Магнитное поле. источники и свойства. правила и применение

Сила Лоренца

Сила Лоренца – сила, действующая на движущуюся заряженную частицу со стороны магнитного поля.

Формула для нахождения силы Лоренца:

где ​\( q \)​ – заряд частицы, ​\( v \)​ – скорость частицы, ​\( B \)​ – модуль вектора магнитной индукции, ​\( \alpha \)​ – угол между вектором скорости частицы и вектором магнитной индукции.

Направление силы Лоренца определяют по правилу левой руки: если ладонь левой руки расположить так, чтобы перпендикулярная к проводнику составляющая вектора магнитной индукции ​\( B_\perp \)​ входила в ладонь, а четыре вытянутых пальца указывали направление скорости положительно заряженной частицы, то отогнутый на 90° большой палец покажет направление силы Лоренца.

Если заряд частицы отрицательный, то направление силы изменяется на противоположное.

Важно!
Если вектор скорости сонаправлен с вектором магнитной индукции, то частица движется равномерно и прямолинейно. В однородном магнитном поле сила Лоренца искривляет траекторию движения частицы

В однородном магнитном поле сила Лоренца искривляет траекторию движения частицы.

Если вектор скорости перпендикулярен вектору магнитной индукции, то частица движется по окружности, радиус которой равен:

где ​\( m \)​ – масса частицы, ​\( v \)​ – скорость частицы, ​\( B \)​ – модуль вектора магнитной индукции, ​\( q \)​ – заряд частицы.

В этом случае сила Лоренца играет роль центростремительной и ее работа равна нулю. Период (частота) обращения частицы не зависит от радиуса окружности и скорости частицы. Формула для вычисления периода обращения частицы:

Угловая скорость движения заряженной частицы:

Важно!
Сила Лоренца не меняет кинетическую энергию частицы и модуль ее скорости. Под действием силы Лоренца изменяется направление скорости частицы

Если вектор скорости направлен под углом ​\( \alpha \)​ (0° < \( \alpha \) < 90°) к вектору магнитной индукции, то частица движется по винтовой линии.

В этом случае вектор скорости частицы можно представить как сумму двух векторов скорости, один из которых, ​\( \vec{v}_2 \)​, параллелен вектору \( \vec{B} \), а другой, \( \vec{v}_1 \), – перпендикулярен ему. Вектор \( \vec{v}_1 \) не меняется ни по модулю, ни по направлению. Вектор \( \vec{v}_2 \) меняется по направлению. Сила Лоренца будет сообщать движущейся частице ускорение, перпендикулярное вектору скорости \( \vec{v}_1 \). Частица будет двигаться по окружности. Период обращения частицы по окружности – ​\( T \)​.

Таким образом, на равномерное движение вдоль линии индукции будет накладываться движение по окружности в плоскости, перпендикулярной вектору \( \vec{B} \). Частица движется по винтовой линии с шагом ​\( h=v_2T \)​.

Важно!
Если частица движется в электрическом и магнитном полях, то полная сила Лоренца равна:

Особенности движения заряженной частицы в магнитном поле используются в масс-спектрометрах – устройствах для измерения масс заряженных частиц; ускорителях частиц; для термоизоляции плазмы в установках «Токамак».

Алгоритм решения задач о действии магнитного (и электрического) поля на заряженные частицы:

  • сделать чертеж, указать на нем силовые линии магнитного (и электрического) поля, нарисовать вектор начальной скорости частицы и отметить знак ее заряда;
  • изобразить силы, действующие на заряженную частицу;
  • определить вид траектории частицы;
  • разложить силы, действующие на заряженную частицу, вдоль направления магнитного поля и по направлению, ему перпендикулярному;
  • составить основное уравнение динамики материальной точки по каждому из направлений разложения сил;
  • выразить силы через величины, от которых они зависят;
  • решить полученную систему уравнений относительно неизвестной величины;
  • решение проверить.

