Подстроечный резистор 3296, коды и обозначения

Содержание

Переменный резистор как потенциомер

Уместное и более корректное другое название ПТ — делитель напряжения. Если взять вышеуказанную схему, то это также 2 и больше резисторов с последовательным соединением, но такой узел из них (цепочка) подключается параллельно источнику, что позволяет регулировкой их сопротивления получать именно напряжение, требуемое для нагрузки.

Разница в сфере применения

Потенциометр обладает низкой мощностью, применяется для сравнительно слабых по энергопотреблению устройств: телевизоры, аудиотехника, маломощные диммеры, регуляторы нагрева теплого пола, бойлеров, как преобразователи, для регулировки частоты оборотов слабых моторов, для вентиляторов, например, компьютерных кулеров, систем вентиляции.

Применение РС охарактеризуем выборкой из тематического сайта:

Сферы использования на первый взгляд подобные ПТ, но это не так: РС используются там, где большие токи и работа устройств зависит от них: мощные электроинструменты, электродвигатели транспортных средств и производственные, в промышленности.

Можно сказать, что переменник для ламп, работающих с большими токами и таких же нагрузок в виде электродвигателей, для электропечей, станков применяется только в режиме реостата.

Наиболее понятное объяснение различия в применении

При потенциометре ток от источника тратится выше в несколько раз, чем нужно нагрузке. При РС значение этой величины равно таковой на нагрузке. Поэтому последний применяется для настройки I и U на низкоомных нагрузках, они имеют закономерность — потребляют сравнительно более мощные токи, а потенциометры — для высокоомных, так как они обычно питаются этой величиной с небольшим значением.

Особенности по внешнему виду

Переменник может быть и тем и другим, но если он изготовляется под режим реостата, то имеет характерный для него типоразмер: с двумя выводами, с крупной резистивной частью (обмоткой), обычно это большой, толстый, тяжелый проволочный резистор и его форма намного габаритнее, чему у деталей для ПТ.

Надо различать термины, так как иногда в разных источниках возникает путаница: например, фраза «потенциометр в режиме реостата» не совсем корректная, поскольку это обозначение двух разных включений, но словосочетание «переменный резистор в режиме реостата (или потенциометра)» правильное. Хотя часто встречаются ошибочные лексические образования даже на сайтах технической тематики, но тут главное, чтобы пользователь различал, о чем речь.

Если у детали два выхода, то ее состояние — только РС, если же три, то такую деталь теоретически можно использовать как его (мы это описали выше), но в реальности она предназначена именно для режима ПТ.

Модели ЕР

Устройство этой марки под индексом 1200 подключается посредством пары выводов. Датчик потенциометра выдерживает четыре цикла с частотой среза до 2300 кГц. Модификация подходит для регулировки звука и тембра гитар, а также используется в качестве элемента вычислительной техники.

ЕР-3000 отличается малым разбросом сопротивления. Ключ реостатного типа находится возле выводов, корпус имеет специальную защиту. Присутствует опция программной выборки, калибровка выполняется по мостовым схемам, предусмотрен один резистор. Версия не подходит для настойки фильтров и регулировки коэффициента усиления.

Модификация ЕР-2110 применяется для цифрового реверсивного управления. Имеется реостатный ключ, пара выводов в нижней части корпуса, программная выборка. Настройка производится автоматически без участия мостовых схем.

Измерительный прибор

Потенциометром также называют устройство для определения значения потенциала или напряжения в электрической цепи

. Впервые подобный аппарат был создан в 1841 году, и с тех пор было изобретено несколько его разновидностей:

  • Для работы в сети постоянного тока;
  • Подача переменного тока через постоянный резистор;
  • Микровольтовый потенциометр – представляет собой частный случай предыдущего устройства. Предназначен для минимизации влияния контактного сопротивления и термо-ЭДС. Благодаря конструкции, удается с точностью зафиксировать значения до 1000 нановольт.
  • Специально приспособленные для измерения температуры в термоэлектрических преобразователях.
  • Потенциометры, разработанные для определения концентрации анализируемого вещества в растворах.
  • «Метровый мост» – самый простой тип из данных измерительных приборов. Специально создан для учебных и демонстрационных целей. Провода, сопротивление которых измеряется, укладывают по длине метровой линейки и подсоединяют к гальванометру.

