Почему мощность машины измеряется в лошадиных силах и как их считают

Как рассчитать число ампер в сети

На практике применяют разные схемы вычислений. В частности, пользуются автоматизированными программами (калькуляторами). Такие инструменты предлагают бесплатно специализированные сайты в режиме онлайн. Ниже представлены формулы и примеры, которые помогут рассчитывать электрические параметры самостоятельно.

Как узнать ток, зная мощность и напряжение

Источник питания постоянного тока (аккумулятор) обеспечивает напряжение на выходе 12 Вольт. Известна мощность потребления – 2 Вт. Как рассчитать ампераж, показано на примере:

I=P/U=2/12=0,167 А.

К сведению. Для удобства на практике применяют дробные и кратные величины. В данном примере – 167 мА (миллиампер).

Как узнать напряжение, зная силу тока

Выше показано, как посчитать амперы, зная мощность и напряжение. Эту же формулу используют для обратного действия. Если сила тока равна 200 мА, при мощности 2 Вт в точках измерения, прибор покажет следующее напряжение:

U = P/I = 2/0,2 = 10 V.

Как рассчитать мощность, зная силу тока и напряжение

Результат можно вычислить с помощью следующего примера:

P = I*U = 0,2 * 10 = 2 Вт.

Формулы для расчета мощности

В левой части рисунка приведена формула для расчета механической мощности:

  • А – полезная работа в Джоулях;
  • t – временной период, за который выполнена эта операция.

Как определить мощность цепи, имея тестер сопротивления

В реальных условиях существенное влияние оказывает электрическое сопротивление проводника. Выбрав соответствующий режим, можно узнать действительное значение с помощью мультитестера. Переключатель устанавливают в положение, которое соответствует определенному диапазону. Переходят от больших значений к малым до появления индикации на экране.

При R=20 Ом, зная силу тока I= 200 мА, мощность вычисляют по следующей формуле:

P = I2*R = 0,04*20 = 0,8 Вт.

При необходимости уточняют напряжение:

U = I*R = 0,2*20 = 4 V.

Формула расчета сечения провода

Площадь сечения цилиндрического проводника вычисляют по стандартной геометрической формуле подсчета:

S = π * (D/2)2,

где:

  • π – число Пи (3,14);
  • D – диаметр.

При отсутствии специализированных инструментов узнавать размер можно с применением подручных средств. Взяв карандаш или другую подходящую основу с одинаковой шириной по продольной оси, наматывают последовательно провод. Приложив конструкцию к линейке, уточняют длину. Делением на количество витков получают диаметр проводника. Далее пользуются рассмотренной выше формулой.

Таблица ватт ампер для выбора сечения проводников по максимальному току (суммарной мощности потребления)

Площадь сечения, мм кв. Материал проводника
Алюминий Медь
Напряжение 220 V Напряжение 380 V Напряжение 220 V Напряжение 380 V
Ток (I), А Мощность потребления (P), киловатт за час I P I P I P
2,5 20 4,4 19 12,5 27 5,9 25 16,5
4 28 6,1 23 15,1 38 8,3 30 19,8
6 36 7,9 30 19,8 46 10,1 40 26,4
10 50 11 39 25,7 70 15,4 50 33
16 60 13,2 55 36,3 85 18,7 75 49,5

Расчет тока по мощности и напряжению

Основные формулы не только показывают, как посчитать амперы. Они демонстрируют зависимость тока от напряжения, мощности, сопротивления:

  • I = P/U;
  • I = U/ R;
  • I = √P/R.

При большой длине проводника существенно возрастает влияние потерь, которые определяются особенностями определенного материала. Часть энергии используется впустую на обогрев окружающего пространства. Приходится делать коррекции для устойчивого питания конкретной нагрузки.

Для учета этого фактора делают уточненный расчет сопротивления:

R= (p*L)/ S,

где:

  • p – удельный коэффициент (0,03 – алюминий, 0,0175 – медь);
  • L – длина линии.

Вычисляют процентное отношение потерь по напряжению в идеальных условиях и с учетом удельного сопротивления определенного материала. Если полученное значение более 5%, выбирают кабельную продукцию с большим сечением из серийной номенклатуры.

