150 пФ может обозначаться 150р или n15; 4700пф — 4n7; 0,15 мкФ — µ15; 2.2мкф — 2µ2.
Емкость | ||
Множитель | Код | Значение |
10-12 | p | пикофарады |
10-9 | n | нанофарады |
10-6 | ч | микрофарады |
10-3 | m | миллифарады |
1 | F | фарады |
Примечание. В скобках указано старое обозначение допуска.
Напр. В | Букв. обозн. | Напр. В | Букв. обозн. | Напр. В | Букв. обозн. | Напр. В | Букв. обозн | Напр. В | Букв. обозн |
1,0 | I | 6.3 | B | 40 | S | 100 | N | 350 | T |
2,5 | M | 10 | D | 50 | J | 125 | P | 400 | Y |
3.2 | A | 16 | E | 63 | K | 160 | Q | 450 | U |
4.0 | C | 20 | F | 80 | L | 315 | X | 500 | V |
Цветовая маркировка конденсаторов
Ещё один способ маркировки конденсаторов — нанесение цветных полос или точек. В данном случае имеет значение не только цвет, но и положение полосы или точки по отношению к другим. Так как нужно не ошибиться с началом иначе расшифровка будет не точная, а это чревато.
Расшифровка цветовой маркировки конденсаторов
По положению полоски/точки обозначают следующее:
- первые три — это ёмкость, но без указания размерности;
- четвёртая — множитель (показатель отрицательной степени);
- пятая — допуск;
- шестая и седьмая — температурный коэффициент.
Первые четыре полоски должны быть всегда. Если дальше какая-то (или всё) отсутствует, это значит, что либо параметр не нормирован, либо просто не указан. Если надо знать точно, придётся искать точные данные.
Единицы измерения кратных Фарад (Фарад)
Эн Фарад — очень большая миска. Теперь появились специальные наноконденсаторы, в которых очень тонкие панели размещены очень тонким, но электрически сильным изолятором, переплетенным в огромные ошибки. Такие конденсаторы также имеют мощности в десятках фарадов.
Электроника обычно работает с гораздо меньшими возможностями.
mikrofarada | мкФ | MCF | 1E-6F | 0,000001 F |
нФ | нФ | нФ | 1E-9F | 0,001 мкФ |
pikofarata | пФ | пФ | 1E-12F | 0,001 нФ |
(подробнее …) :: (в начале статьи)
Индекс :: SearchTechnical Safety :: Справка
К сожалению, члены регулярно сталкиваются с ошибками, ремонтируют, дополняют, развивают, готовят новые.
Подпишитесь на новости, о которых вы знаете.
Если что-то неясно, обязательно спросите! Задайте вопрос. Обсуждение статьи. .
Сколько Фараду нужен конденсатор для поддержания электричества в 2 киловатт в течение 10 часов. Читайте ответ …
Другие статьи
Источники питания без трансформаторов, преобразователи напряжения без … Обзор цепей питания без трансформаторов …
Усилитель мощности большой мощности D (D).
Звук. UMLC. УНЧ. C … Великий класс мощности UMZCH D. Основной способ ….
Практика проектирования электронных схем. Электроника для самостоятельного обучения …. Искусство разработки устройств. Элементная база радиоэлектроники. Типичные схемы ….
Вибрационный контур. Схема. Расчет. Применение. Резонанс. Резонансный … Расчет и использование схем колебаний. Феноменный резонанс. Последовательный …
Светодиодный диод LED, свет … Принципиальная схема импульсного источника питания ярких светодиодов ….
Легкая музыка, легкая музыка своими руками.
Схемы, строительство … Как нарисовать легкую музыку. Оригинальный дизайн системы освещения и музыки …
Операционный усилитель, операционный усилитель, операционная система. Применение, схемы типов …. Схемы работы усилителя.
Использование op-amp …
Проверка резисторов, конденсаторов, диодов, мостовых мостов. O … Как проверить резистор, конденсатор, диоды, мост. Процедура испытания ….
Преобразовать микрофарад в фарад (мкФ в Ф):
Прямая ссылка на этот калькулятор:https://www.preobrazovaniye-yedinits.info/preobrazovat+mikrofarad+v+farad.php
- Выберите нужную категорию из списка, в данном случае ‘Ёмкость’.
