Электричество и магнетизм

Содержание

Численный расчет

При численных вычислениях численное решение может не удовлетворять закону Гаусса для магнетизма из-за ошибок дискретизации численных методов

Однако во многих случаях, например, для магнитогидродинамики , важно точно (с точностью до машинной точности) сохранить закон Гаусса для магнетизма. Нарушение закона Гаусса для магнетизма на дискретном уровне приведет к появлению сильной нефизической силы

Ввиду сохранения энергии нарушение этого условия приводит к неконсервативному интегралу энергии, а ошибка пропорциональна расходимости магнитного поля.

Существуют различные способы сохранения закона Гаусса для магнетизма в численных методах, включая методы очистки расходимости, метод ограниченного переноса, формулы на основе потенциала и методы конечных элементов на основе комплекса де Рама, в которых стабильные и сохраняющие структуру алгоритмы строятся на неструктурированных сетках. с конечно-элементными дифференциальными формами.

Разнообразная магнитная среда – от ферро- до электромагнетизма

Интересным для науки представляется и тот факт, что явление может быть не только неоднородным, но и разнообразным. К примеру, существует такое явление, как ферромагнетизм – самая доступная для осознания человечества форма магнетизма, развитие намагниченности которого зависит не только от магнитного поля, но и температуры.

Характерной особенностью ферромагнетиков является гистерезис. Явление гистерезиса заключается в том, что магнитная индукция зависит не только от мгновенного значения, но и от того, какой была напряженность поля раньше. Ранее железные стрелки компаса намагничивались магнетитом (магнитным железняком) или намагниченными минералами магнетита, извлеченными из земли. Это единственная магнитная сила, которую люди могут увидеть, почувствовать.

Возможно, ферромагнетизм и является наиболее наглядной формой магнетизма, но точно не самой важной, по крайней мере, в наши дни. На первое место выходит электромагнетизм

Электричество и магнетизм тесно переплетены, их поля подпитывают и взаимодействуют друг с другом. Электромагнетизм создает такие краеугольные элементы Вселенной, как свет и энергия, без него атомы и молекулы, из которых мы состоим, разлетелись бы.

В 1865 году физик Джеймс Клерк Максвелл установил связь между двумя этими силами, подготовив почву для формулирования Эйнштейном своей знаменитой теории, получившей название Специальная теория относительности.

Итак, как видно, никого не было бы живого в этом мире, не будь столь фундаментальной силы вокруг и внутри нас. Даже планет и звезд не было бы. Но человечество должно сказать электромагнетизму спасибо второй раз, поскольку именно это явление подарило возможность бурного технического прогресса на протяжении всего XX века.

На сегодняшний день существуют обширные области применения электромагнетизма в повседневной жизни. На электромагнитных волнах работают разнообразные приборы – от микроволновых печей и телевизоров до радиоприемников и рентгеновских аппаратов.

Мы также все знаем об этом с детства: когда объект подвергается воздействию электрического тока, он генерирует временное магнитное поле посредством катушки с током. При увеличении силы тока магнитное поле катушки усиливается. Однако, когда ток отключается, поле исчезает. Это и называется электромагнетизмом.

3.20. Магнетики. Вещества в магнитном поле

Вещества, способные намагничиваться и влиять на направление вектора магнитной индукции внешнего поля B, называются магнетиками.

Способность намагничиваться — создание собственного магнитного поля в веществе, которое или усиливает, или уменьшает внешнее магнитное поле.

Собственные магнитные свойства вещества определяются электронами, связанными с атомами. Строение атома подразумевает наличие электрона e, вращающегося вокруг ядра. Магнитный момент электрона , то есть каждая орбита электрона в атоме обладает собственным магнитным моментом и создает собственное магнитное поле. В целом в веществе суммарные магнитные моменты электронов в атоме расположены хаотично и их сумма зачастую равна нулю.

Под действием внешнего магнитного поля собственные магнитные поля, созданные электронами, упорядочиваются. Это и есть явление намагниченности. Оно может сохраняться после снятия магнитного поля, а может и исчезать. У ферромагнетиков оно сохраняется, а у диа и парамагнетиков исчезает.