Немного из истории магнетизма

Исследование явления магнетизма началось много веков назад, когда еще в VI в. до н.э. в древнем Китае были обнаружен камни (горная порода), которые притягивали к себе железные предметы. В 1269 г. французский исследователь Петр Перегрин разместил на поверхности постоянного сферического магнита маленькие стальные иголки и увидел, что они расположились не хаотично, а по определенным линиям, которые пересекались в двух точках, названных “полюсами” по аналогии с географическими полюсами Земли. Можно сказать, что это была первая “визуализация” магнитных линий.

Только в 1845 г. английский физик Майкл Фарадей для понимания сути магнитных явлений сформулировал понятие “магнитного поля”. Он считал, что как электрическое, так и магнитное взаимодействия осуществляются посредством невидимых полей — электрического и магнитного. Магнитное поле непрерывно в пространстве и способно действовать на движущиеся заряды.

В 1831 г. Майкл Фарадей обнаружил, что переменное магнитное поле порождает электрическое и наоборот — непостоянное (изменяющееся во времени) электрическое поле создает магнитное поле. Это явление стало известно как закон электромагнитной индукции Фарадея. Слово индукция латинского происхождения (induction) означает “наведение, выведение”.

Природа магнетизма

Согласно одной из легенд, когда-то давным-давно жил в Греции пастух по имени Магнес. И вот шел он как-то со своим стадом овец, присел на камень и обнаружил, что конец его посоха, сделанный из железа, стал притягиваться к этому камню. С тех пор стали называть этот камень магнетит в честь Магнеса. Этот камень представляет из себя оксид железа.

Если такой камень положить на деревянную доску на воду или подвесить на нитке, то он всегда выстраивался в определенном положении. Один его конец всегда показывал на СЕВЕР, а другой  – на ЮГ.

Этим свойством камня пользовались древние цивилизации. Поэтому, это был своего рода первый компас. Потом уже стали обтачивать такой камень и делать из разные фигурки. Например, так выглядел китайский древний компас, ложка которого была сделана из того самого магнетита. Ручка у этой ложки всегда показывала на ЮГ.

Ну а далее дело шло за практичностью и маленькими габаритами. Из магнетита вытачивали маленькие стрелки, которые подвешивали на тонкую иглу посередине. Так стали появляться первые малогабаритные компасы.

Древние цивилизации, конечно, не знали еще что такое север и юг. Поэтому, одну сторону магнетита они назвали северным полюсом (North), а противоположный конец – южным (South). Названия на английском очень легко запомнить, если кто смотрел американский мультфильм “Южный парк”, он же Сауз (South) парк).

Магнитное поле Земли слабеет

Магнитное поле Земли представляет из себя настоящую защиту планетарного масштаба, которая надежно оберегает нас от вредного солнечного излучения. Несмотря на это, недавние исследования ученых зафиксировали его существенное ослабление, вызванное неизвестными причинами. Исследователями был также обнаружен возможный источник возникновения данной проблемы, которой стала так называемая Южно-атлантическая аномалия. В этой области планеты солнечные частицы опускаются ближе к Земле, чем обычно, что никак не увязывается со стандартными законами физики.

Важно понимать, что даже если магнитное поле постепенно ослабевает, оно не исчезнет навсегда из-за оказываемого влияния расплавленного внешнего ядра Земли, которое состоит преимущественно из никеля и железа. Ученые считают, что внешнее ядро двигается за счет конвекции тепла, которое выделяется по мере роста и затвердевания центра планеты

Такой двигатель с магнитным полем известен нам как динамо-механизм и работает уже миллиарды лет. Ученые предполагают, что нынешняя структура ядра установилась около 1,5 миллиардов лет назад, однако геофизик Джон Тардуно и его команда нашли доказательства существования магнитного поля на Земле в древнейших минералах планеты, так называемых цирконах, которые появились 4,2 миллиарда лет назад. Данная находка позволяет предположить, что активность в ядре планеты создавала магнетизм в течение очень долгого времени.

