Lm386, ka386, кр1438ун2

Содержание

Усилитель LM386

LM386 довольно универсальный чип. Необходимы только пара резисторов и конденсаторов, чтобы сделать простой аудио усилитель. Чип имеет функции контроля коэффициента усиления и усиления НЧ, а также может быть превращен в автогенератор, способный выводить синусоиды или прямоугольные волны.

LM386 представляет собой тип операционного усилителя (ОУ). Операционный усилитель принимает входной потенциал (напряжение) и формирует выходной потенциал, который в десятки, сотни или даже в тысячи раз превосходит входной потенциал.

В этой схеме LM386 принимает входной аудиосигнал и увеличивает его от 20 до 200 раз. Это усиление не что иное, как коэффициент усиления по напряжению.

Усиление и громкость

После того, как вы соберете этот усилитель и поиграетесь с регуляторами громкости и усиления, вы заметите, что оба влияют на увеличение или уменьшение интенсивности звука, выходящего из колонки. Так в чем же разница?

Изменение коэффициента усиления влияет на усиление входного сигнала. Это характеристика усилителя. Громкость позволяет регулировать громкость звука в диапазоне усиления (коэффициента усиления).

Вывод Gain устанавливает диапазон возможных уровней громкости. Например, если наш коэффициента усиления составляет 20, то диапазон громкости будет от 0 до 20. Если же коэффициента усиления 200, громкость будет от 0 до 200.

Операционный усилитель LM386 имеет 8 контактов, как показано на рисунке ниже:

Основные выводы микросхемы: выводы 2 и 3 – вход, вывод 5 — положительный выход. Регулирование усиления может быть достигнуто путем подключения к контактам 1 и 8 конденсатора на 10 мкФ, при этом коэффициент усиления будет 200. Если же контакты 1 и 8 оставить свободными, то усиление будет 20. Так же коэффициент усиления может быть настроен на любое значение в диапазоне от 20 до 200 путем подключения потенциометра последовательно с конденсатором.

Есть три разновидности ОУ LM386, каждый имеет различные показатели выходной мощности:

  • LM386N-1: 0,325 Вт
  • LM386N-3: 0,700 Вт
  • LM386N-4: 1,00 Вт

Внутренняя структура микросхемы LM386:

Скачать datasheet на LM386 (unknown, скачано: 403)

Теперь, когда у нас есть представление о LM386, давайте соберем усилитель. Для сравнения, я покажу вам, как сначала сделать простой усилитель, так чтобы вы смогли сравнить его с более качественным усилителем звука, который мы соберем позже.

В приведенной схеме источник питания, звуковой входной сигнал, и выходной аудиосигнал имеют общую шину. Это в свою очередь создает помехи в выходном сигнале. Чтобы не допустить этого, мы можем подключить минус питания, вход и выход прямо к выводу 4 LM386:

В результате этого звучание должно быть значительно лучше, по сравнению с предыдущей схемой, но вы, вероятно, заметили некоторый шум, треск.

Чтобы это исправить, нам необходимо добавить разделительные конденсаторы. Эти конденсаторы позволяют изолировать схему усилителя от помех, вызванных колебаниями питания и шума от входного сигнала.

Используя конденсаторы с большой емкостью, мы получим НЧ фильтр, а используя конденсаторы с малой емкостью отфильтруем высокочастотный шум.

Это был минимум который необходим для строительства усилителя на LM386. Теперь пришло время построить более качественную версию с возможностью изменения коэффициента усиления. Добавил несколько элементов в схему, это позволит нам получить более качественное звучание:

  • разделительный конденсатор 470 пФ между положительным входным сигналом и землей.
  • конденсаторы 100 мкФ и 0,1 мкФ между положительными и отрицательными шинами питания. 100 мкФ конденсатор будет фильтровать низкочастотный шум, в то время как 0,1 мкФ конденсатор будет фильтровать высокочастотный шум.
  • конденсатор 0,1 мкФ между контактами 4 и 6 для дополнительной развязки источника питания микросхемы.
  • резистор 10к и конденсатор 10 мкФ подключены последовательно к выводу 7 и минусом питания.

На рисунке ниже показано как это все соединить:

Следует обратить внимание для того, чтобы иметь чистый звук, необходимо все соединения делать как можно короче и ближе к выводам микросхемы. Особенностью LM386 является возможность добавить регулирование басов

Все, что вам нужно сделать, это подключить конденсатор емкостью 0,033 мкФ и потенциометр 10K Ом последовательно между контактами 1 и 5:

Особенностью LM386 является возможность добавить регулирование басов. Все, что вам нужно сделать, это подключить конденсатор емкостью 0,033 мкФ и потенциометр 10K Ом последовательно между контактами 1 и 5:

Блок питания 0…30 В / 3A
Набор для сборки регулируемого блока питания…

Подробнее

Чипы-усилители

Все привыкли к тому, что усилители звука зависят от множества отдельных компонентов или от энергоёмких электронных ламп, чтобы звучание было качественным. Как и в других отраслях, появление интегральных микросхем вызвало прорыв в мире аудиосистем, позволив использовать любое количество операционных усилителей, созданных для звуковых систем.