- Введите величину для перевода. Основные арифметические операции, такие как сложение (+), вычитание (-), умножение (*, x), деление (/, :, ÷), экспоненту (^), скобки и π (число пи), уже поддерживаются на настоящий момент.
- Из списка выберите единицу измерения переводимой величины, в данном случае ‘микрофарад ’.
- И, наконец, выберите единицу измерения, в которую вы хотите перевести величину, в данном случае ‘фарад ’.
- После отображения результата операции и всякий раз, когда это уместно, появляется опция округления результата до определенного количества знаков после запятой.
С помощью этого калькулятора можно ввести значение для конвертации вместе с исходной единицей измерения, например, ‘134 микрофарад’. При этом можно использовать либо полное название единицы измерения, либо ее аббревиатуруНапример, ‘микрофарад’ или ‘мкФ’.
После ввода единицы измерения, которую требуется преобразовать, калькулятор определяет ее категорию, в данном случае ‘Ёмкость’. После этого он преобразует введенное значение во все соответствующие единицы измерения, которые ему известны. В списке результатов вы, несомненно, найдете нужное вам преобразованное значение.
Как вариант, преобразуемое значение можно ввести следующим образом: ’74 мкФ в Ф‘ или ’28 мкФ сколько Ф‘ или ’22 микрофарад -> фарад‘ или ’95 мкФ = Ф‘ или ’19 микрофарад в Ф‘ или ‘6 мкФ в фарад‘ или ‘5 микрофарад сколько фарад‘. В этом случае калькулятор также сразу поймет, в какую единицу измерения нужно преобразовать исходное значение. Независимо от того, какой из этих вариантов используется, исключается необходимость сложного поиска нужного значения в длинных списках выбора с бесчисленными категориями и бесчисленным количеством поддерживаемых единиц измерения. Все это за нас делает калькулятор, который справляется со своей задачей за доли секунды.
Буквенно-цифровая маркировка
В данном случае вместо запятой ставится соответсвующая единица измерения (пФ, нФ, мкФ).
Пример: 10п или 10p = 10 пФ, 4n7 или 4н7 = 4,7 нФ, μ22 = 0.22 мкФ.
Вожно запомнить что буква «п» очень похожа на «n» и не нужно их путать. Что довольно часто делают начинающие радиолюбители.
Читать также: Схема трехфазной электропроводки в частном доме
Огромное разнообразие конденсаторов позволяет использовать их практически в любой схеме. Для правильного подбора параметров электрической сети необходимо четко владеть знаниями маркировки конденсаторов, которые имеют ключевое значение. Сложность возникает из-за того, что она разнится в большом количестве случаев – на нее влияет производитель, страна-экспортер, вид и параметры самого конденсатора, и даже его размеры.
В данной статье рассмотрим основные параметры конденсаторов, которые влияют на их маркировку, а также научимся правильно читать значения, нанесенные производителем даже на самые крохотные изделия.
Перевод единиц Ёмкости электрической, электрической емкости, маркировка конденсаторов — таблица + Таблица перевода величин емкостей и обозначений конденсаторов
Перевести из: | Перевести в: | ||||
Ф | абФ | Ф до 1948 г. | μФ | статФ | |
1 Ф = фарада = F = farad (единица СИ) это: | 1,0 | 1.0×10-9 | 1.000495 | 1.0×106 | 8.987584×1011 |
1 абФ = Абфарад = Abfarad = единица СГСМ = EM unit это: | 1.0×109 | 1,0 | 1.000495×109 | 1.0×1015 | 8.987584×1020 |
1Ф до 1948 г. = «farad international»: |
0.999505 | 9.995052×10-10 | 1,0 | 9.995052×105 | 8.9831369×1011 |
1 микрофарад = μФ = μF: | 1.0×10-6 | 1.0×10-15 | 1.000495×10-6 | 1,0 | 8.987584×105 |
1 Статфарад = статФ = Statfarad = единица СГСЭ = ES unit это: | 1.112646×10-12 | 1.112646×10-21 | 1.131968×10-12 | 1.112646×10-6 | 1,0 |
- Приставки: мили-, микро-, нано-, пико- — таблица тут
- Формулы емкости конденсатора.