Магнитное поле защищает человека от вредного солнечного излучения уже на протяжении 4,2 миллиарда лет

Ученые предполагают, что изменение мантии под Южной Африкой могло вызвать инверсию магнитного поля. По результатам исследования, к 2019 году полюс сместился более чем на 2300 км, по сравнению с измерениями 1831 года. Помимо смещения магнитного полюса, увеличивается и скорость перемещения: с 15 км до 55 км в год. Такое быстрое движение вынуждает нас чаще корректировать навигационные системы, например, компасы в смартфонах или системы навигации самолетов и кораблей. Но даже в том случае, если магнитное поле готовится к глобальному перевороту, оно не исчезнет полностью, а лишь значительно ослабнет.

Несмотря на то, что ослабление магнитного поля повлечет за собой мощную бомбардировку земной атмосферы солнечными заряженными частицами, ощутить на себе их вредное воздействие мы попросту не успеем. Так, в первую очередь, нас чаще будут подводить компасы, которые перестанут выполнять свою функцию и будут показывать на область самого высокого магнитного поля, которое может оказаться совсем рядом с нами. Северное и южное сияние было бы видно из более низких широт, ведь их возникновение происходит в результате взаимодействия заряженных солнечных частиц и магнитосферы Земли.

Более слабое поле позволит заряженным солнечным частицам проникать в атмосферу Земли, освещая небо ближе к экватору

Влияние южно-атлантической аномалии на спутники может распространиться по всей Земле, что приведет к техническим сбоям планетарного масштаба. В момент взаимодействии ионосферы и солнечных частиц, последние также выделяют электроны из своих молекулярных орбит. Новообразованные электроны оказывают негативное влияние при передаче высокочастотных радиоволн, которые в настоящее время используются для связи.

Вместе с тем, исследователи точно не знают, сколько же именно времени может потребоваться для полного разрушения магнитного поля планеты. Аналогичный процесс однажды происходил на Марсе, который приблизительно 4 миллиарда лет назад столкнулся с массивным космическим телом и потерял возможность вырабатывать собственное магнитное поле и, как следствие, большую часть атмосферы. Пример Марса может показать нам процессы, которые испытывает на себе планета при постепенном разрушении на ней магнитного поля. Так, долговременное воздействие солнечного излучения и земной атмосферы может постепенно разрушить нашу основную защиту — озоновый слой. Существенное нарушение внутри этого слоя способно значительно повысить уровень воздействия ультрафиолетового излучения на человека, что повлечет за собой увеличение риска возникновения рака кожи.

Человеческий магнетизм. Существуют ли магнитные люди?

Организм человека является отличной средой для распространения магнитных волн, а также служит их источником. ​Человеческий магнетизм – популярное название предполагаемой способности некоторых людей притягивать разнообразные металлические предметы к своей коже. Люди, которые, как утверждается, обладают такой способностью, часто называют человеческими магнитами. Хотя металлические предметы являются самыми популярными, некоторые из них также могут использовать другие типы материалов, такие как стекло, фарфор, дерево или пластик, а также металлы без ферромагнитных свойств, таких как латунь и алюминий. Фактически ни одно из указанных условий человеческого магнетизма не соответствует реальной физике магнетизма, что указывает на то, что эта «способность» на самом деле представляет собой не что иное, как непонимание физики и смысла этого термина и неправильное применение, что может быть объяснено не более чем необычайно липкой кожей. ​

Магнитное поле проводника с током

Электрический ток, протекающий по проводнику с током, создает в окружающем его пространстве магнитное поле. Чем больше ток, проходящий по проводнику, тем сильнее возникающее вокруг него магнитное поле.

Магнитные силовые линии этого поля располагаются по концентрическим окружностям, в центре которых находится проводник с током.

Направление линий магнитного поля вокруг проводника с током всегда находится в строгом соответствии с направлением тока, проходящего по проводнику.

Направление магнитных силовых линий можно определить по правилу буравчика: если поступательное движение буравчика (1) совпадает с направлением тока (2) в проводнике, то вращение его рукоятки укажет направление силовых линий (4) магнитного поля вокруг проводника.

При изменении направления тока линии магнитного поля также изменяют свое направление.

По мере удаления от проводника магнитные силовые линии располагаются реже. Следовательно, индукция магнитного поля уменьшается.