Для деления выходного напряжения в различных типах устройств используется потенциометр. Что это такое? На самом деле не что иное, как разновидность обычного резистора. В некоторых случаях под этим термином могут иметь в виду прибор для измерения потенциала.

Какие бывают резисторы?

Повсеместно встречаются резисторы совершенно разных конструкций. Все резисторы можно разделить на две категории по типу конструкции и по резистивному материалу. Рассмотрим обе категории.

Тип конструкции

Постоянные резисторы – как следует из названия, эти резисторы имеют постоянное сопротивление и точность, не зависящие от изменения температуры, освещенности и так далее.

Переменные резисторы – эти радиоэлементы обладают переменным сопротивлением. Потенциометр – великолепный пример такого резистора. У него есть регулятор, который можно вращать для увеличения или уменьшения сопротивления. Другие разновидности переменных резисторов – это подстроечный резистор и реостат.

Нелинейные резисторы – эти резисторы как хамелеоны, они могут изменять свое сопротивление в зависимости от той или иной физической величины, воздействующей на резистор – температуры, уровня освещенности и даже магнитного поля. Нелинейные резисторы – это термистор, фоторезистор, варистор и магниторезистор.

Резистивный материал

Все резисторы можно разбить на группы по материалам, из которых они изготовлены и которые в огромной степени влияют на их способность оказывать сопротивление электрическому току. Вот эти резисторы по используемым материалам:

  • Углеродистые композиционные резисторы;

  • Углеродистые пленочные резисторы;

  • Металлопленочные резисторы;

  • Тонко и толстопленочные резисторы;

  • Фольговые резисторы;

  • Проволочные резисторы.

Углеродистые композиционные резисторы – это резисторы, изготовленные по самой старой технологии, популярной в производстве резисторов малой точности. Их все еще можно найти в схемах, где могут быть импульсы высоких энергий.

Старый углеродистый пленочный резистор.

Такие резисторы все еще используются там, где точность не важна

Из всех вышеперечисленных типов резисторов по резистивному материалу старейшими являются проволочные резисторы. Их все еще можно встретить на старых печатных платах устройств большой мощности, в которых необходимо сопротивление, заданное с большой точностью. Эти древние резисторы широко известны благодаря тому, что большой надежностью обладают даже резисторы с малым сопротивлением.

Проволочный резистор – старейший и наиболее точный из доступных резисторов

Сегодня наиболее широко применяются металлопленочные и металлооксидные резисторы, они лучше всего обеспечивают с неизменной точностью номинальное сопротивление, а также меньше подвержены влиянию изменения температуры.

Наиболее широко применяемый металлооксидный резистор

обеспечивает неизменную точность номинального сопротивления

Сферы применения ЦП

Область использования цифровых потенциометров весьма широка и с каждым годом становится все больше, ведь появляются новые, более «продвинутые» резисторы. Ниже представлены самые распространенные сферы применения ЦП:

  • В цифровых (электронных) усилителях. Эти приборы применяются для усиления электрической мощности.
  • В источниках опорного напряжения. ИОНы устанавливаются во все измерительные приборы и являются их основным узлом. Цифровой потенциометр в их схеме обеспечивает точность настроек.
  • В системах регулировки громкости в любых акустических устройствах.
  • В операционных усилителях (ОУ) для смещения напряжения к нулю.
  • В стабилизаторах напряжения для его регулировки.
  • В устройствах или схемах для измерения уровня сопротивления электротока для настройки мостов.
  • Для настройки частоты, регулировки усиления или ослабления звука в полосовых фильтрах. ЦП необходим для калибровки системы колебаний.
  • В измерительных приборах с датчиками усиления сигнала для регулирования полной шкалы и ее смещения.
  • В генераторах импульсов с несимметричным типом сигнала для регулирования их частоты.
  • В широкополосных регулируемых ВЧ аттенюаторах для регулирования Pin-диодов. Последние отвечают за защиту радиоаппаратуры от нежелательных СВЧ-импульсов.
  • В ЖК-индикаторах для регулирования контрастности.