Важно! При расчете умножают длину на два, чтобы учесть потери во всей цепи питания (от источника до подключенного оборудования и обратно)

Вращательный момент

Этот термин имеет несколько синонимов: момент силы, момент двигателя, Вращательный момент, вертящий момент. Все они используются для обозначения одного показателя, хотя с точки зрения физики эти понятия не всегда тождественны.

В целях унификации терминологии были разработаны стандарты, которые приводят все к единой системе. Поэтому в технической документации всегда используются словосочетание «крутящий момент». Он представляет собой векторную физическую величину, которая равна произведению векторных значений силы и радиуса. Вектор радиуса проводится от оси вращения к точке приложенной силы. С точки зрения физики разница между крутящим и вращательным моментом заключается в точке прикладывания силы. В первом случае это внутреннее усилие, во втором — внешнее. Измеряется величина в ньютон-метрах. Однако в формуле мощности электродвигателя крутящий момент используется как основное значение.

Рассчитывается он как

M = F × r, где:

M — крутящий момент, Нм;

F — прикладываемая сила, H;

r — радиус, м.

Для расчета номинального вращающего момента привода используют формулу

Мном = 30Рном ÷ pi × нном, где:

Рном — номинальная мощность электрического двигателя, Вт;

нном — номинальное число оборотов, мин-1.

Соответственно, формула номинальной мощности электродвигателя бедует выглядеть следующим образом:

Рном = Мном * pi*нном / 30.

Обычно все характеристики указаны в спецификации. Но бывает, что приходится работать с совершенно новыми установками, информацию о которых найти очень сложно. Для расчета технических параметров таких устройств берут данные их аналогов. Также всегда известны только номинальные характеристики, которые даются в спецификации. Реальные данные необходимо рассчитывать самостоятельно.

Выбор генератора по мощности

Выбирая генератор, потребитель обращает внимание на различные параметры установки – вес, запас моторесурса, мобильность, наличие дополнительного функционала, цену, и т.д. Но в первую очередь необходимо выбирать установку, ориентируясь на ее мощность

Как правильно рассчитать этот показатель и на что обратить внимание?

Чтобы было понятней, разберем эту ситуацию на простом примере. Допустим, в нашем пользовании имеются такие бытовые приборы: пылесос, калорифер, морозильник. Мощность этих бытовых приборов составляет соответственно 1 кВт, 2 кВт и 0,3 кВт. Получается, чтобы обеспечить работу этих приборов, нам необходим генератор мощностью не менее 3 кВт. Чтобы понять это, разберемся в таком понятии, как номинальная мощность генератора.

Номинальная, или, как ее еще называют, реальная мощность установки, существенно отличается от максимальной. В технической документации производители чаще всего указывают именно максимальные показатели по мощности для данной модели генератора. Стоит отметить, что с такой нагрузкой установка без критических последствий может работать очень непродолжительное время – в некоторых случаях это секунды, иногда 1-2 минуты. В то же время реальная, или номинальная мощность несколько ниже максимального показателя. Для ее расчета необходим коэффициент мощности cos φ. Этот показатель определяется отношением активной мощности к полной.

Особенности расчёта в цепях переменного электричества

Чтобы выполнить расчёты P, потребляемой нагрузкой в цепях изменяющегося электричества, нужно чётко разделять схемы включения. Они могут быть однофазными и трёхфазными.

В однофазных цепях P находят, перемножив значение силы тока на значение напряжения (220 В). При этом учитывают наличие фазного сдвига между ними.

В трёхфазных сетях с напряжением 380 В рассматривают два случая:

  • симметричная нагрузка по фазам;
  • ассиметричная нагрузка фаз.

В первом случае P находят по формуле:

Во втором случае необходимо рассчитывать P для каждой фазы (А, В, С). Общее значение P – это результат суммирования:

P общ = PфА + PфВ + PфС.

Внимание! Когда необходимо найти полную мощность трёхфазной цепи, находят по такому же принципу значения реактивной Q. Рассчитать ток по мощности, зная, какое напряжение: фазное (220 В) или линейное (380 В), можно и в этом случае, выразив его из общей формулы P

Рассчитать ток по мощности, зная, какое напряжение: фазное (220 В) или линейное (380 В), можно и в этом случае, выразив его из общей формулы P.

Мощность двигателя автомобиля

Какую реальную мощность развивает двигатель вашего автомобиля при различных режимах и условиях движения? Чаще — совсем не ту, что записана в свидетельстве о регистрации транспортного средства. Узнаем ответ на этот вопрос, вспомнив элементарную физику…

…и выполнив простой расчет в Excel.