В результате поле равно: , где каппа — магнитная восприимчивость, которая определяется внешним воздействием, а и — магнитные моменты электронных орбит.

; — магнитная проницаемость.

.

Для разных веществ значение может принимать как положительные, так и отрицательные значения. В большинстве веществ собственные магнитные моменты атомов (молекул) не зависят друг от друга и хаотично расположены в пространстве. Если к такому веществу приложить внешнее поле, то собственный магнитный момент каждого атома стремится, как волчок, выровнять положение оси вращения вдоль силовых линий внешнего поля.

Bвне — индукция внешнего магнитного поля, Pm- собственный магнитный момент атома.

Изменение собственной оси вращения (собственного магнитного момента) относительно вектора магнитной индукции (внешнего поля) называется прецессией.

Собственный механический момент или количество движения Ls (спин)

Механические моменты электронов в атоме могут отличаться только направлением движения по орбите (вдоль и против часовой стрелки).

  1. Если внешнее магнитное поле затрачивает энергию на прецессию, то её результирующее магнитное поле ослабляется. Такие вещества называют диа–магнетиками: .
  2. В некоторых веществах внешнее магнитное поле не затрачивает энергию на прецессию, а разворачивает весь атом так, чтобы его собственное магнитное поле совпадало с внешним магнитным полем. Эти вещества -парамагнетики. Для них .

Парамагнетики

Стрелками укажем магнитные моменты отдельных атомов.

Ферромагнетики.

Для объяснения ферромагнетизма вводим понятие доменов. Домен — совокупность атомов с одинаковым направлением собственных магнитных полей. Подобные совокупности атомов требуют меньше энергии для образования доменов, т.е. энергетически более выгодны по сравнению с разрозненными атомами. В целом собственное магнитное поле вещества равно нулю. Под действием внешнего магнитного поля домены могут увеличиваться за счет других доменов вплоть до поглощения неориентированных доменов, то есть все пространство вещества заполняется доменами, ориентированными вдоль поля. При снятии внешнего поля обратной переориентации не происходит, так как это энергетически не выгодно. В этом случае магнитная восприимчивость составляет тысячи и десятки тысяч единиц. Оказывается, реакция вещества на воздействие внешнего магнитного поля носит нелинейный характер. Это определяется способностью собственных магнитных моментов переориентироваться во внешнем магнитном поле. Сначала идёт резкое изменение ориентации во внешнем магнитном поле, магнитные моменты ориентируются вдоль силовых линий магнитного поля. Дальнейшее увеличение магнитного поля не изменяет намагниченность, так как все магнитные моменты уже ориентированы вдоль поля. Зависимость результирующего магнитного поля в веществе в целом в зависимости от внешнего поля носит характер гистерезиса.

B1 — остаточная индукция. H1 — коэрцетивная сила.

B1 — в веществе остается собственное магнитное поле без внешнего магнитного поля H1 = 0, (так создаются постоянные магниты).

H1 — внешнее поле, необходимое для снятия собственной намагниченности, B1=0. Эта величина называется коэрцетивная сила.

Анализ петли гистерезиса см. в разделе “Сегнетоэлектрики”. Если коэрцетивная сила велика, то говорят, что ферромагнетик жёсткий, если мала — то мягкий.

Гигантский магнит под ногами

Земля, как мы уже сказали в начале нашего повествования, – это, по сути, гигантский магнит с соответствующими геомагнитными Северным и Южным полюсами, причиной чего является внешняя часть железного ядра в Земле.

Каплевидное магнитное поле, создаваемое Землей, которое преломляется солнечными ветрами и называется магнитосферой, обеспечивает работу наших компасов, создает яркие полярные сияния и даже защищает нас от вредного космического излучения. Все это очень важный элемент, защищающий нашу атмосферу.

Намагниченные частицы в лавовых породах, движущиеся вдоль поверхности Земли, регистрируют направление магнитного поля нашей планеты. Именно поэтому ученые могут сказать, что магнитные полюса Земли менялись с течением времени.

