Визуальная линейная аппроксимация с помощью gnuplot

Покопаемся в расчётах

Давайте опишем синус с помощью вычислений. Как в случае с e, мы можем разбить синус на маленькие части:

  • Начнем с 0 и дорастем до единичной скорости
  • В каждый момент времени мы будем замедляться из-за отрицательного ускорения

И как обо всем этом думать? Посмотрите, как каждое наше действие изменяет расстояние от центра:

  • Наш первый скачок увеличивает расстояние линейно: у (расстояние от центра) = х (затраченное время)
  • В любой момент, мы чувствуем возвращающую силу -х. Мы интегрируем дважды, чтобы обратить отрицательное ускорение в расстояние:

Понимание того, как ускорение влияет на расстояние, похоже на наблюдение за тем, как прибавки влияют на ваш банковский счёт. «Прибавка» должна изменять ваш доход, а ваш доход изменяет состояние вашего банковского счёта (два интеграла «по команде»).

Так что после «х» секунд, мы уже догадаемся, что синус это «х» (начальный импульс) минус x^3/3! (эффект ускорения):

Что-то не так — синус не спадает! В случае с е мы видели, что «проценты приносят свои проценты», в случае с синусом происходит то же самое. «Возвращающая сила» меняет наше расстояние на -x^3/3!, что создает другую возвращающую силу. Рассмотрите пружину: если отпустить пружину с грузиком внизу, то толчок будет достаточно большим, чтобы создать другой толчок, который потянет грузик обратно вверх, а потом снова вниз. Ох уж эти неугомонные пружины!

Нам нужно рассмотреть каждую возвращающую силу:

  • y = x — это наше изначальное движение, которое создает возвращающую силу удара:
  • y = -x^3/3!, которая создает возвращающую силу удара:
  • y = x^5/5!, которая создает возвращающую силу удара:
  • y = -x^7/7!, которая создает возвращающую силу удара…

Точь-в-точь как е, синус можно описать бесконечным уравнением:

Я видел эту формулу много раз, но до меня дошел ее смысл только когда я представил синус как комбинацию начального импульса и возвращающих сил. Начальный импульс (y = x, растет вверх) в итоге превосходит возвращающая сила (которая толкает нас вниз), и эта сила в свою очередь постепенно компенсируется своей возвращающей силой (что снова толкает нас вверх), и так далее.

Пара интересных заметок:

  • Рассматривайте «возвращающую силу» как «положительный или отрицательный процент». Так проще понять связь синуса и е в формуле Эйлера. Синус ведет себя как е, кроме моментов, когда он начинает зарабатывать отрицательный процент. Тут нам еще надо поучиться :).
  • Для маленьких чисел «y = x» — неплохое предположение для синуса. Мы просто берем начальный импульс и игнорируем возвращающие силы.

Гибридный инвертор: оценка возможностей

Использование возобновляемой энергии солнца в комбинации с централизованным электроснабжением дает ряд преимуществ. Нормальное функционирование гелиосистемы невозможно без одного из ключевых элементов – инвертора.

Инвертор гелиосистемы – устройство для конвертации постоянного тока (DC), поступающего от фотоэлектрических панелей, в переменную электроэнергию. Именно на токе напряжением 220 В работает бытовая техника. Без инвертора выработка энергии бессмысленна.

Провести оценку возможностей гибридной модели лучше в сравнении с особенностями работы его ближайших конкурентов – автономных и сетевых «конвекторов».

Сетевой инвертор. Устройство работает на нагрузки общей электросети. Выход от преобразователя подсоединен к потребителям электроэнергии, сети АС. Схема отличается простотой, но имеет несколько ограничений:

  • работоспособность при доступности переменного тока в сети;
  • напряжение электросети должно быть относительно стабильным и соответствовать рабочему диапазону преобразователя.

Разновидность востребована в частных домах с действующим «зеленым» тарифом на электрификацию.