Направление тока в проводнике принято изображать точкой, если ток идет к нам, и крестиком, если ток направлен от нас.

Для получения сильных магнитных полей при небольших токах обычно увеличивают число проводников с током и выполняют их в виде ряда витков; такое устройство называют катушкой.

В проводнике, согнутом в виде витка, магнитные поля, образованные всеми участками этого проводника, будут внутри витка иметь одинаковое направление. Поэтому интенсивность магнитного поля внутри витка будет больше, чем вокруг прямолинейного проводника. При объединении витков в катушку магнитные поля, созданные отдельными витками, складываются. При этом концентрация силовых линий внутри катушки возрастает, т. е. магнитное поле внутри нее усиливается.

Чем больше ток, проходящий через катушку, и чем больше в ней витков, тем сильнее создаваемое катушкой магнитное поле. Магнитное поле снаружи катушки также складывается из магнитных полей отдельных витков, однако магнитные силовые линии располагаются не так густо, вследствие чего интенсивность магнитного поля там не столь велика, как внутри катушки.

Магнитное поле катушки с током имеет такую же форму, как и поле прямолинейного постоянного магнита: силовые магнитные линии выходят из одного конца катушки и входят в другой ее конец. Поэтому катушка с током представляет собой искусственный электрический магнит. Обычно для усиления магнитного поля внутрь катушки вставляют стальной сердечник; такую катушку называют электромагнитом.

Направление линий магнитной индукции катушки с током находят по правилу правой руки:

если мысленно обхватить катушку с током ладонью правой руки так, чтобы четыре пальца указывали направление тока в ее витках, тогда большой палец укажет направление вектора магнитной индукции.

Для определения направления линий магнитного поля, создаваемого витком или катушкой, можно использовать также правило буравчика:

если вращать ручку буравчика по направлению тока в витке или катушке, то поступательное движение буравчика укажет направление вектора магнитной индукции.

Электромагниты нашли чрезвычайно широкое применение в технике. Полярность электромагнита (направление магнитного поля) можно определить и с помощью правила правой руки.

Смещение магнитных полюсов Земли

Впервые координаты магнитного полюса в Северном полушарии были определены в 1831 году, повторно — в 1904 году, затем в 1948 году и 1962, 1973, 1984, 1994 годах; в Южном полушарии — в 1841 году, повторно — в 1908 году. Смещение магнитных полюсов регистрируется с 1885 года. За последние 100 лет магнитный полюс в Южном полушарии переместился почти на 900 км и вышел в Южный океан.

Новейшие данные по состоянию арктического магнитного полюса (движущегося по направлению к Восточно-Сибирской мировой магнитной аномалии через Северный Ледовитый океан) показали, что с 1973 по 1984 год его пробег составил 120 км, с 1984 по 1994 год — более 150 км. Хотя эти данные расчетные, они подтверждены замерами северного магнитного полюса.

После 1831 года, когда положение полюса было зафиксировано впервые, к 2019 году полюс сместился уже более чем на 2 300 км в сторону Сибири и продолжает двигаться с ускорением.

Скорость его перемещения увеличилась с 15 км в год в 2000 году до 55 км в год в 2019 году. Такой быстрый дрейф приводит к необходимости более частой корректировки навигационных систем, использующих магнитное поле Земли, например, в компасах в смартфонах или в резервных системах навигации кораблей и самолетов.

Напряженность земного магнитного поля падает, причем неравномерно. За последние 22 года она уменьшилась в среднем на 1,7 %, а в некоторых регионах, — например в южной части Атлантического океана, — на 10%. В некоторых местах напряженность магнитного поля, вопреки общей тенденции, даже возросла.

Ускорение движения полюсов (в среднем на 3 км/год) и движение их по коридорам инверсии магнитных полюсов (эти коридоры позволили выявить более 400 палеоинверсий) позволяет предположить, что в данном перемещении полюсов следует усматривать не экскурс, а очередную инверсию магнитного поля Земли.