В последние годы смещение магнитных полюсов набирает скорость. Исследования показали, что они смещаются со скоростью 56 километров ежегодно. Чем чреват дрейф магнитных полюсов? Он может как нарушить работу навигационных систем, так и вызывать головные боли у метеозависимых людей.

Изучение магнетизма человечеством простирается на тысячи лет в прошлое. Греки первыми задокументировали первые опыты с невидимой силой, но магнетизм был знаком еще древним племенам и аборигенам мезоамерики.

Магнетизм + пример определения силы магнитного поля

Количественный показатель магнитного потока, присутствующего в круглом магнитном стержне, равен 0,06 Вб. Какая плотность магнитного потока, если диаметр стержня магнита равен 24 см? Решение:

Сначала определяется площадь поперечного сечения стержня (в м2):

S = π * R2 (3.14 * 0.122) = 0.045

Далее рассчитывается плотность магнитного потока (в Тесла):

B = φ / S = 0. 06 / 0.045 = 1.33

Если применительно к магнетизму электрических цепей 1Т — это плотность магнитного поля, проводник, несущий ток 1А под прямым углом к магнитному полю, испытывает нагрузку магнитной силы в один ньютон на метр.

При помощи информации: ElectronicsTutorials

Опыт Эрстеда

Довольно продолжительное время электрические и магнитные поля изучались раздельно. Их взаимосвязь была обнаружена совершенно случайно. Существует легенда, что Кристиан Эрстед показывал ученикам на своей лекции в университете влияние толщины проводника на силу тока. При этом на демонстрационном столе лежал компас, оставшийся от предыдущей лекции

Во время рассказа Эрстеда о природе нагрева проволоки, один из его студентов обратил внимание, что стрелка компаса изменила положение. Этот эффект после позволил учёному утверждать, что на магнитную стрелку, расположенную вблизи с проводником тока, действуют силы, стремящие её развернуть

Проведя ряд опытов, учёный установил, что на направление указателя влияла полярность подключения источника питания. При её изменении стрелка сразу же изменяла своё направление на противоположное. Но оказалось, что влияние магнитного потока настолько мало, что обнаружить его, возможно, только с помощью чувствительных приборов.

Чтобы более точно представить, по какому принципу происходит поворот магнитной стрелки вблизи проводника с током нужно рассмотреть проволоку с торца. Тогда можно будет изучить два случая:

  • ток идёт от наблюдающего;
  • заряды двигаются к исследователю.

Если установить множество стрелок вокруг проводника, то окажется, что после пропускания тока они выстроятся так, что образуют своеобразную окружность. При этом их полюса будут противоположны друг другу. Эти стрелки примут положение по касательной к магнитным линиям. Таким образом, можно будет увидеть, что линии, описывающие распространение поля, представляют окружность. Их же направления в первом случае будут по часовой стрелке, а во втором — против.

Это важное свойство магнитных линий и наблюдал Эрстед. Ампер же смог развить исследование дальше

Он установил, что если взять два проводника, разместить их параллельно и пустить по ним токи в одном направлении, то возникает сила притягивания. Если же в одном из них поменять подключение — проводники начинают отталкиваться. Именно благодаря Амперу удалось эмпирически доказать, как происходит взаимодействие проводника, по которому течёт ток, с полем постоянного магнита и описать зависимость зарядов от их направления.

1.3. Закон Кулона (1785 г.)

Сила взаимодействия между заряженными телами прямо пропорциональна зарядам этих тел и обратно пропорциональна квадрату расстояния между ними:

, где , k ~ f (среды)

eо=8,85· 10-12 [Ф/м] — электрическая постоянная.

e — характеристика среды, называется — диэлектрическая проницаемость.

e — имеет электрический характер и определяет во сколько раз взаимодействие между одинаковыми зарядами, расположенными на одинаковом расстоянии друг от друга в среде меньше, чем аналогичное взаимодействие в вакууме.

e в-х = 1,00013 — в воздухе.

e вак = 1 — в вакууме, соответственно:

.