Днем при минимальном энергопотреблении, выработанный ток поступает в сеть по «зеленым» расценкам, с вечера до утра здание «подпитывается» от централизованного снабжения электричеством

Автономный инвертор. Прибор запитывается от аккумулятора, который получает заряд от солнечных панелей через МРРТ-контроллер. В системе используются батареи разных типов, в том числе высокотехнологичные литиевые аккумуляторы.

При максимальном «наполнении» аккумулирующего устройства излишек электроэнергии передается на вход инвертора, выход которого подсоединен с конечными потребителями АС. В случае недостатка солнечной активности энергия берется из аккумуляторных батарей и проходит «конвертацию» через инвертор напряжения.

Особенности работы автономной установки:

  • возможность независимой работы при отсутствии сетевого переменного тока;
  • некоторые модели поддерживают режим функционирования по «зеленому» тарифу;
  • КПД установок – 90-93%.

Для обеспечения абсолютной автономности объекта требуется точный расчет мощности гелиопанелей и достаточная энергоемкость аккумулятора.

Вариант независимого использования инвертора без включения в систему централизованного сетевого подключения. Автономный преобразователь востребован в местности с полным отсутствием или низким качеством подачи электричества

Гибридный инвертор. Модель отличается от выше описанных устройств особой «архитектурой» изготовления. Внутри предусмотрена особая электросхема, позволяющая в режиме преобразователя параллельно функционировать с источником тока (сетью, генератором).

Одновременно идет питание нагрузки от центральной сети и солнечных батарей, при этом функция приоритета отведена поставщику постоянного тока.

Гибридный преобразователь позволяет максимально эффективно потреблять энергию солнца, не переключаясь с сети электроснабжения от центральной станции или генератора

Конкурентные преимущества заложены в многофункциональности инверторов гибридного типа:

  1. Сеть – своего рода вместительный аккумулятор с КПД в 100%. Все излишки, выработанные фотоэлектрическими пластинами можно перенаправить в центральную сеть по «зеленому» тарифу.
  2. Обеспечение бесперебойного питания. При отключении основного электропитания система перестраивается в автономный режим, защищая всех потребителей от «скачков» напряжения.
  3. Повышение лимита мощности сети при пиковых нагрузках за счет добавления энергии от аккумуляторно-инверторного комплекса.

При спаде потребления гелиокомплекс переход в режим зарядки и через время вновь готов к использованию. Функция удвоенной мощности может обозначаться: Smart Boots, Power Shaving, Grid support.

Добавление мощности происходит по следующим принципам:

  • если используемая мощность ниже предельного сетевого потребления, то кроме питания нагрузки осуществляется заряд аккумулирующей батареи;
  • в отсутствии напряжения в сети расходуется электроэнергия, полученная от аккумулятора и преобразованная инвертором;
  • если нагрузка превышает граничное значение мощности сети, то недостаток восполняется аккумулированной электроэнергией от солнечной батареи.

Перечисленные режимы работы способны поддерживать гибридные модели с зарядным устройством.

Некоторые многофункциональные инверторы рассчитаны на одновременное подключение нескольких линий переменного тока для автоматического ввода резерва. Высокотехничные модели самостоятельно регулируют заряд аккумулятора

Устройство

Автономный инвертор с функциональной точки зрения представляет собой источник бесперебойного электропитания, дополненный многовходовым силовым коммутатором, формирователем выходного напряжения и снабженный блоком управления.

Алгоритм функционирования блока управления в ряде случаев может меняться в достаточно широких пределах.

Структурная схема этого устройства, на которой указаны отдельные блоки и приведены особенности их взаимодействия, представлена на рисунке 3.

Рисунок 3. Упрощенная структурная схема автономного инвертора

Считается, что согласование по типу тока (постоянный – переменный) и величин напряжений конкретного входа и общего выхода осуществляется в схеме коммутатора.

Внешний ввод, солнечная и аккумуляторные батареи, а также бензогенератор в данном случае рассматриваются как взаимно дополняющие друг друга источники энергии и не могут функционировать параллельно.

Порядок их подключения к выходу вводного щитка для последующего питания силовых потребителей может быть задан жестко с учетом приоритетов, установленных разработчиком оборудования.

У старших моделей инверторов имеется возможность самостоятельного определения этой последовательности пользователем или разработчиком проекта путем соответствующего программирования.