Такие интегральные схемы называют усилитель аудиосигнала на ИС, чипы усиления звука или чиповые усилители. Обычно они требуют несколько дополнительных компонентов, схемы с ними просты по своей конструкции, и потребляют чипы-усилители меньше тока, чем их дискретные и ламповые аналоги.

Все это подводит нас к усилителю ЛМ386, созданным «Texas Instruments» в 1983 году. Его можно найти в низковольтных аккумуляторных устройствах по всему миру.

Его характеристики:

  • легко питать (использует одностороннее электропитание)
  • низкая теплоотдача (не требует теплоотвода)
  • производительный/эффективный
  • существует вариант с двухрядным расположением выводов/существует двухрядный вариант

А это значит, что этот чип в фаворе у любителей мастерить по всему миру и является отличным полигоном для экспериментов с чиповыми усилителями. И не забывайте о его низкой стоимости. Сегодня мы с вами попробуем собрать простой мини усилитель звука для колонок на основе этого чипа.

↑ Другие варианты применения микросхемы LM386

↑ Усилитель на LM386 с гнездом для подключения наушников

На рис. 7 показан усилитель с возможностью подключения головных телефонов. На схеме входное напряжение от источника аудиосигнала подаётся через конденсатор С1, устраняющий постоянную составляющую на регулятор громкости R1.

Рис. 7. Усилитель с гнездом для подключения наушников

Второй конденсатор (С2), включённый между средним выводом R1 и неинвертирующим входом, в принципе не нужен, но такое схемотехническое решение устраняет шорохи при возможном плохом качестве переменного резистора, а также уменьшает смещение половинного напряжения на выходе усилителя.

Гнездо для подключения наушников включено через развязывающий конденсатор С5 таким образом, что при отсутствии штекера наушников подключён динамик ВА1, а при включении штекера – динамик отключается.

Назначение остальных элементов усилителя было рассмотрено выше. Коэффициент усиления по напряжению минимален (Ku=20).

↑ Переговорное устройство на LM386

Взяв за основу усилитель с максимальным коэффициентом усиления (рис. 2), можно получить простое переговорное устройство. Как видно из схемы, представленной на рис. 8, в неё добавлен выключатель питания и переключатель «Приём – передача», обеспечивающий попеременную работу динамических головок ВА1 и ВА2 в качестве микрофона или громкоговорителя.

Рис. 8. Переговорное устройство

Устройство позволяет организовать проводную связь между двумя абонентами. Дальность связи достигает нескольких сотен метров.

Область применения этой конструкции: связь между двумя абонентами, игры и т. п. Усилитель с динамической головкой ВА1 располагается на основном пункте связи, а другая динамическая головка – на удалённом пункте связи. Соединение основного и удалённого пунктов связи выполняют многожильным телефонным двухпроводным кабелем. Конструкция питается от батареи напряжением 9 В типа «Крона».

↑ Генератор синусоидальных сигналов с малыми искажениями на LM386

Этот же усилитель без больших затрат превращается в генератор синусоидальных сигналов с малым коэффициентом гармоник. Схема генератора с мостом Вина показана на рис. 9.

Рис. 9. Генератор синусоидальных сигналов с малыми искажениями

Напомним, что частота генератора определяется выражением:

fo=½Π√(R1R2C1C2)

Чаще всего выбирают R1=R2 и C1=C2, при этом выражение упрощается:

fo=½ΠR1C1

Вторым требованием является то, что коэффициент отрицательной обратной связи усилителя должен быть равен точно 1/3 . При указанных условиях в схеме возникают незатухающие колебания. Если этот коэффициент меньше 1/3, амплитуда колебаний будет быстро увеличиваться со временем, пока выходное напряжение не превратится в меандр.

Если коэффициент отрицательной обратной связи более 1/3, амплитуда колебаний через некоторое время будет стремиться к нулю. Ясно, что установить идеальное значение коэффициента можно, если применить систему автоматической регулировки амплитуды.

Для этого предусмотрена цепь отрицательной обратной связи R3, HL1, которая так воздействует на коэффициент усиления, чтобы амплитуда колебаний стабилизировалась при весьма малых нелинейных искажениях (порядка 0,05%).

Если выходное напряжение генератора по каким-либо причинам увеличивается, увеличится и ток через R3, а также напряжение на нелинейном элементе – лампе накаливания HL1. Нить лампы накаливания разогреется, и её сопротивление увеличится, что приведёт к уменьшению глубины отрицательной обратной связи и уменьшению напряжения на выходе генератора. При уменьшении выходного напряжения генератора процессы происходят в обратном направлении, в результате обеспечивается автоматическая стабилизация коэффициента усиления.