Во всех остальных средах e ср >1.

Геомагнитные вариации.

Изменение магнитного поля Земли во времени под действием различных факторов называются геомагнитными вариациями. Разность между наблюдаемой величиной напряженности магнитного поля и средним ее значением за какой-либо длительный промежуток времени, например, месяц или год, называется геомагнитной вариацией. Согласно наблюдениям, геомагнитные вариации непрерывно изменяются во времени, причем такие изменения часто носят периодический характер.

Cуточные вариации. Cуточные вариации геомагнитного поля возникают регулярно в основном за счет токов в ионосфере Земли, вызванных изменениями освещенности земной ионосферы Солнцем в течение суток.

Нерегулярные вариации. Нерегулярные вариации магнитного поля возникают вследствие воздействия потока солнечной плазмы (солнечноговетра) на магнитосферу Земли, а так же изменений внутри магнитосферы и взаимодействия магнитосферы с ионосферой.

27-дневные вариации. 27-дневные вариации существуют как тенденция к повторению увеличения геомагнитной активности через каждые 27 дней, соответствующих периоду вращения Солнца относительно земного наблюдателя. Эта закономерность связана с существованием долгоживущих активных областей на Солнце, наблюдаемых в течении нескольких оборотов Солнца. Эта закономерность проявляется в виде 27-дневной повторяемости магнитной активности и магнитных бурь.

Сезонные вариации. Сезонные вариации магнитной активности уверенно выявляются на основании среднемесячных данных о магнитной активности, полученных путем обработки наблюдений за несколько лет. Их амплитуда увеличивается с ростом общей магнитной активности. Найдено, что сезонные вариации магнитной активности имеют два максимума, соответствующие периодам равноденствий, и два минимума, соответствующие периодам солнцестояний. Причиной этих вариаций является образование активных областей на Солнце, которые группируются в зонах от 10 до 30° северной и южной гелиографических широт. Поэтому в периоды равноденствий, когда плоскости земного и солнечного экваторов совпадают, Земля наиболее подвержена действию активных областей на Солнце.

11-летние вариации. Наиболее ярко связь между солнечной активностью и магнитной активностью проявляется при сопоставлении длинных рядов наблюдений, кратных 11 летним периодам солнечной активности. Наиболее известной мерой солнечной активности является число солнечных пятен. Найдено, что в годы максимального количества солнечных пятен магнитная активность также достигает наибольшей величины, однако возрастание магнитной активности несколько запаздывает по отношению к росту солнечной, так что в среднем это запаздывание составляет один год.

Вековые вариации – медленные вариации элементов земного магнетизма с периодами от нескольких лет и более. В отличии от суточных, сезонных, и других вариаций внешнего происхождения, вековые вариации связаны с источниками, лежащими внутри земного ядра. Амплитуда вековых вариаций достигает десятков нТл/год, изменения среднегодовых значений таких элементов, названы вековым ходом. Изолинии вековых вариаций концентрируются вокруг нескольких точек – центры или фокусы векового хода, в этих центрах величина векового хода достигает максимальных значений.

1.8. Эквипотенциальные поверхности

Вблизи любого геометрического тела (заряженного) всегда можно определить совокупность точек, потенциалы которых одинаковы. Естественно, основной такой совокупностью точек является поверхность заряженного тела. Вдали от поверхности тела совокупностей точек с равным потенциалом может быть сколь угодно много. В трехмерном пространстве такая совокупность точек называется эквипотенциальной поверхностью. Но на плоскости это отобразить сложно. Поэтому на практике ограничиваются отображением сечений эквипотенциальной поверхности на рисунке.

Эти сечения называются эквипотенциальными линиями или линиями равного потенциала. Очевидно, что вблизи точечного заряда эквипотенциальная поверхность (линия) есть сфера (окружность). А работа электрических сил по перемещению заряда вдоль эквипотенциальной поверхности (линии)

, т.к. .

Работа по перемещению заряда вдоль эквипотенциальной линии численно равна 0.