Чаще всего ЦП применяют в качестве настройщиков громкости в смартфонах, в multimedia, в небольшого размера переносной аппаратуре. Для использования в высококачественных регуляторах есть специализированные ЦП, например, CS3310 от Crystal или AD7111 от Analog Devices.

Резюме

  • Устройства, называемые резисторами, предназначены для обеспечения точного значения сопротивления в электрических цепях. Резисторы оцениваются как по их сопротивлению (Ом), так и по их способности рассеивать тепловую энергию (Вт).
  • Номинальное сопротивление резистора не может быть определено по его физическому размеру, хотя судя по размеру можно сказать о приблизительном значении номинальной мощности. Чем больше резистор, тем большую мощность он может рассеять без повреждений.
  • Любое устройство, которое выполняет с помощью электроэнергии какую-либо полезную задачу, обычно называют нагрузкой. Иногда символ резисторов используется в схемах для обозначения неконкретизированной нагрузки, а не для реального резистора.

Анализ резисторных схем

Чтобы обобщить то, что мы узнали в этой статье, давайте проанализируем следующую схему, определив всё, что можем, исходя из предоставленной информации:

Рисунок 8 – Пример схемы

Всё, что нам здесь дано для начала, – это напряжение батареи (10 вольт) и сила тока в цепи (2 ампера). Нам неизвестно сопротивление резистора в омах или рассеиваемая им мощность в ваттах. Вспоминая формулы закона Ома, мы находим два уравнения, которые дают нам ответы на основе известных значений напряжения и силы тока:

\(R=\frac{E}{I} \qquad и \qquad P=IE\)

Подставляя известные значения напряжения (E) и силы тока (I) в эти два уравнения, мы можем определить сопротивление цепи (R) и рассеиваемую мощность (P):

\(R = \frac{10 \ В}{2 \ А} = 5 \ Ом\)

\(P = (2 \ А)(10 \ В) = 20 \ Вт\)

Для заданных условий цепи (10 В и 2 А) сопротивление резистора должно быть 5 Ом. Если бы мы проектировали схему для работы при этих значениях, нам пришлось бы использовать резистор с минимальной номинальной мощностью 20 Вт, иначе бы он перегрелся и вышел из строя.

Основные параметры переменных резисторов.

Основными параметрами резисторов являются: полное (номинальное) сопротивление, форма функциональной характеристики, минимальное сопротивление, номинальная мощность, уровень шумов вращения, износоустойчивость, параметры, характеризующие поведение резистора при климатических воздействиях, а также размеры, стоимость и т.п

Однако при выборе резисторов чаще всего обращают внимание на номинальное сопротивление и реже на функциональную характеристику

2.1. Номинальное сопротивление.

Номинальное сопротивление резистора указывается на его корпусе. Согласно ГОСТ 10318-74 предпочтительными числами являются 1,0

;2,2 ;3,3 ;4,7 Ом, килоом или мегаом.

У зарубежных резисторов предпочтительными числами являются 1,0

;2,0 ;3,0 ;5.0 Ом, килоом и мегаом.

Допускаемые отклонения сопротивлений от номинального значения установлены в пределах ±30%.

Полным сопротивлением резистора считается сопротивление между крайними выводами 1 и 3.

2.2. Форма функциональной характеристики.

Потенциометры одного и того же типа могут отличаться функциональной характеристикой, определяющей по какому закону изменяется сопротивление резистора между крайним и средним выводом при повороте ручки резистора. По форме функциональной характеристики потенциометры разделяются на линейные и нелинейные: у линейных величина сопротивления изменяется пропорционально движению токосъемника, у нелинейных она изменяется по определенному закону.

Существуют три основных закона: А

— Линейный,Б – Логарифмический,В — Обратно Логарифмический (Показательный). Так, например, для регулирования громкости в звуковоспроизводящей аппаратуре необходимо, чтобы сопротивление между средним и крайним выводом резистивного элемента изменялось пообратному логарифмическому закону (В). Только в этом случае наше ухо способно воспринимать равномерное увеличение или уменьшение громкости.