Это позволяет полноценно принять во внимание местные особенности электрохозяйства, реализуемого на конкретном объекте жилой недвижимости. При соответствующем программировании в режиме получения энергии от внешнего ввода или бензогенератора дополнительно возможен также заряд аккумуляторной батареи до уровня полной или иной также выбираемой емкости

При соответствующем программировании в режиме получения энергии от внешнего ввода или бензогенератора дополнительно возможен также заряд аккумуляторной батареи до уровня полной или иной также выбираемой емкости.

Работа инвертора

Инвертор является одним из трёх базовых элементов гелиоэлектростанции. В состав системы входят преобразователь, солнечная батарея и аккумулятор. Классическая схема работы гелиостанции заключается в том, что солнечная энергия, получаемая батареей в виде постоянного тока, расходуется на зарядку АКБ. Когда возникает нужда в дополнительном питании, преобразователь начинает забирать энергию аккумулятора, преобразуя её в переменный ток.

Инвертор (ИВ) – полупроводниковое устройство. В дневное время он подключён напрямую к солнечной панели. В ночное время суток прибор переключается на аккумуляторы.

Важно! Инвертор подбирают из расчёта максимальной мощности нагрузки в пике активности. Для простых моделей берут расчётную величину по номиналу, указанному в паспорте прибора. Работа солнечной электростанции

Работа солнечной электростанции

Прогнозирование

Способности нейронной сети к прогнозированию напрямую следуют из ее способности к обобщению и выделению скрытых зависимостей между входными и выходными данными. После обучения сеть способна предсказать будущее значение некой последовательности на основе нескольких предыдущих значений и/или каких-то существующих в настоящий момент факторов. Следует отметить, что прогнозирование возможно только тогда, когда предыдущие изменения действительно в какой-то степени предопределяют будущие. Например, прогнозирование котировок акций на основе котировок за прошлую неделю может оказаться успешным (а может и не оказаться), тогда как прогнозирование результатов завтрашней лотереи на основе данных за последние 50 лет почти наверняка не даст никаких результатов.

Распространенные схемы

Чтобы преобразовать напряжение одного уровня в другое, используют импульсные преобразователи с установленными индуктивными накопителями энергии. Исходя из этого, различают три типа схем преобразования:

Во всех перечисленных схемах используются электрические компоненты:

  1. Основной коммутирующий компонент.
  2. Источник питания.
  3. Конденсатор фильтра, который подключают параллельно сопротивлению нагрузки.
  4. Индуктивный накопитель энергии (дроссель, катушка индуктивности).
  5. Диод для блокировки.

Комбинирование данных элементов в определенной последовательности позволяет построить любую из вышеперечисленных схем.

Простой импульсный преобразователь

Самый элементарный преобразователь можно собрать из ненужных деталей от старого системного блока компьютера. Существенный недостаток данной схемы — выходное напряжение 220В далеко от идеала по своей форме синусоиды, имеет частоту, превышающую стандартные 50 Гц. Не рекомендуется подключать к такому аппарату чувствительную электронику.

В данной схеме применено интересное техническое решение. Для подключения к преобразователю техники с импульсными блоками питания (например, ноутбук) используют выпрямители со сглаживающими конденсаторами на выходе из устройства. Единственный минус — адаптер будет работать только в случае совпадения полярности выходного напряжения розетки с напряжением выпрямителя, встроенного в адаптер.

Для простых потребителей энергии подключение можно осуществить напрямую к выходу трансформатора TR1. Рассмотрим основные компоненты данной схемы:

  • Резистор R1 и конденсатор C2 — задают частоту работы преобразователя.
  • ШИМ-контролер TL494. Основа всей схемы.
  • Силовые полевые транзисторы Q1 и Q2 — используются для большей эффективности. Размещаются на алюминиевых радиаторах.
  • Транзисторы IRFZ44 можно заменить близким по характеристикам IRFZ46 или IRFZ48.
  • Диоды D1 и D2 также можно заменить на FR107, FR207.