Известно, что коэффициент полезного действия (КПД) нового современного бензинового автомобильного двигателя продолжает оставаться очень низким. Его значение составляет всего 20…25% и достигается лишь во время оптимального режима работы — при выходе на максимальную мощность при номинальных оборотах!

Потери величиной около 80% возникают в следствие:

— неполного сгорания бензина (около 25%. );

— потерь на трение в подвижных узлах мотора (около 5%);

— потерь тепла через систему охлаждения и систему отвода выхлопных газов (около 50%. ).

КПД прямо (но не линейно) пропорционален развиваемой мощности двигателя автомобиля. При работе двигателя с частотой 2500…3500 оборотов в минуту его реальный КПД не достигает и 10%.

Трудно представить, но каждые девять литров топлива из десяти рассеиваются в виде тепла в окружающем пространстве и «вылетают в трубу» в буквальном смысле этого слова. И только один литр бензина из десяти, сгорая, совершает полезную работу – перемещает автомобиль в пространстве.

КПД современного дизельного двигателя в оптимальном режиме достигает несколько большего значения — 40%. Поэтому дизельные двигатели существенно экономичнее бензиновых собратьев.

Как рассчитать мощность трансформатора

Особенность работы стандартного трансформатора представлена процессом преобразования электроэнергии переменного тока в показатели переменного магнитного поля и наоборот. Самостоятельный расчет трансформаторной мощности может быть выполнен в соответствии с сечением сердечника и в зависимости от уровня нагрузки.

Расчет обмотки преобразователя напряжения и его мощности

По сечению сердечника

Электромагнитный аппарат имеет сердечник с парой проводов или несколькими обмотками. Такая составляющая часть прибора, отвечает за активное индукционное повышение уровня магнитного поля. Кроме всего прочего, устройство способствует эффективной передаче энергии с первичной обмотки на вторичную, посредством магнитного поля, которое концентрируется во внутренней части сердечника.

Читать также: Магнитные углы для сварки

Параметрами сердечника определяются показатели габаритной трансформаторной мощности, которая превышает электрическую.

Расчетная формула такой взаимосвязи:

Sо х Sс = 100 х Рг / (2,22 х Вс х А х F х Ко х Кc), где

  • Sо — показатели площади окна сердечника;
  • Sс — площадь поперечного сечения сердечника;
  • Рг — габаритная мощность;
  • Bс — магнитная индукция внутри сердечника;
  • А — токовая плотность в проводниках на обмотках;
  • F — показатели частоты переменного тока;
  • Ко — коэффициент наполненности окна;
  • Кс — коэффициент наполненности сердечника.

Показатели трансформаторной мощности равны уровню нагрузки на вторичной обмотке и потребляемой мощности из сети на первичной обмотке.

По нагрузке

При выборе трансформатора учитывается несколько основных параметров, представленных:

  • категорией электрического снабжения;
  • перегрузочной способностью;
  • шкалой стандартных мощностей приборов;
  • графиком нагрузочного распределения.

В настоящее время типовая мощность трансформатора стандартизирована.

Чтобы выполнить расчет присоединенной к трансформаторному прибору мощности, необходимо собрать и проанализировать данные обо всех подключаемых потребителях. Например, при наличии чисто активной нагрузки, представленной лампами накаливания или ТЭНами, достаточно применять трансформаторы с показателями мощности на уровне 250 кВА.

Что такое электродвигатель?

Электрический двигатель представляет собой устройство, которое преобразует электрическую энергию в механическую. Работа большинства агрегатов зависит от взаимодействия магнитного поля с обмоткой ротора, которая выражается в его вращении. Функционируют они от источников питания постоянного или переменного тока. В качестве питающего элемента может выступать аккумулятор, инвертор или розетка электросети. В некоторых случаях двигатель работает в обратном порядке, то есть преобразует механическую энергию в электрическую. Такие установки находят широкое применение на электростанциях, работающие от потока воздуха или воды.

Электродвигатели классифицируют по типу источника питания, внутренней конструкции, применению и мощности. Также приводы переменного тока могут иметь специальные щетки. Они функционируют от однофазного, двухфазного или трехфазного напряжения, имеют воздушное или жидкостное охлаждение. Формула мощности электродвигателя переменного тока

P = U х I,

где P — мощность, U — напряжение, I — сила тока.