При указанных на принципиальной схеме значениях элементов частота генерируемых колебаний составляет 1 кГц, а амплитуда – около 2 В эфф.

↑ Генератор прямоугольных импульсов на LM386

Схема, показанная на рис. 10, представляет собой генератор сигналов прямоугольной формы.

Рис. 10. Генератор прямоугольных импульсов

Усилитель DA1 играет роль компаратора. Положительная обратная связь реализуется с помощью делителя R1, R2, подключённого к неинвертирующему входу усилителя. Коэффициент обратной связи Kос=R2/(R1+R2). В состав отрицательной обратной связи включена интегрирующая цепь R3, C1.

Период колебаний генератора для симметричных сигналов прямоугольной формы составляет:

T=2R3C1ln[(1+Kос)/(1-Kос)]

При Кос=0,462 формула упрощается:

Т=2R3C1, и частота f=½R3С1

Максимальная частота генерируемых схемой колебаний ограничена скоростью нарастания выходного напряжения усилителя DA1.

Корпус / Упаковка / Маркировка

LM386M-1 LM386M-1/NOPB LM386MMX-1/NOPB LM386MX-1/NOPB LM386N-1/NOPB LM386N-3/NOPB LM386N-4/NOPB
Pin 8 8 8 8 8 8 8
Package Type D D DGK D P P P
Industry STD Term SOIC SOIC VSSOP SOIC PDIP PDIP PDIP
JEDEC Code R-PDSO-G R-PDSO-G R-PDSO-G R-PDSO-G R-PDIP-T R-PDIP-T R-PDIP-T
Package QTY 95 95 3500 2500 40 40 40
Carrier TUBE TUBE LARGE T&R LARGE T&R TUBE TUBE TUBE
Маркировка M-1 LM386 Z86 LM386 386N-1 LM LM
Width (мм) 3.91 3.91 3 3.91 6.35 6.35 6.35
Length (мм) 4.9 4.9 3 4.9 9.81 9.81 9.81
Thickness (мм) 1.58 1.58 .97 1.58 3.9 3.9 3.9
Pitch (мм) 1.27 1.27 .65 1.27 2.54 2.54 2.54
Max Height (мм) 1.75 1.75 1.07 1.75 5.08 5.08 5.08
Mechanical Data

LM386 Часть 2

Ещё раз о покупке электронных комплектующих на Aliexpress. На этот раз LM386 в корпусе DIP8. Список сокращений: Кг (THD) — коэффициент гармоник ООС — отрицательная обратная связь ЗК — звуковая карта PC — персональный компьютер (англоязычное сокращение) 1. Покупка. После положительных результатов с модулями LM386 захотелось продолжить эксперименты. Были куплены 10 шт. LM386 в корпусе DIP8.

Микросхемы приехали. Вскоре состоялась проверка. Схема стенда — проще простого: всего-то надо подключить питание к выводам микросхемы и померить напряжение на выходе (вывод 5).

Если микросхема исправна, на 5-м выводе присутствует напряжение около половины питающего. Т.к. проверка выполнялась от 4В источника, на выходе ожидалось около 2В.

И тут сюрпрайз: +0,6В. Естественно, в стенде побывали все 10 штук микросхем. У всех — одинаковые симптомы. Сделал фото, открыл спор, через время получил обратно свой доллар.

Отзыв на али:

Дополнительная информация

2. Некоторые замечания о бракованных LM386.

Упрощённая схема LM386:

2.1. Резистор ООС между выводами 1 и 5 легко проверяется омметром: вместо 15 кОм было значение около 20 кОм.

2.2. Обозначение на корпусе: 18CXY LM386 M-82

— это БРАК!

Бракованные микросхемы отправились в мусорное ведро. На их замену с местном инет-магазине были куплены LM386 от производителя UTC. Фото не приводится, т.к. отсутствие полноценного макро объектива не позволяет отснять надписи на корпусе.

3. Продолжение экспериментов. Вновь прибывшие микросхемы также были проверены на стенде: +1,9В на выводе 5, т.е. всё ОК. Сопротивление резистора ООС — около 15 кОм, что вполне соответствует документации.

Спектр выходного сигнала. Условия замера: — питание 4В от LiIon аккумулятора через защитный диод Шоттки 1N5819

— экранированный корпус — оба входа закорочены на землю через 1 кОм

Если очень внимательно читать документацию на LM386, можно заметить, что входной сигнал подаётся на вывод 3 (неинвертирующий). Вывод 2 (инвертирующий вход), как правило, не используется.

Была собрана модель LM386 в симуляторе Multisim10. И проверены две схемы: — входной сигнал подаётся на вход 2 (инвертирующий)

— входной сигнал подаётся на вход 3 (неинвертирующий)

Можно заметить: Кг получился разный (0,28% и 0,44%). Было логично повторить замеры вживую.