Записи учёных

Первое действительное измерение было фактически сделано в 1963 году , но область исследований начала расширяться только после того, как в 1970 году была разработана технология с низким уровнем шума. Сегодня сообщество исследователей биомагнетиков не имеет официальной организации, но международные конференции проводятся каждые два года, в ней находятся около 600 человек. Большая часть деятельности конференции сосредоточена на МЭГ (магнитоэнцефалограмме), измерении магнитного поля мозга.

МЭГ показывает дополнительные сведения к электроэнцефалограмме (ЭЭГ) и дает ценную новую информацию о состоянии человеческого мозга. Это также показывает перспективы в клинической диагностике отклонений в головном мозге. Таким образом, биомагнетизм является перспективным новым решением для организма человека в целом и в частности, мозга. Инженерная школа Тайер в Дартмуте на данный момент приобретает систему МЭГ, и ожидаются новые захватывающие разработки.​

Советскую разработку “СКВИД” стали часто применять для измерения магнитных полей, что стало причиной для создания новых исследований в той же области, опираясь на информацию, полученную из созданного прибора.

Но ранее учёные не уделяли особого внимания исследованию магнитных полей, так как оно оказалось недостаточно сильным, да и измерение его без разработки было достаточно трудной задачей. Само магнитное поле состоит из множества шумов, исходящих из него в окружающее пространство. Кроме того, магнитное поле имеет энергетические опасности и электромагнитные поля. Это основано на энергии, излучающейся из магнитного поля, она может быть как положительной, так и отрицательной.

Поэтому, чтобы углубиться в познания, необходимо принять специальные защитные меры и приобрести соответствующие приспособления.

Как работает компас

Кто не видел компас? Небольшая такая вещица, похожая на часы с одной стрелкой. Крутишь ее, вертишь, а стрелка упрямо разворачивается в одну сторону. Стрелка компаса представляет собой магнит, свободно вращающийся на игле. Принцип действия магнитного компаса основан на притяжении-отталкивании двух магнитов. Противоположные полюса магнитов притягиваются, одноименные – отталкиваются. Наша планета также является таким магнитом. Сила его невелика, ее недостаточно, что бы проявиться на тяжелом магните. Однако легкая стрелка компаса, уравновешенная на игле поворачивается и под влиянием небольшого магнитного поля.

спортивный компас

Что бы стрелка компаса не болталась, а четко показывала направление вне зависимости от тряски, она должна быть достаточно сильно намагничена. В спортивных компасах колбу со стрелкой заливают жидкостью. Неагрессивной для пластмассовых и металлических частей, не замерзающей при зимних температурах. Пузырек воздуха, оставленный в колбе, несет в себе функции указателя уровня, для ориентации компаса в горизонтальной плоскости.

Первенство в изучении магнитного поля Земли принадлежит английскому ученому Уильяму Гильберту. В своей книге «О магните, магнитных телах и большом магните – Земле», изданной в 1600 году он представил Землю в виде гигантского постоянного магнита, ось которого не совпадает с осью вращения Земли. Угол между осью вращения и магнитной осью называют магнитным склонением.

В результате такого несовпадения, говорить, что стрелка компаса всегда указывает на север, не совсем верно. Она указывает на точку, находящуюся на расстоянии в 2100 км от северного полюса, на острове Соммерсет (его координаты 75°,6 с. ш., 101° з. д. – данные на 1965 г.) Магнитные полюса Земли медленно дрейфуют. Кроме такой ошибки в направлении стрелки (будем называть ее систематической), нельзя также забывать о других причинах неправильной работы компаса:

  • Металлические предметы или магниты, находящиеся вблизи компаса отклоняют его стрелку
  • Электронные приборы, являющиеся источниками электромагнитных полей
  • Залежи полезных ископаемых – металлических руд
  • Магнитные бури, происходящие в годы сильной активности солнца, искажают магнитное поле Земли.

А теперь, попробуйте ответить на вопросы для сообразительных:

  • Как вы думаете, куда будет указывать стрелка компаса, если Вы находитесь между северным географическим полюсом и северным магнитным полюсом?
  • Куда показывает стрелка, когда компас находится в районе магнитного полюса?
  • Если, руководствуясь компасом очень долго идти все время строго на северо-восток, то куда придешь?