Приводы общего назначения со своими размерами и характеристиками находят применение в промышленности. Самые большие двигатели мощностью более 100 Мегаватт используют на силовых установках кораблей, компрессорных и насосных станций. Меньшего размера используют в бытовых приборах, как пылесос или вентилятор.

Что вызывает низкий коэффициент мощности cos φ (cos фи) в электрической системе?

В разделе Техника на вопрос для чего нужен тангенс фи в электроэнергетики? При tgф<0 потребитель выдает реактивную мощность (емкостной характер) , при tgф>1 потребитель потребляет реактивную мощность (индуктивный характер).

Рассмотрев треугольник сопротивлений, можно понять смысл термина «тангенс фи». Это отношение между реактивной и активной составляющими нагрузки. Тангенс угла потерь также используется в электроэнергетике, но более привычным является показатель cos(φ).

Часть электрической мощности, пришедшая к потребителю, используется для совершения полезной работы и тепловое рассеяние на нагрузке у потребителя. Почему фазовый сдвиг приводит к потерям электроэнергии? Если активное сопротивление проводника просто рассеивает электроэнергию, переводя ее в тепловую, то фазовый сдвиг между током и напряжением приводит к повышенному расходу энергии на электростанции. Отношение активной мощности, потребляемой в нагрузке, и полной мощности, подаваемой на нагрузку по линии электропередач, численно равно cos(φ), где φ – угол фазового сдвига между током и напряжением. С другой стороны, 0% — крайне нежелательный вариант, когда φ=π/2, cos(φ)=0, при этом вся подаваемая мощность переменного тока отражается от реактивной нагрузки и рассеивается в подводящих проводах.

Р — мощность активная,Q — мощность реактивная. Главный инженер ЭнергосбытаА.

Мне тут в акте о разграничении балансовой ответственности МКС прописал Базовый коэффициент реактивной мощности тангенс Фи, который равен 0,2. Это как понимать?

Активный и реактивный токи, протекающие в проводе, складываются в один общий ток, который замеряется амперметром. Отношение активной мощности к полной называется коэффициентом мощности. Для удобства технических расчетов коэффициент мощности выражают через косинус условного угла «фи» (cosφ).

Коэффициент мощности (cos φ) это параметр, характеризующий искажения формы тока, потребляемого от электросети переменного тока. Важный показатель потребителя электроэнергии. Для оценки и расчетов цепей переменного тока используются действующие значения тока и напряжения. Вольтметры и амперметры переменного тока показывают именно действующие значения. Полная мощность в цепях переменного тока равна квадратному корню из суммы квадратов активной и реактивной мощностей. Фазового сдвига нет, cos φ = 1, вся энергия из сети переходит в активную мощность на нагрузке.

Косинус фи (cos φ) — это косинус угла между фазой напряжения и фазой тока. При активной нагрузке фаза напряжения совпадает с фазой тока, φ (между фазами) равен 0 (нулю). Попытаемся вычислить мощность для простоты возьмем максимальное значение напряжения равное 1(100%) в этот момент ток равен 0(нулю) соответственно их произведение, то есть мощность равны 0(нулю). И наоборот когда ток максимальный напряжение равно нулю. Получается что полезная, активная мощность равна 0(нулю). Счетчики активной мощности фиксируют соответственно только активную мощность.

Попробуем популярно объяснить причину такого уважения электриков к тригонометрической функции cos φ. «Косинус-фи» в электроэнергетике еще называют коэффициентом мощности. Численно коэффициент мощности равен косинусу этого фазового сдвига. Источниками реактивной мощности в сети переменного тока являются катушки индуктивности и конденсаторы. Большинство потребителей электрической энергии имеют обмотки на магнитопроводах, т.е. представляют собой индуктивность. Тогда в однофазной цепи cos φ = P / (U х I), где Р, U, I — показания ваттметра, вольтметра и амперметра, соответственно.