Или в измерительных приборах, например, генераторах звуковой частоты, где в качестве частотозадающих элементов используются переменные резисторы, также требуется, чтобы их сопротивление изменялось по логарифмическому

(Б) илиобратному логарифмическому закону. И если это условие не выполнить, то шкала генератора получится неравномерной, что затруднит точную установку частоты.

Резисторы с линейной

характеристикой (А) применяются в основном в делителях напряжения в качестве регулировочных или подстроечных.

Советуем изучить Цифровые каналы через обычную антенну: список 2017

Зависимость изменения сопротивления от угла поворота ручки резистора для каждого закона показано на графике ниже.

Для получения нужной функциональной характеристики большие изменения в конструкцию потенциометров не вносятся. Так, например, в проволочных резисторах намотку провода ведут с изменяющимся шагом или сам каркас делают изменяющейся ширины. В непроволочных потенциометрах меняют толщину или состав резистивного слоя.

К сожалению, регулируемые резисторы имеют относительно невысокую надежность и ограниченный срок службы. Часто владельцам аудиоаппаратуры, эксплуатируемой длительное время, приходится слышать шорохи и треск из громкоговорителя при вращении регулятора громкости. Причиной этого неприятного момента является нарушение контакта щетки с токопроводящим слоем резистивного элемента или износ последнего. Скользящий контакт является наиболее ненадежным и уязвимым местом переменного резистора и является одной из главной причиной выхода детали из строя.

Подключение потенциометра

Для начала приведем блок наиболее характерных схем. Надо сказать, что ПТ можно подключать не только как РС, но и как простой фиксированный резистор (варианты на 3 рис.):

Ниже наиболее распространенные схемы (обозначения по западному стандарту):

Надо сказать, что традиционная схема подключения частотника потенциометра всегда рекомендует «лишний» вывод подсоединять, обрыв на линии «подвижный контакт — подковка» не исключены, что может привести к неприятным последствиям.

Схемы как подключить ПТ чрезвычайно простые, фактически вариант один — параллельно на один из проводов питания.

Например, так выглядит регулятор на компьютерном кулере. В данном случае полярность значения не имеет. Берется любой проводок питания кулера, разрезается, один конец спаивается сразу с первым и вторым (средним) контактов, второй — с оставшимся. То есть на первых 2 контактах лежит какой-либо конец провода (они спаиваются с одной и той же этой жилой), третий контакт — другой конец, как бы отдельно стоящий.

Сложность некоторых схем: нужно знать, к какому проводу подсоединять, то есть какую линию питания регулировать, например, если делают подключение потенциометра внешнего для частотно-регулируемых электроприводов для настройки интенсивности вращения электродвигателей, при регулировке ПИД-регуляторов.

В таких случаях руководствуются схемами призводителей или авторов таких совершенствований, рекомендациями мастеров, вся информация есть в сети на спецфорумах и тематических сайтах. Ниже пример подключения к частотному преобразователю:

Мультиметр

Рассказывая о том, как проверить потенциометр мультиметром нельзя обойти стороной сам мультиметр и не напомнить об этом приборе. Итак, мультиметр — это измерительный прибор, назначением которого является замер величины силы тока, сопротивления и напряжения. Это устройство объединяет в себе:

  • амперметр;
  • омметр;
  • вольтметр.

Мультиметром можно прозвонить электрическую сеть, определяя в ней обрыв или замыкание токопроводящих кабелей. Эти измерительные устройства представляют собой корпус с градуированной шкалой и стрелкой, соединенной с подвижной катушкой. Последняя совершает вращательное движение под воздействием вихревых токов, возникающих из-за электромагнитного взаимодействия обмотки катушки и постоянного магнита. Такие мультиметры называют аналоговыми.

Существуют и более точные, и более современные мультиметры, называемые цифровыми. Их показания выводятся на электронный дисплей. Именно цифровые приборы получили сейчас наибольшее распространение. В то время как аналоговые устройства почти не используют.