А пока Вы размышляете, приведу несколько интересных фактов о магнитном поле Земли.

Оказывается, оно ослабевает примерно на 0,5% каждые 10 лет. По различным подсчетам, оно исчезнет через 1-2 тысячи лет. Предполагается, что в этот момент будет происходить переполюсовка магнита – Земли. После чего поле снова начнет нарастать, но северный и южный магнитный полюса поменяются местами. Считается, что такое с нашей планетой происходило уже огромное количество раз.

Оказывается, что перелетные птицы также ориентируются “по компасу”, точнее, магнитное поле Земли служит им ориентиром. Недавно ученые узнали, что у птиц в области глаз располагается маленький магнитный “компас” — крохотное тканевое поле, в котором расположены кристаллы магнетита, обладающие способностью намагничиваться в магнитном поле.

Простейший компас можно изготовить самостоятельно. Для этого надо оставить рядом с магнитом швейную иглу на несколько дней. После этого игла намагнитится. Смочив ее жиром или маслом, аккуратно опустите иглу на поверхность налитой в чашку воды. Жир не даст ей утонуть, и игла развернется с севера на юг (ну или наоборот :).

Впечатлились? Вот теперь, можете проверить свои ответы на вопросы:

  • Как вы думаете, куда будет указывать стрелка компаса, если Вы находитесь между северным географическим полюсом и северным магнитным полюсом?– Северный конец стрелки будет показывать.. на юг, а южный – на север!
  • Куда показывает стрелка, когда компас находится в районе магнитного полюса?– оказывается, стрелка, подвешенная на нити в районе магнитного полюса стремится развернуться… вниз, вдоль магнитных линий Земли!
  • Если, руководствуясь компасом очень долго идти все время строго на северо-восток, то куда придешь?– придешь на северный магнитный полюс! Попробуйте проследить свой путь на глобусе, очень интересный маршрут получается.

а так мог выглядеть морской компас на корабле Колумба

Надеемся, вам понравился этот материал. Если да, то будем делать больше таких разных!

Токи Фуко

Основная статья: Токи Фуко

Токи Фуко́ (вихревые токи) — замкнутые электрические токи в массивном проводнике, возникающие при изменении пронизывающего его магнитного потока. Они являются индукционными токами, образующимися в проводящем теле либо вследствие изменения во времени магнитного поля, в котором оно находится, либо в результате движения тела в магнитном поле, приводящего к изменению магнитного потока через тело или любую его часть. Согласно правилу Ленца, магнитное поле токов Фуко направлено так, чтобы противодействовать изменению магнитного потока, индуцирующему эти токи.

Магнитное поле

Люди только и делают, что говорят про какие-то магнитные бури, привозят магнитики на холодильник, ходят в походы с компасом, который показывает, где север, а где юг. В основе всего этого лежит магнитное поле.

Магнитное поле — это материя, за счет которой осуществляется взаимодействие зарядов.

У нее есть несколько условий для существования:

  • магнитное поле материально, то есть существует независимо от наших знаний о нем;
  • порождается только движущимся электрическим зарядом;
  • обнаружить магнитное поле можно по действию на движущийся электрический заряд (или проводник с током) с некоторой силой;
  • магнитное поле распространяется в пространстве с конечной скоростью, равной скорости света в вакууме.

Магнитное поле создается только движущимся электрическим зарядом? А как же магниты?

Атом состоит из ядра и вращающихся вокруг него электронов. Электроны могут вращаться по разным орбитам. На каждой орбите может находиться по два электрона, которые вращаются в разных направлениях.

Но у некоторых веществ не все электроны парные, и несколько электронов крутятся в одном и том же направлении, такие вещества называются ферромагнетиками. А поскольку электрон — заряженная частица, вращающиеся вокруг атома в одну и ту же сторону электроны создают магнитное поле. Получается миниатюрный электромагнит.

Если атомы вещества расположены в произвольном порядке, поля этих крошечных магнитиков компенсируют друг друга. Но если эти магнитные поля направить в одну и ту же сторону, то они сложатся — и получится магнит.

У любого магнита есть два полюса — северный и южный.