Входной сигнал (10 мВ 1 кГц) — на вход 2 (инвертирующий):

Входной сигнал (10 мВ 1 кГц) — на вход 3 (неинвертирующий):

Выводы: — Кг по входам 2 и 3 примерно одинаковый, но при использовании входа 3 немного ниже — не всегда симуляторы дают адекватную оценку таких деликатных параметров, как Кг (THD)

4. Особенности питания LM386 от других источников.

Все замеры выше выполнены при использовании 4В источника (свежезаряженная LiIon аккумулятор, который при малых разрядных токах обеспечивает «чистое» питание 4,0..4,1В под нагрузкой). В цепи питания всегда присутствует защитный диод Шоттки 1N5819.

Падение напряжения на диоде около 0,2В никаким образом не влияет на работоспособность микросхемы.

Некоторые критики внимательные читатели могут заметить, что работоспособность LM386 гарантируется от 4В и выше. С этим никто не спорит.

Как обычно, хочется где-то съэкономить и\или упростить себе жизнь.

4.1. Питание от USB. Условия замера: — +5В подано через RC-фильтр (51 Ом и 47 мкФ) — использован только плюсовой провод от USB — входы закорочены на землю через резисторы 1 кОм


На спектре появилась «расчёска». (

4.2. Питание от повербанка Условия замера: — +5В подано через RC-фильтр (51 Ом и 47 мкФ) — входы закорочены на землю через резисторы 1 кОм


«Расчёска» также присутствует.

ВЫВОДЫ

: — покупать микросхемы необходимо у проверенных продавцов — использование LM386 предпочтительно от LiIon аккумулятора — в зависимости от задачи возможно использование входов 2 и 3 — Кг (THD) в пределах 0,1% при выходном напряжении 200 мВ (типичное значение чувствительности линейных входов звуковой аппаратуры и линейного входа ЗК)

Всем удачных разработок!

PS По незнанию в обзор были добавлены файлы .ovl По сути это текстовые файлы, которые создаёт и использует программа SpectraLab.

Объём этих файлов оказался настолько большим, что при попытке опубликовать обзор сайт выдал ошибку «Более 15000 символов». Поэтому пришлось удалить лишние строки кода из отчёта.

Для желающих скачать все исходные материалы данного обзора, ссылка на гуглодиск.

Простой приемник прямого усиления

Потенциал LM386 как радиоприемника был обнаружен несколько лет назад при исследовании аномального поведения в приемнике, который содержал одно из этих устройств. В процессе поиска неисправности было установлено, что LM386 действует как детектор огибающей высокочастотного сигнала с большим коэффициентом усиления, который можно использовать в качестве АМ-приемника, просто подключив к его входу резонансный контур. Оказалось, что, реализовав упомянутые ранее две особенности LM386, можно создать простой настраиваемый радиочастотный приемник, используя на входе стандартную средневолновую антенну, намотанную на ферритовом стержне. Несмотря на то, что чувствительность приемника не очень высока, он способен в городских условиях без внешней антенны принимать несколько местных станций. Схема этого приемника изображена на Рисунке 2.

Рисунок 2. Микросхема LM386 может использоваться как
настраиваемый радиочастотный приемник.

Более высокие частоты и больше возможностей

Использовать большое усиление LM386 и его способность выполнять функцию детектора огибающей на высоких частотах можно с помощью того, что, по сути, является однотранзисторным умножителем добротности. В последней группе схем, показанных на Рисунке 6, к схеме генератора Колпитца добавлен один транзистор, который в совокупности с высоким усилением LM386 и способностью к детектированию превращает микросхему в высококачественный регенеративный приемник. В схеме с катушкой на ферритовом стержне он способен генерировать на частотах, превышающих 14 МГц, и обеспечивать громкий звук при приеме мощных коммерческих коротковолновых станций. На схеме показан PNP транзистор общего назначения типа 2N3906, но с таким же успехом в ней можно использовать 2N2907 и 2N4403.

Рисунок 6. Коротковолновые регенеративные приемники на основе LM386, использующие большое
усиление микросхемы и способность детектирования огибающей радиочастотного сигнала.

На схемах 1, 2 и 3 входы LM386 подключены непосредственно к контуру, а сам LM386 используется как радиочастотный детектор огибающей. В схеме 4 с относительно большой емкостью конденсатора связи LM386 используется одновременно как аудиоусилитель и детектор огибающей, где оба сигнала оказываются на эмиттере входного транзистора. В схеме 5 емкость входного конденсатора связи меньше, а LM386 работает детектором огибающей, который только детектирует радиочастотный сигнал, поступающий с эмиттера входного транзистора. Схема 6 работает как детектор огибающей и не имеет входного конденсатора связи; оба дифференциальных входа LM386 соединены с эмиттером. Это защищает LM386 от насыщения входным постоянным напряжением (порядка 0.6 В) с эмиттера транзистора.