Кроме корпуса с измерительным механизмом (аналоговым или электронным) в комплектацию мультиметров входят два щупа. Их провода всегда окрашены одинаково. Один в красный, другой в черный цвет. Черный щуп подключается через гнездо прибора, обозначенное «COM» или «–», к массе или фазе. Красный провод вставляется в разъем с символами «VΩmA». Греческая буква «Ω» обозначает, что, наряду с силой тока и напряжением, данное гнездо отвечает и за передачу импульса при измерении сопротивления.

Следующим конструктивным элементом мультиметра является вращающийся переключатель режимов и пределов измерения. В зависимости от того, что именно измеряется, переключатель поворачивается в сторону тех или иных секторов.на корпусе. Кроме указания единиц измерения напряжения, силы тока и сопротивления, в секторах имеются цифры, обозначающие пределы измерения.

Основные характеристики переменных резисторов

Для стабильной работы в электрической схеме необходимо учитывать технические параметры резистивных элементов.

Номинальное (полное) сопротивление

Постоянная величина сопротивления между неподвижными контактами, ползунок выведен до упора и прижат к одному из неподвижных контактов.

Номинальная мощность

Максимальная мощность, которую резистор может рассеивать в виде тепла при длительной электрической нагрузке без изменения параметров.

Предельное рабочее напряжение

Максимальное рабочее напряжение, которое может быть приложено к выводам резистора без разрушения последнего. Зависит от длины резистивного элемента.

Износоустойчивость

Число циклов передвижения подвижного контакта, при котором параметры переменного резистора остаются в пределах нормы.

Функциональная зависимость

Зависимость изменения сопротивления резистора от угла поворота ручки или передвижения ползунка:

  1. Линейная – равномерное изменение сопротивления при перемещении подвижного контакта на определенное расстояние.
  2. Нелинейная (логарифмическая и обратно-логарифмическая) – плавное изменение сопротивления в начале и конце движения ползунка и скачками в середине.

Обозначение функциональных характеристик:

  • А – линейная;
  • Б – логарифмическая;
  • В – обратно-логарифмическая.

Уровень шумов

Электрические помехи, возникающие при работе подвижного контакта, – зависят от состояния (износа) контактирующих поверхностей, степени прижатия ползунка и скорости его движения.

Потенциометр и реостат: в чем разница

РТ рассмотрим подробно, так как в процессе раскроются и свойства потенциометров. Итак, тот же переменный резистор можно монтировать на схему по двум вариантам, создается два режима:

  • параллельное включение — ПТ. Подключение потенциометра использует обычно все 3 контакта.
  • последовательное — реостат. Используются только 2 контакта.

«Потенциометр» и «реостат» это просто разные варианты включения одного и того же переменного резистора в схему, соответственно, последовательно или параллельно. Обе детали работают именно с R, U, I. Но пропорциональность изменений разная, в первом случае в большей мере регулируется напряжение, во втором — ток.

Реостат имеет два выхода, потенциометр — три (если применяется как первый, то подключают только два контакта). То есть РС включается в схему как обычный резистор. Оба не поляризованные, могут работать в обратном порядке.

ПТ и РС подключаемые по-разному. Второй, в отличие от первого, обычно прибор промышленный или на мощном оборудовании. В некоторых школах проводили уроки с реостатом, поэтому его форму может кто-то и помнит: габаритная керамическая трубка с нихромовой обмоткой и ползунком на среднем выводе, который никуда не подключается. РС имеет большую мощность (пропускает мощный ток) и малое сопротивление (до десятков Ом). Имеет значительную индуктивность, что учитывают в ВЧ приборах.

Делители напряжения обычно маломощные, поэтому на роль РС они редко подходят, переменники до 10 Вт при производстве позиционируются как первые, от 10 Вт — как вторые.

Переменник как реостат

РС изменяет общее сопр

цепи — тут важно именно это свойство, оно используется в полном наиболее эффективном виде для управления (ограничения) током

В схему включается только последовательно: так включенный переменник называется реостатом (это режим работы).

Можно сделать представление схемы как таковой, состоящей из двух обычных резисторов, включенных последовательно, то есть ползунок делит катушку РС на указанные элементы.  Осуществляя регулировку R уменьшают/увеличивают параметры этих резисторов и, соответственно, тока на цепи.