Ориентация векторов напряженности относительно эквипотенциальной поверхности:

.

.

Так как Е¹ 0, qпр¹ 0, r ¹ 0, то данное уравнение противоречит равенству нуля. Поэтому, надо учесть направление векторов и , а, следовательно, для полной скалярной записи следует добавить

.

Проведём анализ вариантов:

а) если принять, что , тогда , а — не подходит для эквипотенциальных поверхностей.

б) если же тогда , и , что и требовалось доказать.

Т.е. и должны быть взаимно перпендикулярны для случая , это единственный вариант расположения этих векторов. Вектора напряженности заряженных тел всегда перпендикулярны эквипотенциальным поверхностям, а значит, всегда перпендикулярны собственной поверхности заряженного тела.

Что дает внутренний «магнит»?

На жизненные успехи и достижения в карьере, амурных делах во многом оказывает влияние наша способность привлекать к своим персонам окружающих людей, склонять их на свою сторону, управлять ими. А это и есть магнетизм личностей. На самом деле наличие такой силы открывает дверь в мир безграничных возможностей в своей жизни. Только нужно подчинить и управлять ею в своих интересах.

Читайте нашу статью «Что такое книга теней и как ею пользоваться».

Каждый из нас уникален. Человек с магнетизмом зачастую имеет обычную внешность. Но он просто никогда не предает себя, не пытается копировать кого-то, прост и приятен в общении с другими. И это притягивает окружающих, он интересен другим. Никто не запрещает всем, кто хочет, иметь кумиров. Но не стоит их целиком и полностью копировать, наследовать. Можно вдохновиться идеей и создать свой новый уникальный образ.

Магнетический человек жизнерадостен, открыт и дружелюбен. Он всегда улыбчив, и его искренняя улыбка не остается без внимания. Ведь на фоне хмурых лиц, которых так много вокруг, это приковывающий к себе не один взгляд позитив.

Холодность и надменность могут выделиться из толпы. Однако к личному магнетизму такие черты не имеют никакого отношения. Лучше быть добрым, отзывчивым и бескорыстным. Это больше приветствуется и способно влиять на других, вызывать позитивные эмоции.

Чтобы вызывать к себе интерес, вы должны быть увлечены каким-либо любимым занятием, иметь хобби

На самом деле не важно, чем увлечен человек. У других это обязательно вызовет любопытство

А непредсказуемость ставит еще один плюс в зачет, ведь окружающие любят, когда их удивляют.

Также оптимисты всегда в почете, и за такой взгляд человека на жизнь мир платит им той же монетой. Ведь мир «желает», чтобы его украшали, любили и ценили каждое мгновение своей жизни. И все, кто так мыслят, становятся центром внимания людей, которые их окружают.

n1.doc

Принципы электронной теории магнетизма Введение 4§1 Диамагнетизм атомных оболочек 5§2 Диамагнетизм Ландау 5§3 Орбитальная восприимчивость 6§4 Парамагнетизм Паули 7§5 Спонтанный спиновый магнетизм 8 п.5.1 Модель ферромагнетизма Френкеля 8 п.5.2 предельный переход 9 п.5.3 Гамильтониан Хаббарда 10 п 5.4 Проблема обменно – корреляционных эффектов 11 п.5.5 Двойной учет межэлектронного взаимодействия 12§6 Критерий ферромагнетизма Стонера в приближении Хартри – Фока 12§7 Закон Кюри-Вейса 14§8 Зонный критерий антиферромагнетизма 15§9 Критическая температура разрушения магнитного порядка 16§10 Элементарная модель 17§11 Модель электронной структуры металла 17§12 Энергия связи парамагнитного металла 18 п.1 Поправка первого порядка в приближении Хартри – Фока 18 п.2 Приближение эффективной среды – электрон в поле всех других 19 п.3 Кулоновские корреляции (вклад в энергию 2го порядка)(прямые столкновения) 19§13 Влияние магнетизма на свойства металлов и сплавов в приближении ….d – зоны 20 п.13.1 Гамильтониан Андерсона 22 п.13.2 Внутренне состояние и свойства сплавов 23 п.13.3 Особенности на кривой Слетера-Полинга 24 п.13.4 Проблема физического механизма взаимодействия между моментами, локализованными на атомах 26п.п.13.4.1 Возможный механизм взаимодействия магнитных моментов 27§14 Особенности свойств РЗМ и сплавов РЗМ с переходными металлами 28§15 Магнитная энергия магнита 29§16 Магнетизм аморфных систем 29Список литературы 31
Магнетизм твердых тел