Если в схеме предполагается использование одного общего радиатора, необходимо установить транзисторы через изоляционные прокладки. По схеме, выходной дроссель наматывают на ферритовое кольцо от дросселя, которое также извлекают из блока питания компьютера. Первичную обмотку изготавливают из провода 0,6 мм. Она должна иметь 10 витков с отводом от середины. Поверх нее наматывают вторичную обмотку, состоящую из 80 витков. Выходной трансформатор можно также изъять из ненужного ИБП.

Инвертор: синусоида или модифицированная синусоида?

Одним из обязательных устройств системы резервного электроснабжения вашего дома является инвертор. Это устройство предназначено для преобразования постоянного тока от аккумуляторов в переменный напряжением 220 В с частотой 50 Гц, т. е. обеспечивает аналогичное сетевому питание электроприборов вашего дома. Попутно инвертор может решать дополнительные задачи. Такие, например, как отключение нагрузки при критическом разряде аккумуляторов. Бывают инверторы включающие в свой состав контроллер заряда.

Обратите внимание, что обязательным это устройство является для резервного электроснабжения, т.к. основное питание осуществляется сетевым напряжением 220 В переменного тока с частотой 50 Гц

Поскольку резервное электроснабжение необходимо в моменты отключения основного питания оно и должно обеспечивать те же параметры, что и сетевое.

В случае же автономного электроснабжения, инвертор может использоваться, а может и не использоваться. Это зависит от вашего выбора схемы электроснабжения. Если вы используете в доме обычные бытовые приборы, питание которых рассчитано на напряжение 220 В переменного тока, то инвертор вам необходим. Некоторые являются сторонниками использования электроприборов питающихся от 12 В, тогда они обходятся без инвертора. И в том и другом случае есть свои достоинства и свои недостатки.

При выборе же инвертора прежде всего надо определиться какого характера нагрузка в вашем доме. Дело в том, что инверторы условно можно разделить на два типа.

Первый – инверторы синусоида, обеспечивающие на выходе синусоидальную форму напряжения. Инвертор, так называемый инвертор с чистой синусоидой, обеспечит питание любых ваших бытовых приборов. Его форма напряжения ни чем не отличается от формы напряжения централизованной сети.

Второй же – инверторы, имеющие на выходе квазисинусоиду (как бы синусоиду), или модифицированную синусоиду

И вот эти инверторы использовать надо с осторожностью. Их можно эксплуатировать тогда, когда среди потребителей нет приборов с трансформаторными входами, электродвигатели и другие устройства представляющие индуктивный характер нагрузки

Чем это грозит? Грозит это преждевременным выходом из строя ваших бытовых приборов, т.к. при питании их несинусоидальным током происходит, в лучшем случае, потеря мощности, а в худшем перегрев. С электронными приборами, отслеживающими качество напряжения, это может привести к отказам.

В чем проблема? Бери инвертор первого типа и не ломай голову. Проблема в разнице их стоимости. Инверторы синусоида дороже в 2 иногда в 2,5 раза. Поэтому есть смысл разобраться со своими потребителями до выбора инвертора.

Борис Цупило

Устройства с трансформаторными источниками питания

Следующая группа электрооборудования — устройства, имеющие в своем составе трансформаторы. Для проведения тестов были выбраны два устройства — отечественный трансформатор ТС-40-2 и сетевой трансформаторный адаптер с выходным стабилизированным напряжением. Результаты тестов в таблице.

Схема классического трансформаторного источника питания

В тестировании трансформаторных источников питания помимо источника бесперебойного питания использовался инверторный преобразователь, который тоже имеет на выходе квазисинусоиду, но их параметры немного отличаются, о чем было сказано выше.

По результатам экспериментов можно наблюдать, что трансформаторные источники питания при питании их квазисинусом ведут себя вполне приемлемо и даже хорошо. Первое, что можно отметить это уменьшение тока холостого хода. И, как оказалось, чем больше уровни гармоник в питающем напряжении, тем этот ток меньше. Это связано с тем, что трансформатор в большей степени представляет собой индуктивную нагрузку, а реактивное сопротивление индуктивности с ростом частоты возрастает.