Маркировка переменных резисторов

Российская маркировка переменных сопротивлений до 1980 года – например, СП4-18:

  1. Тип изделия обозначается СП.
  2. Первая цифра – разновидность материала и технология изготовления – 4.
  3. Вторая – регистрационный номер типа резистора –18.

Маркировка группы по технологии изготовления и материалу:

  • 1 – непроволочные тонкослойные углеродистые и бороуглеродистые;
  • 2 – непроволочные тонкослойные металлопленочные и металлооксидные;
  • 3 – непроволочные композиционные пленочные;
  • 4 – непроволочные композиционные объемные;
  • 5 – проволочные;
  • 6 – непроволочные тонкослойные металлизированные.

Сейчас действует новая система маркировки переменных и подстроечных резисторов – например, РП1-46:

  1. Тип изделия обозначается РП.
  2. Первая цифра определяет группу по материалу резистивного элемента (1 – непроволочные, 2 – проволочные и металлофольговые).
  3. Вторая цифра – регистрационный номер разработки конкретного типа сопротивления.

Таблица номиналов

1 Ом 10 Ом 100 Ом 1 кОм 10 кОм 100 кОм 1 МОм 10 МОм
1.5 Ом 15 Ом 150 Ом 1.5 кОм 15 кОм 150 кОм 1.5 МОм 15 МОм
2.2 Ом 22 Ом 220 Ом 2.2 кОм 22 кОм 220 кОм 2.2 МОм 22 МОм
3.3 Ом 33 Ом 330 Ом 3.3 кОм 33 кОм 330 кОм 3.3 МОм 33 МОм
4.7 Ом 47 Ом 470 Ом 4.7 кОм 47 кОм 470 кОм 4.7 МОм 47 МОм
6.8 Ом 68 Ом 680 Ом 6.8 кОм 68 кОм 680 кОм 6.8 МОм 68 МОм

Система обозначений

Все перечисленные выше особенности параметров обычно отражаются в полном наименовании потенциометра в технической или товаро-производственной документации.

Ниже приведена система обозначений переменных резисторов по действующим ТУ.

Рис. 2.2. Система обозначений переменных резисторов отечественных фирм.

Первый элемент (буквы и цифры) обозначает тип резистора и вариант конструкторского исполнения.

Второй элемент (буква) обозначает допустимую мощность рассеяния в ваттах.

Третий элемент (цифры и буквы) обозначает номинальное сопротивление.

Четвертый элемент (цифры) обозначает допустимое отклонение сопротивления от номинала (в %).

Пятый элемент (буква) обозначает зависимость сопротивления переменного резистора от положения подвижного контакта.

Шестой элемент (цифры и буквы) обозначает вид выступающей части вала.

Седьмой элемент (цифры) обозначает размер выступающей части вала.

Восьмой элемент (буква) обозначает документ на поставку.

Ниже рассмотрим систему обозначений зарубежных резисторов на примере фирмы Bourns (рис. 2.3).

Первый элемент (буквы и цифры) обозначает серию (модель) переменного резистора.

Второй элемент (цифра) обозначает количество секций (групп) переменных резисторов (если секция одна, то данный элемент отсутствует).

Третий элемент (цифра или буква) обозначает расположение выводов и их форму (табл. 2.1.).

Четвертый элемент (буква) обозначает наличие («S») или отсутствие («N») дополнительного выключателя (в обозначении некоторых серий резисторов может отсутствовать).

Пятый элемент (цифры) обозначает длину вала в мм.

Шестой элемент (цифры) обозначает код номинального сопротивления

Рис. 2.3. Система обозначений переменных резисторов фирмы Bourns.

Расположение выводов резисторов относительно корпуса

Резистор (лат. resisto – сопротивляюсь) – один из наиболее распространенных радиоэлементов, а переменный резистор в простом транзисторном приемнике исчисляется до нескольких десятков, а в современном телевизоре – до нескольких сотен.

Переменный резистор – это резистор, у которого электрическое сопротивление между подвижным контактом и выводами резистивного элемента можно изменять механическим способом.

Резисторы выступают как нагрузочные и токоограничительные элементы, делители напряжения, добавочные сопротивления и шунты в измерительных цепях и т. д. Основная задача резистора – оказывать сопротивление, то есть перекрывать протекание электротока. Сопротивление измеряют в омах, килоомах (1000 Ом) и мегаомах (1 000000 Ом).