В тренде:

  • Как Путин обошел Обаму в списке «Форбс»?Если это действительно так, то Путин с легкостью попадает в первую десятку богатейших людей мира по версии журнала Forbes. Этот журнал ежегодно проводит публикацию рейтинга самых богатых
  • Когда можно съесть банан, а когда нельзяЛучше всего их кушать утром, когда ваш организм так жаден к питательным веществам. Возможно, банан – именно то, чего в этот момент так не хватает организму. Съеденный банан перед сном
  • Типичные ошибки при приготовлении пломбираЕго разводят в молоке, а после заваривают до густоты. Если в пломбир добавляют ароматизаторы или ягоды и фрукты, то делать это нужно на заключительном этапе приготовления, уже пред тем как

Как определить параметры двигателя без шильдика?

Иногда возникает необходимость подобрать новый электродвигатель на замену вышедшему из строя. Обычно аналог подбирают, исходя из информации на шильдике. Но что делать, если шильдик отсутствует или совсем не читается и паспорт изделия отсутствует?

Ориентировочно мощность электродвигателя можно определить по его габаритам и диаметру вала. При одинаковых размерах и большем диаметре вала мощность на валу будет больше, а частота оборотов – меньше.

Если двигатель уже подключен, то примерная мощность определяется по уставкам защитных устройств, через которые он питается (мотор-автомат, тепловое реле). Если привод подключен через преобразователь частоты, мощность будет равна либо меньше мощности ПЧ.

Еще один способ – включить двигатель на номинальную мощность, обеспечив нужную нагрузку на валу. После этого нужно померить токоизмерительными клещами ток двигателя, который должен быть одинаков по всем обмоткам. На основании измеренного тока определяется мощность.

Также приблизительно оценить мощность асинхронного двигателя, подключенного по схеме «звезда», можно, разделив его номинальный измеренный ток на 2. Для двигателей менее 1,5 кВт из-за потерь ток нужно делить на 2,2…2,5, для мощности более 30 кВт этот эмпирический коэффициент будет равен 1,8…1,9.

Если нет шильдика, косвенно мощность можно определить и по сопротивлению обмоток, заодно проверив их целостность. Для этого необходимо измерить сопротивления при помощи омметра и сравнить их с сопротивлением двигателей известных мощностей, либо обратиться к информации от производителей.

Как было сказано выше, частоту оборотов двигателя можно оценить по диаметру вала. Но есть и другие способы.

Согласно известной формуле, скорость вращения электродвигателя равна 60F/P, где F — частота питающей сети (50 Гц), Р – количество пар полюсов статора.

Полюсы можно посчитать, сняв переднюю или заднюю крышку. В двухполюсном электродвигателе (Р = 1) на каждую фазу приходится одна обмотка, содержащая 2 катушки, итого для трех фаз 6 катушек. Исходя из способа намотки нужно определить конфигурацию катушки, затем установить способ намотки всего статора. При количестве пар полюсов Р = 1 скорость вращения составит 3000 об/мин, при P = 2 – 1500 об/мин и так далее.

Отметим, что реальная скорость вращения двигателя отличается от расчетной за счет механических потерь и скольжения электромагнитного поля. У маломощных двигателей рабочая скорость под нагрузкой может быть ниже расчетной на 10-15 %.

Напряжение можно определить по схеме включения. Если двигатель подключен «звездой», его питающее линейное напряжение равно 380 В, а если «треугольником» – 220 В. Тогда в первом случае электродвигатель можно питать от сети напрямую, во втором – от однофазной сети через конденсатор или преобразователь частоты.

В большинстве новых двигателей для определения схемы включения достаточно вскрыть коробку борно. В ней расположены три пары проводов, подключенных по одной из схем, а на обратной стороне крышки борно указаны схемы и напряжения питания.

Коэффициент мощности

Коэффициент использования производственной мощности

Косинус фи является тем параметром, который характеризует деформацию синусоиды тока, используемого от электрической сети переменного тока, согласно картинке ниже. Он является основным критерием, определяющим потери в проводах и на внутреннем сопротивлении сети.

Искажение тока

Косинус фи, основываясь на таблице стандартов энергопотребления, имеет такие показатели:

  1. Отличный – при значениях от 0,95 до 1;
  2. Хороший – при значениях от 0,8 до 0,95;
  3. Удовлетворительный – при значениях от 0,65 до 0,8;
  4. Неудовлетворительный – при значениях ниже 0,65.