Область применения
В фарадах измеряют электрическую ёмкость проводников, то есть их способность накапливать электрический заряд. Например, в фарадах (и производных единицах) измеряют: ёмкость кабелей, конденсаторов, межэлектродные ёмкости различных приборов. Промышленные конденсаторы имеют номиналы, измеряемые в микро-
,нано- ипикофарадах и выпускаются ёмкостью до ста фарад; в звуковой аппаратуре используются гибридные конденсаторы ёмкостью до сорока фарад. Ёмкость т. н. ионисторов (супер-конденсаторов с двойным электрическим слоем) может достигать многих килофарад.
Не следует путать электрическую ёмкость и электрохимическую ёмкость батареек и аккумуляторов, которая имеет другую природу и измеряется в других единицах: ампер-часах, соразмерных электрическому заряду (1 ампер-час равен 3600 кулонам).
Единицы измерения
C= e*S/d
e – это величина электрической проницаемости диэлектрика, расположенного между обкладками.
- S – площадь одной из обкладок(в метрах).
- d – расстояние между обкладками(в метрах).
- C – величина емкости вфарадах.
Что такое фарада? У конденсатора емкостью в одну фараду, напряжение между обкладками поднимается на один вольт, при получении электрической энергии количеством в один кулон. Такое количество энергии протекает через проводник в течении одной секунды, при токе в 1 ампер. Свое название фарада получила в честь знаменитого английского физика – М. Фарадея.
1 Фарада – это очень большая емкость. В обыденной практике используют конденсаторы гораздо меньшей емкости и для обозначения применяются производные от фарады:
- 1 Микрофарада – одна миллионная часть фарады.10-6
- 1 нанофарада – одна миллиардная часть фарады. 10-9
- 1 пикофарада -10-12 фарады.
код | пикофарады, пФ, pF | нанофарады, нФ, nF | микрофарады, мкФ, μF |
109 | 1.0 пФ | ||
159 | 1.5 пФ | ||
229 | 2.2 пФ | ||
339 | 3.3 пФ | ||
479 | 4.7 пФ | ||
689 | 6.8 пФ | ||
100 | 10 пФ | 0.01 нФ | |
150 | 15 пФ | 0.015 нФ | |
220 | 22 пФ | 0.022 нФ | |
330 | 33 пФ | 0.033 нФ | |
470 | 47 пФ | 0.047 нФ | |
680 | 68 пФ | 0.068 нФ | |
101 | 100 пФ | 0.1 нФ | |
151 | 150 пФ | 0.15 нФ | |
221 | 220 пФ | 0.22 нФ | |
331 | 330 пФ | 0.33 нФ | |
471 | 470 пФ | 0.47 нФ | |
681 | 680 пФ | 0.68 нФ | |
102 | 1000 пФ | 1 нФ | |
152 | 1500 пФ | 1.5 нФ | |
222 | 2200 пФ | 2.2 нФ | |
332 | 3300 пФ | 3.3 нФ | |
472 | 4700 пФ | 4.7 нФ | |
682 | 6800 пФ | 6.8 нФ | |
103 | 10000 пФ | 10 нФ | 0.01 мкФ |
153 | 15000 пФ | 15 нФ | 0.015 мкФ |
223 | 22000 пФ | 22 нФ | 0.022 мкФ |
333 | 33000 пФ | 33 нФ | 0.033 мкФ |
473 | 47000 пФ | 47 нФ | 0.047 мкФ |
683 | 68000 пФ | 68 нФ | 0.068 мкФ |
104 | 100000 пФ | 100 нФ | 0.1 мкФ |
154 | 150000 пФ | 150 нФ | 0.15 мкФ |
224 | 220000 пФ | 220 нФ | 0.22 мкФ |
334 | 330000 пФ | 330 нФ | 0.33 мкФ |
474 | 470000 пФ | 470 нФ | 0.47 мкФ |
684 | 680000 пФ | 680 нФ | 0.68 мкФ |
105 | 1000000 пФ | 1000 нФ | 1 мкФ |
Маркировка четырьмя цифрами
Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например, 1622 = 162*102 пФ = 16200 пФ = 16.2 нФ.