Классификация по условиям эксплуатации

По особенностям применения и использования виды резисторов делятся на группы.

Постоянные

Сопротивление неизменное с допустимой нормированной погрешностью и соответствует норме. На электрической схеме изображаются прямоугольником со сторонами 10х4 мм. От центра узкой стороны изображаются линии выводов. Рядом с изображением ставят литеру «R» с порядковым номером корпуса по схеме. Тут же проставляют величину номинала.

Внутрь прямоугольника вписывается рассеивание. В импортной технической документации часто изображается в виде зигзагообразной линии соединяющей выводы.

Переменные и подстроечные

Компоненты переменного потенциометра оснащены тремя и более выводами, и механизмом перемещения ползунка – токосъемника. Диапазон изменения простирается от нуля до максимума, ограниченного установленным номиналом.

Изменение характеристик оборудования в процессе эксплуатации, выглядящее, например, как настройка тюнера, регулировка уровня громкости или освещения, выполняется переменным компонентом.

Механизм перемещения ползунка завершается ручкой, позволяющей оперативно проводить регулировку. Если настройка выполняется при наладке и ежедневно меняться не должна, применяются подстроечники. Положение токосъемника в них устанавливается отверткой.

Нелинейные

Устройства автоматики и электронной защиты активно пользуются полупроводниковыми нелинейными приборами, проводимость которых изменяется автоматически при колебаниях внешних факторов окружающей среды. Отрицательный температурный коэффициент у термисторов увеличивает проводимость при повышении температуры и уменьшает при понижении.

Прибор с положительным ТКС называются позистором. У фоторезистора проводимость полупроводникового слоя возрастает при увеличении освещенности в видимом, инфракрасном или ультрафиолетовом спектре.

Варисторы способны увеличить проводимость при возрастании приложенного к нему напряжения

Магниторезисторы реагируют на магнитное поле, а тензисторы фиксируют приложенное к ним механическое усилие.

Ремонт переменного резистора своими руками

Из-за износа проводящего слоя и ослабления нажима подвижного контакта переменное сопротивление начинает плохо работать, генерируя «шумы», или совсем прийти в негодность.

Способы ремонта сопротивления в разобранном виде:

  1. С помощью простого карандаша, грифель которого состоит из чистого твердого углерода – слегка отогнуть пружину подвижного контакта, несколько раз провести грифелем по проводящему слою для восстановления последнего. Это метод более эффективен для тонкопленочных сопротивлений.
  2. Грифель простого карандаша растереть в пыль, смешать с литолом (или аналогичной смазкой), полученной смесью смазать дорожку, по которой движется ползунок.

Сопротивление в неразборном корпусе починить сложнее, но можно – просверливаем в корпусе отверстие (диаметром около 1мм), заливаем шприцом немного чистого спирта, крутим ручку. После полного испарения спирта работоспособность регулировочного элемента восстанавливается.

Для нормальной работы электрической цепи важно грамотно проанализировать условия работы всех элементов – зная характеристики, назначение, схемы подключения и условия эксплуатации, можно обеспечить надежную и долгую работоспособность регулируемых сопротивлений в бытовых приборах и электронных устройствах. Источник

Источник

Система охлаждения

Итак, нагрузочный резистор используется в системе охлаждения автомобиля, а точнее, – в цепи питания вентилятора радиатора.

Стоит отметить, что раньше этот электрический элемент не использовался в данной цепи, и все работало очень просто – при достижении определенной температуры охлаждающей жидкости, температурный датчик замыкал контакты цепи питания вентилятора, и он включался в работу.

Использование же резистора позволило сделать работу электродвигателя вентилятора двух — и даже трехрежимной.

Процесс подачи питания на вентилятор при этом несколько изменился. В систему добавились также реле, а за включение вентилятора у современных авто уже отвечает электронный блок управления.

То есть, электронный блок анализирует температурные показатели датчика, и подает сигнал на реле.