Коэффициент мощности асинхронного двигателя и генератора

Поскольку статор и ротор асинхронного двигателя выполнены путем намотки медного провода, то, помимо активной составляющей, имеется индуктивная и емкостная составляющая сопротивления. Соответственно, каждую половину периода колебания с частотой f в сеть возвращается некоторое количество электричества. Негативными последствиями такой операции, помимо паразитного нагрева проводов, является, по сути, вырабатывание генератором электроэнергии, часть которой расходуется впустую, путем циркулирования между генератором и двигателем. Для частных случаев величина реактивных токов является малой, однако если речь идет о больших предприятиях, то величина реактивной мощности может быть настолько велика, что может повлиять на энергосистему целого региона.

Наличие заниженного коэффициента мощности влечет за собой ряд неблагоприятных проявлений:

  • Применение в линиях электропередач проводов большего сечения и использование электрических и трансформаторных станций большей мощности;
  • Снижение коэффициента полезного действия генерирующих и трансформирующих элементов цепи;
  • Снижение полезного напряжения и мощности в проводах.

Мероприятия по увеличению cosφ направлены на:

  1. Максимальное сокращение потерь электрической энергии;
  2. Применение оптимального количества цветных металлов в процессе формирования электропроводящей аппаратуры;
  3. Использование электрических двигателей, трансформаторов, генераторов и других устройств, работающих на переменном токе, с максимальной пользой и для увеличения их срока службы. Соответственно, улучшение коэффициента мощности неизбежно влечет за собой увеличение коэффициента полезного действия питающей сети.

К основным методам по увеличению коэффициента мощности относятся:

  1. Компенсация реактивного компонента путем включения в цепь элемента с обратным действием. Промышленные предприятия, имеющие в питающей сети большой индуктивный компонент, с целью его уменьшения применяют электротехнику, собранную на конденсаторах. В связи с этим циркуляция паразитных составляющих проходит между потребителями и установкой, не принося вред питающей сети;
  2. Осмысленный подход к технологическому процессу и разумное рассредоточение нагрузок с целью увеличения коэффициента мощности.

Для таких целей прибегают к таким мероприятиям:

  • Использование оптимальной нагрузки на электрические двигатели в процессе эксплуатации;
  • Исключить использование оборудования, потребляющего индуктивную мощность, без нагрузки или в режиме холостого хода;
  • Использование электрических двигателей с другими характеристиками.

Разобравшись, что такое коэффициент мощности, и осознав техпроцессы, проходящие в питающей сети, при наличии паразитных мощностей можно обоснованно подходить к вопросу выбора оборудования, отвечающего характеристикам этой сети. Второстепенный, на первый взгляд, показатель косинус фи является важным критерием, как для поставщиков электрической энергии, так и для различных ее потребителей.

Формула мощности электродвигателя

Формула мощности электродвигателя может учитывать массу нюансов технологического процесса. Благодаря развитию IT-технологий сегодня найти способы расчета такого показателя не составляет труда. А вот выбрать в огромном количестве предложенных вариантов тот, который подойдет именно вам, как показывает практика, не так-то просто.

Чтобы вы не растерялись в огромном количестве методичек и рекомендаций интернета, предлагаем универсальный вариант формулы, который подойдет практически для любого случая. Выглядит она следующим образом.

P = T * Ω

,где:

  • P – потребляемая мощность электродвигателя (номинальная);
  • T – необходимый момент вращения на валу;
  • Ω – угловая скорость.

У экспликатов тоже есть свои формулы.

  1. Вращающий момент (T) считается как произведение требуемого усилия тяги и радиуса рабочего органа подключаемого механизма.
    • Усилие тяги (обозначается как Ft) можно рассчитать по формуле Ft = t*M*2,5, где t –коэффициент трения (берется из таблицы данных, для подшипников качения, например, он известен и равняется 0,02), а М – масса груза, который перемещает оборудование. Произведение корректируется на коэффициент Ньютона, который тоже известен и составляет 2,5.
  2. Радиус элемента вращения измеряют или берут из проектных/паспортных данных.
  3. Угловую скорость определяют так: Ω = число Пи (π, принимается как 3,14)*n/30 (n – частота вращательного движения механизма, которое приводит в действие электродвигатель – берется из паспорта). Чтобы электродвигателя хватило с учетом возможных перегрузок привода, угловая скорость, рассчитанная приведенным способом, корректируется в большую сторону на коэффициент 1,5.

При расчете мощности электродвигателя надо делать поправку на тип соединения обмоток статора, от которого зависит значение рабочего тока. В соединениях типа «звезда» ток меньше в 1,73 раза, чем в соединениях «треугольник». Соответственно, для «звезды» показатель тоже надо уменьшать в 1,73 раза.