Буквенно-цифровая маркировка
При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:
15п = 15 пФ , 22p = 22 пФ , 2н2 = 2.2 нФ , 4n7 = 4,7 нФ , μ33 = 0.33 мкФ
Очень часто бывает трудно отличить русскую букву «п» от английской «n». Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например: 0R5 = 0,5 пФ , R47 = 0,47 мкФ , 6R8 = 6,8 мкФ.
Планарные керамические конденсаторы
Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой.
Пример:
N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*101пФ = 33пФ
S3 /по таблице S=4.7/ = 4.7*103пФ = 4700пФ = 4,7нФ
Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.
Планарные электролитические конденсаторы
Электролитические SMD конденсаторы маркируются двумя способами:
1) Емкостью в микрофарадах и рабочим напряжением, например: 10 6.3V = 10мкФ на 6,3В.
2) Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для получения емкости в пикофарадах.
Будет интересно Что такое полярность конденсатора и как ее определить?
Полоска на таких конденсаторах указывает положительный вывод. Пример: по таблице «A» — напряжение 10В, 105 — это 10*105 пФ = 1 мкФ, т.е. это конденсатор 1 мкФ на 10В
Цифро-буквенное обозначение
Если вы разбираете старую советскую аппаратуру, то там все будет довольно просто, – на корпусах так и написано «22пФ», что значит 22 пикофарад, или «1000 мкФ», что значит 1000 микрофарад. Старые советские конденсаторы обычно были достаточного размера чтобы на них можно было писать такие «длинные тексты».
Общемировая, если можно так сказать, цифро-буквенная маркировка предполагает использование букв латинского алфавита:
- p – пикофарады,
- n – нанофарады
- m – микрофарады.
При этом полезно помнить, что если за единицу емкости условно принять пикофарад (хотя, это и не совсем правильно), то буквой «p» будут обозначаться единицы, буквой «n» – тысячи, буквой «m» – миллионы. При этом, букву будут использовать как децимальную точку. Вот наглядный пример, конденсатор емкостью 2200 пФ, по такой системе будет обозначен 2n2, что буквально значит «2,2 нанофарад». Или конденсатор емкостью 0,47 мкФ будет обозначен m47, то есть «0,47 микрофарад».
Будет интересно Что такое плоские конденсаторы
Причем у конденсаторов отечественного производства встречается аналогичная маркировка в кириллице, то есть, пикофарады обозначают буквой «П», нанофарады – буквой «Н», микрофарады -буквой «М». А принцип тот же: 2Н2 – это 2,2 нанофарад, М47 – это 0,47 микрофарад. У некоторых типов миниатюрных конденсаторов «мкФ» обозначается буквой R, которая тоже используется как децимальная точка, например:
1R5 =1,5 мкФ.
Нанофарад (nF), электрическая ёмкость
Получается, что конденсаторы с маркировкой M10С и 100nJ обладают одинаковой ёмкостью. Различия лишь в записи.
Таким образом, ёмкость от 0,1 мкФ и выше указывается с буквой M, m вместо десятичной запятой, незначащий ноль опускается.
Номинальную ёмкость отечественных конденсаторов до 100 пФ обозначают в пикофарадах, ставя букву П или p после числа.
Если ёмкость менее 10 пФ, то ставиться буква R и две цифры. Например, 1R5 = 1,5 пФ.
На керамических конденсаторах (типа КМ5, КМ6), которые имеют малые размеры, обычно указывается только числовой код. Вот, взгляните на фото.
Керамические конденсаторы с нанесённой маркировкой ёмкости числовым кодом
Например, числовая маркировка 224 соответствует значению 220000 пикофарад, или 220 нанофарад и 0,22 мкФ.
В данном случае 22 это числовое значение величины номинала. Цифра 4 указывает на количество нулей. Получившееся число является значением ёмкости в пикофарадах. Запись 221 означает 220 пФ, а запись 220 – 22 пФ. Если же в маркировке используется код из четырёх цифр, то первые три цифры – числовое значение величины номинала, а последняя, четвёртая – количество нулей.