При использовании контура с катушкой из 8 витков провода, намотанного на 3-дюймовый ферритовый стержень, и стандартного конденсатора переменной емкости для средневолнового диапазона схема 6 обеспечивает интервал перестройки приблизительно от 3.5 до 10.5 МГц, и таким образом, покрывает оба любительских диапазона 80 и 40 метров. При регулировке глубины положительной обратной связи происходит небольшой сдвиг частоты, что весьма полезно при приеме сигналов SSB, поскольку управление обратной связью может использоваться для тонкой настройки.

Усилитель LM386: варианты построения усилителя на микросхеме

А вот если вообще удалить R2 и подключить C2 к контактам 1 и 8, то мы можем увеличить коэффициент усиления до 200

Важно понимать, что увеличение коэффициента усиления не обеспечивает увеличение выходной мощности. Повышенное усиление используется только тогда, когда нужно увеличить очень слабый входной сигнал

Хотя можно построить хорошие усилители звука из дискретных транзисторов, но они все-таки не могут сравниться со многими доступными нам ИС аудиоусилителей. ИС предлагают множество преимуществ, включая высокую эффективность, высокий коэффициент усиления, низкий ток в режиме ожидания, небольшое количество компонентов, компактные размеры и, конечно же, невысокая стоимость.

Неудивительно, что микросхемы аудиоусилителей заменили дискретные транзисторы в большинстве бытовых электронных устройств. Хотя многие экспериментаторы избегают этих маленьких черных загадок, но я собираюсь раскрыть некоторые из их секретов и продемонстрировать, насколько легко ими пользоваться.

Наш первый усилитель показан на рисунке 1 и использует микросхему LM386. Усилитель LM386 теперь выпускается в 3-х вариантах; LM386-1, LM386-2, LM386-3 с уровнями выходной мощности 300, 500 и 700 милливатт соответственно. Тип, продаваемый американской компанией Radio Shack, — это LM386-1, который мы использовали в этой схеме. Возможно, наиболее уникальной особенностью является то, что он может работать при напряжении до 5 вольт и доступен в любой розничной сети Radio Shack.

Как и обычные операционные усилители, интегральные схемы аудио усилителя имеют инвертирующий и неинвертирующий вход. Входные сигналы обычно подаются на неинвертирующий вход, в то время как инвертирующий вход обычно заземляется. Из-за высокого коэффициента усиления усилителей на интегральных схемах, настоятельно рекомендуется изолировать от источника питания, чтобы предотвратить колебания.

В этой схеме R1 и C1 очень хорошо справляются с этой задачей. Резистор R3 регулирует усиление, а конденсатор C3 связывает выход с динамиком. Связь выходных конденсаторов является обязательной практически во всех конструкциях ИС аудиоусилителей.

Наша следующая микросхема — LM380, она также бывает двух видов; LM380-8 и LM380 с выходной мощностью 700 мВт и 2 Вт соответственно. На Рисунке 2 изображен LM380-8, а на Рисунке 3 — LM380. LM380-8 поставляется в корпусе с 8 выводами, и его базовая схема практически идентична LM380, за исключением другого вывода. LM380 поставляется в корпусе с 14 выводами, а выводы 3, 4, 5, 10, 11 и 13 подключены к земле и служат радиатором.

Опыт показал, что LM380 должен быть припаян непосредственно к печатной плате (без разъема IC), если он будет работать с номинальной выходной мощностью 2 Вт

Эта микросхема может сильно нагреваться, поэтому важно избавиться от лишнего тепла через контакты. Основными преимуществами микросхем серии LM380 являются более высокая выходная мощность, очень низкий уровень искажений и небольшое количество внешних компонентов

Независимо от того, какую громкость обеспечивает аудио-усилитель, все же есть те, кому требуется еще больше. В схеме на Рисунке 4 используется усилитель LM383 IC, который обеспечивает выходную мощность до 7 Вт для тех, кто хочет по-настоящему ощутить звук. LM383 поставляется в корпусе типа TO220 с 5 контактами, как показано на рисунке 4. Мой опыт работы с этой ИС показал, что от не должно постоянно отводиться тепло из-за высокого тока в режиме ожидания.

Если вы планируете использовать эту ИС, держите все компоненты как можно ближе к ИС и убедитесь, что ваш источник питания может обеспечивать ток до 1,3 ампер. Основным преимуществом этой интегральной схемы является ее выходная мощность 7 Вт, поэтому она используется во многих недорогих автомобильных радиоприемниках. Эта схема предлагает низкий уровень искажений и является реальной выгодой по сравнению с дискретными транзисторами.