Проявление магнитного поля

Магнитное поле проявляется в воздействии на магнитные моменты частиц и тел, на движущиеся заряженные частицы (или проводники с током). Сила, действующая на движущуюся в магнитном поле электрически заряженную частицу, называется силой Лоренца, которая всегда направлена перпендикулярно к векторам v и B. Она пропорциональна заряду частицы q, составляющей скорости v, перпендикулярной направлению вектора магнитного поля B, и величине индукции магнитного поля B.
В Международной системе единиц (СИ) сила Лоренца выражается так:

F=qv,B,{\displaystyle \mathbf {F} =q,}

в системе единиц СГС:

F=qcv,B,{\displaystyle \mathbf {F} ={\frac {q}{c}},}

где квадратными скобками обозначено векторное произведение.

Также (вследствие действия силы Лоренца на движущиеся по проводнику заряженные частицы) магнитное поле действует на проводник с током. Сила, действующая на проводник с током называется силой Ампера. Эта сила складывается из сил, действующих на отдельные движущиеся внутри проводника заряды.

Взаимодействие двух магнитов

Одно из наиболее часто встречающихся в обычной жизни проявлений магнитного поля — взаимодействие двух магнитов: одинаковые полюса отталкиваются, противоположные притягиваются. Представляется заманчивым описать взаимодействие между магнитами как взаимодействие между двумя монополями, и с формальной точки зрения эта идея вполне реализуема и часто весьма удобна, а значит практически полезна (в расчётах); однако детальный анализ показывает, что на самом деле это не полностью правильное описание явления (наиболее очевидным вопросом, не получающим объяснения в рамках такой модели, является вопрос о том, почему монополи никогда не могут быть разделены, то есть почему эксперимент показывает, что никакое изолированное тело на самом деле не обладает магнитным зарядом; кроме того, слабостью модели является то, что она неприменима к магнитному полю, создаваемому макроскопическим током, а значит, если не рассматривать её как чисто формальный приём, приводит лишь к усложнению теории в фундаментальном смысле).

Правильнее будет сказать, что на магнитный диполь, помещённый в неоднородное поле, действует сила, которая стремится повернуть его так, чтобы магнитный момент диполя был сонаправлен с магнитным полем. Но никакой магнит не испытывает действия (суммарной) силы со стороны однородного магнитного поля. Сила, действующая на магнитный диполь с магнитным моментом m выражается по формуле:

F=(m⋅∇)B.{\displaystyle \mathbf {F} =\left(\mathbf {m} \cdot \nabla \right)\mathbf {B} .}

Сила, действующая на магнит (не являющийся одиночным точечным диполем) со стороны неоднородного магнитного поля, может быть определена суммированием всех сил (определяемых данной формулой), действующих на элементарные диполи, составляющие магнит.

Впрочем, возможен подход, сводящий взаимодействие магнитов к силе Ампера, а сама формула выше для силы, действующей на магнитный диполь, тоже может быть получена, исходя из силы Ампера.

Явление электромагнитной индукции

Основная статья: Электромагнитная индукция

Если поток вектора магнитной индукции через замкнутый контур меняется во времени, в этом контуре возникает ЭДС электромагнитной индукции, порождаемая (в случае неподвижного контура) вихревым электрическим полем, возникающим вследствие изменения магнитного поля со временем (в случае неизменного со временем магнитного поля и изменения потока из-за движения контура-проводника такая ЭДС возникает посредством действия силы Лоренца).