Из отрицательных моментов можно выделить следующее. Даже если у источника со ступенчатой аппроксимацией синусоиды среднеквадратичное напряжение будет составлять 230 В, но амплитуда импульсов будет завышена, то и на выходе выпрямителя мы получим завышенное напряжение. Это связано с тем, что фильтрующий конденсатор С (рис. 3) стремится зарядиться до амплитудного значения выпрямленного напряжения. Так, в указанной выше схеме при смене питающего синусоидального напряжения на квазисинусоиду напряжение на выходе повышалось с 16 до 19 В, что, естественно, повышало общую потребляемую мощность. Данный эффект наблюдался при питании этой схемы от источника бесперебойного питания, у которого при среднеквадратическом значении напряжения в 230 В амплитуда импульсов достигает 350 В.

Однако при питании данной схемы от автомобильного инвертора с амплитудой импульсов около 300 В наблюдалось даже некоторое уменьшение выходного напряжения. При этом среднеквадратичное значение напряжения инвертора также составляло 230 В.

Резюмируя, можно сказать, что, кроме возможного повышения напряжения во вторичных цепях трансформаторных источников питания, других негативных последствий для трансформаторов от квазисинусоиды не выявлено. Превышение же напряжения может в некоторой степени увеличить нагрев источника питания в целом, а будет это превышение или нет зависит от модели используемого ИБП или отдельного инвертора.

Необходимо отметить, что при питании трансформатора ступенчатой аппроксимацией синусоиды прослушивается характерный «звонкий» гул от трансформатора. «Звонкость» звука как раз и говорит о том, что в питающем напряжении есть составляющие с более высокими частотами, чем 50 Гц. Кроме возможных неприятных слуховых ощущений для человека этот звук не несет никаких негативных последствий для трансформатора.

В следующей части статьи будет рассмотрено поведение другого электрооборудования при питании его напряжением с формой, отличной от синусоидальной.

Различие ИБП по форме синусоиды

Кроме отличия ИБП по принципу работы, они отличаются по форме синусоиды. Ее можно увидеть только на экране осциллографа.

Форма выходного напряжения инверторов ИБП: синусоидальная – а, двухступенчатая аппроксимация синусоиды – б, трехступенчатая аппроксимация синусоиды – в

Аппроксимированная синусоида

Аппроксимированная синусоида на экране осциллографа выглядит ступенчатой линией. Это не имеет значение для большинства электроприборов, но в тех случаях если в приборе стоит трансформатор, как в старых телевизорах, или есть электродвигатель, то включать их через этот ИБП нельзя. Аппроксимированная синусоида является суммой разных частот и напряжений, в то время как трансформаторы и электродвигатели рассчитываются на частоту 50Гц. В результате они теряют в мощности, греются, гудят и могут выйти из строя. Если же к аппарату подключена только аппаратура с импульсными блоками питания (практически вся современная), то она прекрасно работает с аппроксимированной синусоидой. В импульсных блоках питания входное напряжение поступает на диодный мост, где выпрямляется  в постоянное напряжение 220V, которое не зависит от формы синусоиды.

Однако встречаются приборы с трансформаторными блоками питания. Первым признаком несоответствия формы синусоиды является сильный гул, намного громче, чем при питании от сети. Лучше всего, при пробном включении ИБП с аппроксимированной синусоидой, все приборы включать поочередно и при появлении сильного гула сразу выключить. Обычно это маломощные блоки питания или аппаратура с питанием от сети 220V.

Такие ИБП или инверторы стоят дешевле устройств с чистой синусоидой, но к ним нельзя подключать насос системы отопления или холодильник.

ИБП с чистой синусоидой

Приборы высшей ценовой категории на выходе имеют чистую синусоиду. Это дает возможность подключать к ним любую аппаратуру, в том числе электродвигатели, насосы и трансформаторы, но стоят эти ИБП намного дороже, что делает их использование для обеспечения работы электроотопления или стиральной машины невыгодным. Подробнее об этом рассказано в статье «ИБП для дома«.