Теперь должно быть очевидно, что микросхемы усилителей звука могут многое предложить нам в плане недорогих схем аудио-усилителей. Нам доступно множество других интегральных схем, и их спецификации можно легко получить, выполнив поиск во всемирной паутине.

Предыдущая запись NE555 схема: универсальные практические проекты

Следующая запись Что такое ресивер в составе домашнего кинотеатра

↑ Универсальный усилитель на ИС LM386

Показанная на рис. 11 схема универсального УМЗЧ на ИС LM386 открывает простор для творчества, поскольку предоставляет готовый функциональный узел для широкого спектра применений (см. табл. 3). Исключён фрагмент. Полный вариант статьи доступен меценатам и полноправным членам сообщества. Читай условия доступа.

Рис. 11. Универсальный усилитель на ИС LM386

↑ Детали универсального усилителя и монтажная плата

Применены резисторы типа МЛТ, МОН, С2-33Н мощностью 0,25 или 0,125 Вт. Конденсаторы керамические КМ-5, КМ-6, К10-17, К10-47, а также плёночные К73-9, К73-17 или К73-24; оксидные конденсаторы К50-35. Динамическая головка – широкополосная, с сопротивлением 8 Ом, мощностью 0,5…3 Вт, например 1ГДШ-6-8. Все детали могут быть заменены импортными аналогами. Детали

DA1 – Микросхема LM386N (L), корпус DIP8-300 – 1 шт., SCS-8 Розетка dip узкая – 1 шт., R1 – Рез.-0,25W-4,7 кОм (Жёлтый, фиолетовый, красный, золотистый) – 1 шт., R2 – Рез.-0,25W-10 кОм (Коричневый, чёрный, оранжевый, золотистый) – 1 шт., R3 – Рез.-0,25W-680 Ом (Голубой, серый, коричневый, золотистый) – 1 шт., R4 – Рез.-0,25W-300 Ом (Оранжевый, чёрный, коричневый, золотистый) – 1 шт., R5 – Рез.-0,25W-160 Ом (Коричневый, голубой, коричневый, золотистый) – 1 шт., R6 – Рез.-0,25W-51 Ом (Зелёный, коричневый, чёрный, золотистый) – 1 шт., R7 – Рез.-0,25W-47 Ом (Жёлтый, фиолетовый, чёрный, золотистый) – 1 шт., R8 – Рез.-0,25W-15 Ом (Коричневый, зелёный, чёрный, золотистый) – 1 шт., R9 – Рез.-0,25W-4,7 Ом (Жёлтый, фиолетовый, золотистый, золотистый) – 1 шт., R10 – Рез.-0,25W-10 Ом (Коричневый, чёрный, чёрный, золотистый) – 1 шт., R – Переменный резистор 10 кОм под гайку СП3-4ам – 1 шт., C1 – Конд.X7R 0,22 мкФ керам.имп (EIA Code 224); К10-17 б-Н90-10% 0,22 мкФ – 1 шт., C2 – Конд.X7R 1000пФ керам.имп (102); КМ-6 б- 1000 пФ – 1 шт., C3, C4 – Конд.10/16V 0511 +105С – 1 шт., C5, C9 – Конд.X7R 0,047 мкФ керам.имп (473); К10-17-1а-Н90 0,047 мкФ – 2 шт., C7 – Конд.X7R 0,033 мкФ керам.имп (333); К10-47-100В 0,033 мкФ – 1 шт., C6, C8, C10 – Конд.220/16V 0611 +85°C – 3 шт., J1…J9 – Вилка на плату PLS-2 – 9 шт., Печатная плата 75Ч25 мм – 1 шт.

На рис. 12 показана монтажная плата усилителя.

Рис. 12. Монтажная плата универсального УМЗЧ на LM386

Для экспериментов с усилителем подходит лабораторный источник питания на основе аккумуляторной батареи .

↑ Список источников

1. LM386 — Low Voltage Audio Power Amplifier . 2. Дайджест КВ+УКВ // Радиоаматор, 2009, №2, с. 56 (Как получить усиление 74 дБ от микросхемы LM386). 3. Мосягин В. Узконаправленный микрофон // Радио, 2002, №5, с. 54, 55. 4. Merryfield T. Super-Ear Audio Telescope // Everyday Practical Electronics, 2005, №6, p. 388 – 392. 5. Stewart J. The Big Ear // Nuts & Volts, 2008, №10, p. 34 – 39. 6. Фолкенберри Л. Применения операционных усилителей и линейных ИС. – М.: Мир, 1985. 572 с. (с. 250 — 254). 7. Дайджест (Тест микрофонного эффекта конденсаторов) // Радиохобби, 2000, №5, с. 25. 8. Большая статья о маленьком усилителе на микросхеме TDA2822M. Датагорская статья. 9. Справочник. Микросхема УМЗЧ LA4525. Микросхема УМЗЧ LA4534M // Радиоконструктор, 2008, №9, с. 20 — 22. 10. Мосягин В.В. Юному радиолюбителю для прочтения с паяльником. (Серия «СОЛОН – радиолюбителям», выпуск 17). – М.: СОЛОН – Пресс, 2003. – 208 с. 11. Мосягин В.В. Секреты радиолюбительского мастерства. (Серия «СОЛОН – радиолюбителям) – М.: СОЛОН – Пресс, 2005. – 216 с.