Любое магнитное поле описывается магнитными линиями, которые выходят из северного поля и приходят в южный. Эти линии всегда замкнуты, даже если у них бесконечная длина. Вот так это выглядит:

Как запомнить, что выходят магнитные линии из северного полюса, а приходят в южный?

Все просто — на севере жить никто не хочет. Многие люди переезжают туда, где теплее, зимуют в теплых краях, в общем — стремятся на юг. Магнитные линии тоже.

Северный полюс обозначается латинской буквой N (от английского слова North). А южный — буквой S (от английского слова South).

Наша планета — это один большой магнит. У нее тоже есть северный и южный полюса. Но есть один нюанс — географические полюса отличаются от физических. Да-да, на северном полюсе, который наверху карты, находится южный физический полюс. Ну и наоборот, на южном географическом — северный физический.

Не паникуйте, компас показывает вам географический полюс. Да, компас — это магнитная стрелка, и должен по идее показывать физический полюс, но стрелка окрашена так, чтобы направившись на северный физический полюс, показать южный географический. Чтобы люди не путались.

Линии магнитного поля

Электрическое поле можно исследовать с помощью элементарных зарядов, по поведению которых удобно судить о значении и направлении материи. Аналогом такой энергии является пробная частица, которую можно представить в виде стрелки, точнее компаса. Например, если взять много устройств, указывающих на магнитные полюса Земли, и разместить их в некотором геометрическом пространстве, то можно будет визуализировать силы, характеризующие электромагнитное поле.

Но определить направление материи вокруг проводников с током различной формы или так называемый магнитный спектр можно и практически. Для этого используются различные установки. Простейшей из них является комплекс, включающий в свой состав:

  • источник питания;
  • диэлектрическую рамку;
  • толстый медный провод способный пропустить ток порядка 20 ампер;
  • железные опилки.

В рамке через просверленное отверстие продевают провод, который подключают к источнику питания. Сверху на проволоку насыпают стружки. После подачи тока можно будет наблюдать, как образуются цепочки, повторяющие форму распространения силы поля. Например, вокруг прямого провода, расположенного перпендикулярно пластинке, можно будет увидеть кольцевые силовые линии.

Проведя эксперимент, можно узнать в чём состоит особенность линий магнитной индукции. Во-первых, их распространение неравномерное. В некоторых местах они гуще. Во-вторых, эти линии никогда не пересекаются и всегда замкнутые. С точки зрения физики, можно добавить, что направление магнитного поля возможно выяснить по правилу буравчика. При этом вектор индукции касателен к каждой точке отрезка.

Для эксперимента нужно высыпать опилки на лист бумаги, а рядом с ними положить компас. Затем снизу медленно поднести магнит, желательно через деревянную прослойку. Тогда можно будет не только увидеть рисунок поля, но и заметить, что стрелка компаса показывает в ту же сторону, куда направлены железные опилки.

Инверсия геомагнитного поля

Аномально высокая скорость движения северного геомагнитного полюса и уменьшение интенсивности геомагнитного поля в последние годы порождают спекуляции на тему скорой инверсии геомагнитного поля. Инверсией геомагнитного поля называют процесс перестановки местами южного и северного геомагнитного полюсов. В нормальном состоянии геомагнитного поля северный геомагнитный полюс находится вблизи северного географического полюса. В обратном состоянии же наблюдается противоположная картина: северный геомагнитный полюс находится вблизи южного географического полюса.

Во времени наступления инверсий не обнаружено никакой периодичности (в отличие от, к примеру, 22-летней периодичности в инверсиях магнитного поля Солнца, которая равна двухкратному периоду солнечной активности).

Типичное время между инверсиями составляет от 0.1 до 1 миллиона лет, сами инверсии длятся между 1 и 10 тысячами лет. Предполагается, что во время инверсий происходит очень сильное ослабление геомагнитного поля, и, следовательно, создаётся нешуточная угроза земной жизни (частицы солнечного ветра в больших количествах проникают в земную атмосферу). В тоже время не отмечено никакой корреляции между массовыми вымираниями земных видов и периодами инверсий геомагнитного поля.