Так при 4722, ёмкость равна 47200 пФ – 47,2 нФ. Думаю, с этим разобрались.
Допускаемое отклонение ёмкости маркируется либо числом в процентах (±5%, 10%, 20%), либо латинской буквой.
Иногда можно встретить старое обозначение допуска, закодированного русской буквой. Допустимое отклонение ёмкости аналогично допуску по величине сопротивления у резисторов.
Буквенный код отклонения ёмкости (допуск).
Так, если конденсатор со следующей маркировкой – M47C, то его ёмкость равна 0,047 мкФ, а допуск составляет ±10% (по старой маркировке русской буквой). Встретить конденсатор с допуском ±0,25% (по маркировке латинской буквой) в бытовой аппаратуре довольно сложно, поэтому и выбрано значение с большей погрешностью.
В основном в бытовой аппаратуре широко применяются конденсаторы с допуском H, M, J, K. Буква, обозначающая допуск указывается после значения номинальной ёмкости, вот так 22nK, 220nM, 470nJ.
Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости.
Допуск в % | Буквенное обозначение | |
лат. | рус. | |
± 0,05p | A | |
± 0,1p | B | Ж |
± 0,25p | C | У |
± 0,5p | D | Д |
± 1,0 | F | Р |
± 2,0 | G | Л |
± 2,5 | H | |
± 5,0 | J | И |
± 10 | K | С |
± 15 | L | |
± 20 | M | В |
± 30 | N | Ф |
-0…+100 | P | |
-10…+30 | Q | |
± 22 | S | |
-0…+50 | T | |
-0…+75 | U | Э |
-10…+100 | W | Ю |
-20…+5 | Y | Б |
-20…+80 | Z | А |
Маркировка конденсаторов по рабочему напряжению.
Немаловажным параметром конденсатора также является допустимое рабочее напряжение.
Его стоит учитывать при сборке самодельной электроники и ремонте бытовой радиоаппаратуры. Так, например, при ремонте компактных люминесцентных ламп необходимо подбирать конденсатор на соответствующее напряжение при замене вышедших из строя.
Не лишним будет брать конденсатор с запасом по рабочему напряжению.
Обычно, значение допустимого рабочего напряжения указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая). Например, так: 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.
Иногда применяется кодирование латинской буквой.
Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.
Номинальное рабочее напряжение, B | Буквенный код |
1,0 | I |
1,6 | R |
2,5 | M |
3,2 | A |
4,0 | C |
6,3 | B |
10 | D |
16 | E |
20 | F |
25 | G |
32 | H |
40 | S |
50 | J |
63 | K |
80 | L |
100 | N |
125 | P |
160 | Q |
200 | Z |
250 | W |
315 | X |
350 | T |
400 | Y |
450 | U |
500 | V |
Таким образом, мы узнали, как определить ёмкость конденсатора по маркировке, а также по ходу дела познакомились с его основными параметрами.
Маркировка импортных конденсаторов отличается, но во многом соответствует изложенной.
Главная » Радиоэлектроника для начинающих » Текущая страница
Также Вам будет интересно узнать:
Нанофарад (nF), электрическая ёмкость
Получается, что конденсаторы с маркировкой M10С и 100nJ обладают одинаковой ёмкостью. Различия лишь в записи.
Таким образом, ёмкость от 0,1 мкФ и выше указывается с буквой M, m вместо десятичной запятой, незначащий ноль опускается.
Номинальную ёмкость отечественных конденсаторов до 100 пФ обозначают в пикофарадах, ставя букву П или p после числа.
Если ёмкость менее 10 пФ, то ставиться буква R и две цифры. Например, 1R5 = 1,5 пФ.
На керамических конденсаторах (типа КМ5, КМ6), которые имеют малые размеры, обычно указывается только числовой код. Вот, взгляните на фото.
Керамические конденсаторы с нанесённой маркировкой ёмкости числовым кодом
Например, числовая маркировка 224 соответствует значению 220000 пикофарад, или 220 нанофарад и 0,22 мкФ.