Мощность двигателя — как работает и что это такое,на что влияет

Изобретенный более 100 лет назад поршневой двигатель внутреннего сгорания (ДВС), на сегодняшний день все еще является самым распространенным в автомобилестроении. При выборе модели двигателя своего будущего автомобиля покупатель может предварительно ознакомиться с его основными характеристиками. В этой статье мы подробно расскажем об основных показателях двигателей внутреннего сгорания, что они собой представляют и как влияют на работу.

Важнейшими характеристиками двигателя являются его мощность, крутящий момент и обороты, при которых эта мощность и крутящий момент достигаются.

Обороты двигателя

Под широкоупотребимым термином «обороты двигателя» имеется в виду количество оборотов коленчатого вала в единицу времени (в минуту).

И мощность, и крутящий момент — величины не постоянные, они имеют сложную зависимость от оборотов двигателя. Эта зависимость для каждого двигателя выражается графиками, подобными нижеследующему:

Производители двигателей борются за то, чтобы максимальный крутящий момент двигатель развивал в как можно более широком диапазоне оборотов

(«полка крутящего момента была шире»), амаксимальная мощность достигалась при оборотах, максимально приближенных к этой полке.

Мощность двигателя

Чем выше мощность, тем большую скорость развивает авто

Мощность

— это отношение работы, выполняемой за некоторый промежуток времени, к этому промежутку времени. При вращательном движении мощность определяется как произведение крутящего момента на угловую скорость вращения.

Мощность двигателя последнее время все чаще указывают в кВт, а ранее традиционно указывали в лошадиных силах.

Как видно на приведенном выше графике, максимальная мощность и максимальный крутящий момент достигаются при различных оборотах коленвала. Максимальная мощность у бензиновых двигателей обычно достигается при 5-6 тыс. оборотов в минуту, у дизельных — при 3-4 тыс. оборотов в минуту.

График мощности для дизельного двигателя:

Крутящий момент

Крутящий момент характеризует способность ускоряться и преодолевать препятствия

Крутящий момент

(момент силы) — это произведение силы на плечо рычага. В случае кривошипно-шатунного механизма, данной силой является сила, передаваемая через шатун, а рычагом — кривошип коленчатого вала. Единица измерения — Ньютон-метр.

Иными словами, крутящий момент характеризует силу, с которой будет вращаться коленвал, и насколько успешно он будет преодолевать сопротивление вращению.

На практике высокий крутящий момент двигателя будет особенно заметен при разгонах и при передвижении по бездорожью: на скорости машина легче ускоряется, а вне дорог — двигатель выдерживает нагрузки и не глохнет.

Виды мощности

Для определения характеристик двигателя применяют такие понятия мощности как:

Индикаторной называют мощность, с которой газы давят на поршень. То есть, не учитываются никакие другие факторы, а только давление газов в момент их сгорания. Эффективная мощность, эта та сила, которая передается коленчатому валу и трансмиссии. Индикаторная будет пропорциональной литражу двигателя и среднему давлению газов на поршень.

Также есть параметр, называемый литровой мощность двигателя. Это соотношение объема двигателя к его максимальной мощности. Для бензиновых моторов литровая мощность составляет в среднем 30-45 кВт/л, а у дизельных – 10-15 кВт/л.

Формулы для расчета относительных сопротивлений обмоток (xT%)

В двухобмоточном трансформаторе все просто и uk=xt.

Трехобмоточный и автотрансформаторы

В данном случае схема эквивалентируется в три сопротивления (по секрету, одно из них частенько бывает равно нулю, что упрощает дальнейшее сворачивание).

Трехфазный у которого НН расщепленная

Частенько в схемах ТЭЦ встречаются данные трансформаторы с двумя ногами.

В данном случае всё зависит от исходных данных. Если Uk дано только для в-н, то считаем по верхней формуле, если для в-н и н1-н2, то нижней. Схема замещения представляет собой звезду.

Группа двухобмоточных однофазных трансформаторов с обмоткой низшего напряжения, разделенной на две или на три ветви

Хоть внешне и похоже на описанные выше, и схемы замещения подобны, однако, формулы будут немного разные.

Вы находитесь на странице, адап­ти­ро­ван­ной для быстрой загрузки

Источник