Мощность инвертора и солнечных батарей

Номинальная мощность на стороне переменного тока AC определяет максимальную мощность потребителей, которые могут быть подключены к инвертору, или максимальный объем энергии, который может быть подключен к сети. Этот параметр всегда указывается в техническом паспорте. Инвертор для оптимальной эффективности должен работать как можно ближе к номинальной мощности. Эффективность преобразования может составлять до 98% в зависимости от модели. Если мощность генерируемого тока от солнечных батарей падает, например, в пасмурный день, когда солнечная интенсивность не превышает 200 Вт/м², эффективность инвертора резко падает.

Мощность по постоянному току DC, как правило не фиксированная и определяется на основании выходной мощности. Оптимальный диапазон мощности солнечных батарей составляет от 80 до 120% от номинальной выходной мощности инвертора. Производители инверторов обычно рекомендуют немного «перегружать» инвертор по стороне постоянного тока, поскольку мощность солнечных батарей всегда задается для условий STC, которые редко достигаются на практике. Энергия порядка 1000 Вт/м² в течение всего года составляет всего от нескольких дней до нескольких часов, что составляет всего 1-2% от общего времени солнечного излучения. В оставшееся время мощность солнечного излучения не превышает 800-900 Вт/м². Это означает, что 98% времени солнечные батареи работают максимум на 80-90% от их мощности.

Кроме того, мощность солнечных батарей падает со временем эксплуатации, это связано с эффектом деградации кремниевых фотоэлементов. Этот процесс идет довольно медленно, но уже в первый год работы производительность падает в среднем на 1-2 процента. Из этого следует, что солнечные батареи никогда не достигают номинальной мощности для условий STC, предоставляемой заводом-изготовителем.

Технические характеристики инвертора — общие данныеТехнические характеристики инвертора — выходные данныеТехнические характеристики инвертора — входные данные ( для примера расчетов выбираем инвертор Fronius SYMO 10.0-3-M)

Кластеризация

Под кластеризацией понимается разбиение множества входных сигналов на классы, при том, что ни количество, ни признаки классов заранее не известны. После обучения такая сеть способна определять, к какому классу относится входной сигнал. Сеть также может сигнализировать о том, что входной сигнал не относится ни к одному из выделенных классов — это является признаком новых, отсутствующих в обучающей выборке, данных. Таким образом, подобная сеть может выявлять новые, неизвестные ранее классы сигналов. Соответствие между классами, выделенными сетью, и классами, существующими в предметной области, устанавливается человеком. Кластеризацию осуществляют например, нейронные сети Кохонена.

π без картинок

Представьте себе слепого пришельца, который может различать только тени света и темноты. Можете ли вы объяснить ему, что такое π? Довольно сложно пояснить в такой ситуации понятие длины окружности, верно?

Давайте вернемся немного назад. Синус — это циклическая функция. Это означает, что значит ее значения должны…повторяться! Синус начинается с 0, идет к 1, к 0, к -1, к 0 и так далее.

Давайте определим π как время, за которое синус поднимается с 0 до 1, и обратно возвращается к 0. Вау! Теперь и мы используем π без всяких окружностей!

  • Синус — это плавное передвижение вперёд-назад
  • π — это время движения синуса с 0 до 1 и обратно до 0
  • n * π (0 * π, 1 * π, 2 * π и т.д.) — это момент времени, в котором синус равен 0
  • 2 * π, 4 * π, 6 * π и т.д. — полные периоды синуса.

Ага! Вот почему π встречается в таком количестве формул! π не «принадлежит» окружностям больше, чем 0 или 1 — π касается возвращения синуса в центр! Окружность — это пример фигуры, которая повторяется и возвращается в центр каждые 2*π единиц. Но вибрации, скачки и т.д. возвращаются к центру каждый π!

Вопрос: если π — это половина естественного периода, почему оно длится вечно (является иррациональным числом)?

Можно я отвечу вопросом на вопрос, А почему длина диагонали «единичной окружности» равна квадратному корню из 2, который также уходит в бесконечность?

Но да, я понимаю, что это философски не удобно, когда природа ведет себя произвольно. Но что поделаешь…