В данном случае 22 это числовое значение величины номинала. Цифра 4 указывает на количество нулей. Получившееся число является значением ёмкости в пикофарадах. Запись 221 означает 220 пФ, а запись 220 – 22 пФ. Если же в маркировке используется код из четырёх цифр, то первые три цифры – числовое значение величины номинала, а последняя, четвёртая – количество нулей.
Так при 4722, ёмкость равна 47200 пФ – 47,2 нФ. Думаю, с этим разобрались.
Допускаемое отклонение ёмкости маркируется либо числом в процентах (±5%, 10%, 20%), либо латинской буквой.
Иногда можно встретить старое обозначение допуска, закодированного русской буквой. Допустимое отклонение ёмкости аналогично допуску по величине сопротивления у резисторов.
Буквенный код отклонения ёмкости (допуск).
Так, если конденсатор со следующей маркировкой – M47C, то его ёмкость равна 0,047 мкФ, а допуск составляет ±10% (по старой маркировке русской буквой). Встретить конденсатор с допуском ±0,25% (по маркировке латинской буквой) в бытовой аппаратуре довольно сложно, поэтому и выбрано значение с большей погрешностью.
В основном в бытовой аппаратуре широко применяются конденсаторы с допуском H, M, J, K. Буква, обозначающая допуск указывается после значения номинальной ёмкости, вот так 22nK, 220nM, 470nJ.
Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости.
Допуск в % | Буквенное обозначение | |
лат. | рус. | |
± 0,05p | A | |
± 0,1p | B | Ж |
± 0,25p | C | У |
± 0,5p | D | Д |
± 1,0 | F | Р |
± 2,0 | G | Л |
± 2,5 | H | |
± 5,0 | J | И |
± 10 | K | С |
± 15 | L | |
± 20 | M | В |
± 30 | N | Ф |
-0…+100 | P | |
-10…+30 | Q | |
± 22 | S | |
-0…+50 | T | |
-0…+75 | U | Э |
-10…+100 | W | Ю |
-20…+5 | Y | Б |
-20…+80 | Z | А |
Маркировка конденсаторов по рабочему напряжению.
Немаловажным параметром конденсатора также является допустимое рабочее напряжение.
Его стоит учитывать при сборке самодельной электроники и ремонте бытовой радиоаппаратуры. Так, например, при ремонте компактных люминесцентных ламп необходимо подбирать конденсатор на соответствующее напряжение при замене вышедших из строя.
Не лишним будет брать конденсатор с запасом по рабочему напряжению.
Обычно, значение допустимого рабочего напряжения указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая). Например, так: 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.
Иногда применяется кодирование латинской буквой.
Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.
Номинальное рабочее напряжение, B | Буквенный код |
1,0 | I |
1,6 | R |
2,5 | M |
3,2 | A |
4,0 | C |
6,3 | B |
10 | D |
16 | E |
20 | F |
25 | G |
32 | H |
40 | S |
50 | J |
63 | K |
80 | L |
100 | N |
125 | P |
160 | Q |
200 | Z |
250 | W |
315 | X |
350 | T |
400 | Y |
450 | U |
500 | V |
Таким образом, мы узнали, как определить ёмкость конденсатора по маркировке, а также по ходу дела познакомились с его основными параметрами.
Маркировка импортных конденсаторов отличается, но во многом соответствует изложенной.
Главная » Радиоэлектроника для начинающих » Текущая страница
Также Вам будет интересно узнать:
Область применения
В фарадах измеряют электрическую ёмкость проводников, то есть их способность накапливать электрический заряд. Например, в фарадах (и производных единицах) измеряют: ёмкость кабелей, конденсаторов, межэлектродные ёмкости различных приборов. Промышленные конденсаторы имеют номиналы, измеряемые в микро-
,нано- ипикофарадах и выпускаются ёмкостью до ста фарад; в звуковой аппаратуре используются гибридные конденсаторы ёмкостью до сорока фарад.
Не следует путать электрическую ёмкость и электрохимическую ёмкость батареек и аккумуляторов, которая имеет другую природу и измеряется в других единицах: ампер-часах, соразмерных электрическому заряду (1 ампер-час равен 3600 кулонам).