Схемы включения усилителя LM386

На рисунке ниже показано типовое включение микросхемы LM386 из datasheet. В данном случае коэффициент усиления схемы ограничено до 20, поскольку к выводам 1 и 8 не подключены внешние элементы.

Данный коэффициент усиления (20) обеспечивается внутренними резисторами обратной связи на 1,35 кОм (к выводам 8 и 1) и 15 кОм (к выводам 1 и 5). Параллельное подключение внешних резисторов к данным резисторам приводит к изменению коэффициента усиления.

Формула расчета коэффициента усиления

Без каких-либо внешних компонентов усиление составляет 20:

А = 2 × 15000 / (150 + 1350) = 20

Конденсатор, подключенный между контактами 1-8 микросхемы, позволяет игнорировать резистор на 1,35 кОм, и следовательно коэффициент усиления будет:

А = 2 × 15000/150 = 200

Выход микросхемы подключен к громкоговорителю с помощью конденсаторного фильтра, который обычно используется в линейных усилителях. Переменный резистор на входе используется для настройки желаемого уровня громкости.

Вторая схема показывает, как можно повысить коэффициент усиления выше базовой установки (20) вплоть до 200 путем добавления конденсатора к контактам 1 и 8 микросхемы. Емкость конденсатора не должна превышать 10 мкФ.

Подбор коэффициента усиления в диапазоне от 20 до 200 может быть осуществлен, в том числе и с применением переменного резистора на 4,7 кОм, подключенного последовательно с конденсатором.

Избыток смещения может быть уменьшен путем соединения неиспользуемого вывода резистора с землей. Однако все вопросы смещения отпадают если активный вход соединен через конденсатор.

В варианте с коэффициентом усиления 200, необходимо соединить вывод 7 с помощью конденсатора емкостью 0,1мкФ с минусом питания для поддержания стабильной работы и предотвращения нелинейных искажений.

Простой, но интересный усилитель басов может быть получен путем подключения цепи из резистора и конденсатора к выводам 1 и 5

Скачать datasheet LM386 (211,2 Kb, скачано: 3 639)

Статистика

Собираем усилитель 1W на LM386.

Собираем усилитель 1W на LM386

В статье рассмотрен проект простого компактного и легкого для повторения усилителя на микросхеме LM386. Питание схемы осуществляется от однополярного источника питания, напряжение которого может лежать в пределах от 4 до 12 Вольт. Низкое потребление дает возможность применения данной схемы для конструирования аудио-устройств с питанием от батареек или малогабаритных аккумуляторов. Ток режима покоя составляет всего 4 мА.

При выборе LM386 внимательно смотрите с каким она индексом, микросхемы LM386N-1, -3, LM386M-1, LM386MM-1 имеют диапазон питающего напряжения 4. 12 Вольт, а у LM386N-4 питание может быть чуть выше: от 5 до 18 Вольт. Соответственно и мощность на выходе у них будет различна. Для справки смотрите таблицу электрических характеристик ниже:

Принципиальная схема усилителя 1W на микросхеме LM386 показана ниже:

Исходник печатной платы нам достался вот такой:

По этому рисунку была нарисована печатная плата в программе Sprint Layout. Расположение элементов на плате осталось неизменным, единственное отличие заключается в том, что мы не стали располагать на плате выключатель. При необходимости его всегда можно поставить в разрыв питающего провода, а место на плате немного экономится. Размер печатки получился 35 х 38 мм, фольгированный текстолит односторонний. Вид LAY формата платы следующий:

Фото-вид LAY формата:

Вторая версия печатной платы усилителя на LM386 LAY6 формата (размер 23 х 45 мм):

Amp_LM386 ver2_LAY

Amp_LM386 ver2_LAY_foto

Разговор пойдёт об очень распространённой интегральной схеме (ИС) звукового усилителя мощности LM386, производимой компанией National Semiconductor (сейчас полностью входит в состав Texas Instruments) .

Действительно, напряжение питания микросхемы может быть в пределах 4…12 В, а потребляемый ток покоя составляет всего 4 мА, что является идеальным для большинства аудиопроектов, получающих питание от батарей. Усилитель развивает выходную мощность 0,5 Вт при напряжении питания 9 В и сопротивлении нагрузки 8 Ом. Если добавить, что Кус. этой интегральной МС может быть легко выбран от 20 до 200 с помощью двух внешних элементов, а её выходное напряжение автоматически устанавливается равным половине напряжения питания, то станет ясно, почему в течение многих лет эта микросхема сохраняет популярность.