В зависимости от температуры реле направляет электроэнергию по определенной цепи. Если температура охлаждающей жидкости превышена незначительно, но уже требуется ее снижение, и сигнал от ЭБУ поступил, реле направляет электроэнергию через нагрузочный резистор, который создает сопротивление, и вентилятор начинает вращаться с небольшой скоростью.

Если температура будет дальше повышаться и достигнет критической точки, реле перенаправит электроэнергию по другой цепи – в обход резистора, напрямую к вентилятору, что обеспечит его работу на полную мощность, с большой скоростью вращения.

Сейчасчитают Особенности зарядки AGM аккумуляторов, какие зарядные устройства лучше использовать

873

Генератор дает перезаряд на аккумулятор, причины и способы их устранения

77.9k

Это схема двухрежимной работы вентилятора, которая обеспечивается наличием нагрузочного резистора в цепи. Причем она упрощенная, чтобы было более понятно.

В авто с трехрежимной работой вентилятора, принцип остается тот же, но у него уже используется два резистора – один отвечает за малые обороты вращения вентилятора, второй – за средние.

Третий же режим – аварийный, при котором вентилятор вращается с максимальной скоростью, обеспечивается за счет подачи питания на него напрямую.

Получение значения с подстроечного резистора с помощью ардуино

То, что ножка резистора подключена к аналоговому пину ардуино, позволяет отловить 1024 положения потенциометра, это даст возможность довольно точно производить подстройку. Ниже приведен код с подробными комментариями. Чтобы посмотреть значения с подстроечного резистора можно выводить информацию на дисплей или индикатор, но в примере все проще – результат можно посмотреть в мониторе порта.

// пин для получения данных int pin_rezistor = A0; // переменная для хранения значения int value = 0; void setup() { // порт работает на чтение pinMode(pin_rezistor, INPUT); // соединение с компьютером для дебага Serial.begin(9600); } void loop() { // получаем значение с пина value = analogRead(pin_rezistor); // вывод данных Serial.println(value); // ждем delay(500); }

Проверка потенциометра

Проверить потенциометр с помощью мультиметра можно, когда он находится в подключенном к схеме состоянии или после выпаивания его оттуда. Первый вариант представляется более сложным в исполнении. Проверить обычный резистор, с постоянным номиналом, прямо в цепи, не представляет никакой сложности. Но элемент с тремя выводами — это другое дело. Осуществить проверку можно, только если потенциометр впаян в начале цепи. Такое расположение переменного резистора в схеме более удобно, так как это позволяет узнать общее сопротивление между контактами с краев.

Более точная проверка сопротивления проводится после выпайки потенциометра из схемы или когда они еще не монтировались в цепь.

До начала проверки переменного резистора с использованием мультиметра, элемент нужно внимательно осмотреть. Если на нем есть механические повреждения, сколы и трещины, необходимость в дальнейшем обследовании автоматически отпадает. Если повреждений нет, а все выводы надежно держатся в корпусе, можно переходить к следующему этапу — проверке мультиметром.

Процедура проверки измерительным прибором включает в себя несколько стадий:

  1. Мультиметр переводится в режим измерения сопротивления.
  2. Щупы или зажимы проводов измерительного устройства подсоединяются к крайним выводам переменного резистора. Полученные показания характеризуют общее сопротивление потенциометра. При исправном элементе значение, выведенное на дисплей мультиметра, не должно быть отличным от номинала на величину, превышающую установленный допуск. Это значение выражается в процентном соотношении к номиналу и его можно определить по цветовой маркировке корпуса.
  3. В случае, если значение на дисплее соответствует номинальному сопротивлению, переходят к измерению переменных значений. Для этого щупы соединяют со средним и одним из крайних выводов.
  4. Последним этапом проверки потенциометра является вращение его ручки в любом из направлений. При корректно работающем элементе, изменение показаний на дисплее или движения стрелки вдоль шкалы должны быть плавными.

Если же прибор неисправен — мультиметр покажет бесконечное значение сопротивления. По мнению знающих людей, главное при ремонте электроники — найти неисправный элемент. Обнаружив такую деталь, ее легко можно заменить на новую, после чего холодильник, электрогитара или станок с электродвигателем прослужат еще много лет.