Последняя достоверная инверсия геомагнитного поля случилась 780 тысяч лет назад. Её длительность составила от 1200 до 10000 лет в зависимости от географического положения изученных пород с остаточной намагниченностью. С другой стороны изучается возможность более свежей кратковременной инверсии геомагнитного поля, которая случилась всего 41 тысячу лет назад. Событие получило название Laschamp, так как впервые было обнаружено в 60х годах 20 века в остаточной намагниченности лавового потока с таким названием во Франции. Позже следы этой инверсии были обнаружены и в других местах Земли. Длительность инверсии составила 250-440 лет, во время неё геомагнитное поле было ослаблено на 75%.

Схема движения геомагнитных полюсов во время этой инверсии

В тоже время в спокойные периоды геомагнитные полюсы испытывают лишь хаотичный дрейф вблизи географических полюсов.

Пример вероятного движения северного геомагнитного полюса после 200 года нашей эры

Кроме того можно отметить, что текущее ослабление геомагнитного поля за последние 180 лет на 10% не является уникальным. Изучение остаточной намагниченности пород в Ливане показывает, что 2500 лет назад геомагнитное поле было в 2.5 раза сильнее, чем сейчас, после чего оно ослабло сразу почти на 30% всего за 180 лет.

Природа магнитного поля Земли

Впервые объяснить существование магнитных полей Земли и Солнца попытался Дж. Лармор в 1919 году, предложив концепцию ]]>динамо]]>, согласно которой поддержание магнитного поля небесного тела происходит под действием гидродинамического движения электропроводящей среды.

Однако в 1934 году Т. Каулинг доказал теорему о невозможности поддержания осесимметричного магнитного поля посредством гидродинамического динамо-механизма.

А поскольку большинство изучаемых небесных тел (и тем более Земля) считались аксиально-симметричными, на основании этого можно было сделать предположение, что их поле тоже будет аксиально-симметричным, и тогда его генерация по такому принципу будет невозможна согласно этой теорем.

Даже Альберт Эйнштейн скептически относился к осуществимости такого динамо при условии невозможности существования простых (симметричных) решений. Лишь гораздо позже было показано, что не у всех уравнений с аксиальной симметрией, описывающих процесс генерации магнитного поля, решение будет аксиально-симметричным, и в 1950-х годах. несимметричные решения были найдены.

С тех пор теория динамо успешно развивается, и на сегодняшний день общепринятым наиболее вероятным объяснением происхождения магнитного поля Земли и других планет является самовозбуждающийся динамо-механизм, основанный на генерации электрического тока в проводнике при его движении в магнитном поле, порождаемом и усиливаемом самими этими токами.

Необходимые условия создаются в ядре Земли: в жидком внешнем ядре, состоящем в основном из железа при температуре порядка 4–6 тысяч кельвинов, которое отлично проводит ток, создаются ]]>конвективные]]> потоки, отводящие от твердого внутреннего ядра тепло (генерируемое благодаря распаду радиоактивных элементов либо освобождению скрытой теплоты при затвердевании вещества на границе между внутренним и внешним ядром по мере постепенного остывания планеты).

]]>Силы Кориолиса]]> закручивают эти потоки в характерные спирали, образующие так называемые ]]>столбы Тейлора]]>. Благодаря трению слоев они приобретают электрический заряд, формируя контурные токи. Таким образом, создается система токов, циркулирующих по проводящему контуру в движущихся в (изначально присутствующем, пусть и очень слабом) магнитном поле проводниках, как в ]]>]]>.

Она создает магнитное поле, которое при благоприятной геометрии течений усиливает начальное поле, а это, в свою очередь, усиливает ток, и процесс усиления продолжается до тех пор, пока растущие с увеличением тока потери на джоулево тепло не уравновесят притоки энергии, поступающей за счет гидродинамических движений.

Высказывались предположения, что динамо может возбуждаться за счет прецессии или приливных сил, то есть что источником энергии является вращение Земли, однако наиболее распространена и разработана гипотеза о том, что это все же именно термохимическая конвекция.