Заголовок проекта отражает сказанное – как микросхема, так и наборы на её основе чрезвычайно востребованы радиолюбителями, в этом смысле аудиоусилитель LM386 действительно чемпион. См., например,

Предлагаю ознакомиться с возможностями массовой микросхемы LM386 и предложить мои варианты её применения.

Datasheet Download — Unisonic Technologies

Номер произв LM386
Описание LOW VOLTAGE AUDIO POWER AMPLIFIER
Производители Unisonic Technologies
логотип  

1Page

No Preview Available !

UNISONIC TECHNOLOGIES CO., LTD
LM386
LINEAR INTEGRATED CIRCUIT
LOW VOLTAGE AUDIO POWER
AMPLIFIER

 DESCRIPTION

The UTC LM386 is a power amplifier, designed for use in low

voltage consumer applications. The gain is internally set to 20 to keep
external part count low, but the addition of an external resistor and
capacitor between pin 1 and pin 8 will increase the gain to any value
up from 20 to 200 dB.
The inputs are ground referenced while the output automatically
biases to one-half the supply voltage. The quiescent power drain is
only 24 milliwatts when operating from a 6 volt supply, making the

LM386 ideal for battery operation.

 FEATURES

*Battery Operation
*Minimum External Parts
*Wide Supply Voltage Range: 4V~12V
*Low Quiescent Current Drain:4mA
*Voltage Gains: 20~200dB
*Ground Referenced Input
*Self-Centering Output Quiescent Voltage

*Low Distortion: 0.2% (Av=20, VS=6V, RL=8Ω, PO=125mW, f=1kHz)

 ORDERING INFORMATION

Ordering Number
Lead Free
Halogen Free
LM386L-D08-T
LM386G-D08-T
— LM386G-S08-R
— LM386G-P08-R
Package
DIP-8
SOP-8
TSSOP-8
Packing
Tube
Tape Reel
Tape Reel

 MARKING

DIP-8
876 5
UTC
LM386
1 23 4
Date Code
L: Lead Free
G: Halogen Free
Lot Code
SOP-8
www.unisonic.com.tw
Copyright 2015 Unisonic Technologies Co., Ltd.
TSSOP-8
1 of 7
QW-R107-007.J

No Preview Available !

LM386

 PIN CONFIGURATION

LINEAR INTEGRATED CIRCUIT

 BLOCK DIAGRAM

BYPASS 7

15K
15K
GAIN GAIN
81
2
-INPUT
150 1.35K
50K
15K
3
+INPUT
50K

6 VS

5 VOUT

4 GND

UNISONIC TECHNOLOGIES CO., LTD
www.unisonic.com.tw
2 of 7
QW-R107-007.J

No Preview Available !

LM386
LINEAR INTEGRATED CIRCUIT

 ABSOLUTE MAXIMUM RATINGS

PARAMETER
SYMBOL
RATINGS
UNIT
Supply Voltage

VCC 15 V

Input Voltage
DIP-8

VIN

-0.4V ~ +0.4V
1250
V
Power Dissipation
SOP-8

PD

600 mW
TSSOP-8
600
Operating Temperature
Junction Temperature

TOPR

TJ

-25 ~ +85
+125

C

C

Storage Temperature

TSTG

-40 ~ +150

C

Note:1. Absolute maximum ratings are stress ratings only and functional device operation is not implied. The device
could be damaged beyond Absolute maximum ratings.

 ELECTRICAL CHARACTERISTICS (TA=25C, unless otherwise specified.)

PARAMETER
Operating Supply Voltage
Quiescent Current
Output Power
Voltage Gain
Bandwidth
Total Harmonic Distortion
Rejection Ratio
Input Resistance
Input Bias Current
SYMBOL

VS

IQ

POUT

GV

BW
THD
RR

RIN

IBIAS

TEST CONDITIONS
MIN
4

VS=6V, VIN=0

VS=6V, RL=8Ω, THD=10%

250

VS=9V, RL=8Ω, THD=10%

VS=6V, f=1kHz

10μF from pin 1 to pin 8

500

VS=6V , Pin1 and pin 8 open

POUT=125mW, VS=6V, f=1kHz

RL=8Ω pin1 and pin 8 open

VS=6V, f=1kHz, CBYPASS=10μF

pin1and pin 8 open, Referred to output

VS=6V Pin2 and pin 3 open

TYP
4
325
700
26
46
300
0.2
50
50
250
MAX UNIT
12 V
8 mA
mW
dB
dB
kHz
%
dB

kΩ

nA
UNISONIC TECHNOLOGIES CO., LTD
www.unisonic.com.tw
3 of 7
QW-R107-007.J

Всего страниц 7 Pages
Скачать PDF