§ 4.4. линии магнитной индукции. поток магнитной индукции

Содержание

Основные уравнения

Поскольку вектор магнитной индукции является одной из основных фундаментальных физических величин в теории электромагнетизма, он входит в огромное множество уравнений, иногда непосредственно, иногда через связанную с ним напряжённость магнитного поля. По сути, единственная область в классической теории электромагнетизма, где он отсутствует, это пожалуй разве только чистая электростатика.

(Здесь формулы приведем в СИ, в виде для вакуума, где есть варианты для вакуума — для среды; запись в другом виде и подробности — см. по ссылкам).

В магнитостатике

В магнитостатическом пределе наиболее важными являются:

  • Закон Био — Савара — Лапласа: играет в магнитостатике ту же роль, что закон Кулона в электростатике:
    B→(r→)=μ4π∫L1I(r→1)dL1→×(r→−r→1)|r→−r→1|3,{\displaystyle {\vec {B}}\left({\vec {r}}\right)={\mu _{0} \over 4\pi }\int \limits _{L_{1}}{\frac {I\left({\vec {r}}_{1}\right){\vec {dL_{1}}}\times \left({\vec {r}}-{\vec {r}}_{1}\right)}{\left|{\vec {r}}-{\vec {r}}_{1}\right|^{3}}},}
    B→(r→)=μ4π∫j→(r→1)dV1×(r→−r→1)|r→−r→1|3,{\displaystyle {\vec {B}}\left({\vec {r}}\right)={\mu _{0} \over 4\pi }\int {\frac {{\vec {j}}\left({\vec {r}}_{1}\right)dV_{1}\times \left({\vec {r}}-{\vec {r}}_{1}\right)}{\left|{\vec {r}}-{\vec {r}}_{1}\right|^{3}}},}
  • Теорема Ампера о циркуляции магнитного поля:
    ∮∂S⁡B→⋅dl→=μIS≡μ∫Sj→⋅dS→,{\displaystyle \oint \limits _{\partial S}{\vec {B}}\cdot {\vec {dl}}=\mu _{0}I_{S}\equiv \mu _{0}\int \limits _{S}{\vec {j}}\cdot {\vec {dS}},}
    rotB→≡∇→×B→=μj→.{\displaystyle \mathrm {rot} \,{\vec {B}}\equiv {\vec {\nabla }}\times {\vec {B}}=\mu _{0}{\vec {j}}.}

В общем случае

Основные уравнения (классической) электродинамики общего случая (то есть независимо от ограничений магнитостатики), в которых участвует вектор магнитной индукции B→{\displaystyle {\vec {B}}}:

Три из четырех уравнений Максвелла (основных уравнений электродинамики)

divE→=ρε,   rotE→=−∂B→∂t{\displaystyle \mathrm {div} \,{\vec {E}}={\frac {\rho }{\varepsilon _{0}}},\ \ \ \mathrm {rot} \,{\vec {E}}=-{\frac {\partial {\vec {B}}}{\partial t}}}
divB→=,    rotB→=μj→+1c2∂E→∂t{\displaystyle \mathrm {div} \,{\vec {B}}=0,\ \ \ \ \,\mathrm {rot} \,{\vec {B}}=\mu _{0}{\vec {j}}+{\frac {1}{c^{2}}}{\frac {\partial {\vec {E}}}{\partial t}}}
а именно:

Закон отсутствия монополя:

divB→=,{\displaystyle \mathrm {div} \,{\vec {B}}=0,}

Закон электромагнитной индукции Фарадея:

rotE→=−∂B→∂t,{\displaystyle \mathrm {rot} \,{\vec {E}}=-{\frac {\partial {\vec {B}}}{\partial t}},}

Закон Ампера — Максвелла:

rotB→=μj→+1c2∂E→∂t.{\displaystyle \mathrm {rot} \,{\vec {B}}=\mu _{0}{\vec {j}}+{\frac {1}{c^{2}}}{\frac {\partial {\vec {E}}}{\partial t}}.}

Формула силы Лоренца:

F→=qE→+qv→×B→,{\displaystyle {\vec {F}}=q{\vec {E}}+q\left,}
Следствия из неё, такие как

Выражение для силы Ампера, действующей со стороны магнитного поля на ток (участок провода с током)

dF→=Idl→×B→,{\displaystyle d{\vec {F}}=\left,}
dF→=j→dV×B→,{\displaystyle d{\vec {F}}=\left,}

выражение для момента силы, действующего со стороны магнитного поля на магнитный диполь (виток с током, катушку или постоянный магнит):

M→=m→×B→,{\displaystyle {\vec {M}}={\vec {m}}\times {\vec {B}},}

выражение для потенциальной энергии магнитного диполя в магнитном поле:

U=−m→⋅B→,{\displaystyle U=-{\vec {m}}\cdot {\vec {B}},}
  • а также следующих из них выражения для силы, действующей на магнитный диполь в неоднородном магнитном поле и т. д..
  • Выражение для силы, действующей со стороны магнитного поля на точечный магнитный заряд:
F→=Kqmr→r3.{\displaystyle {\vec {F}}=K{\frac {q_{m}{\vec {r}}}{r^{3}}}.}

(это выражение, точно соответствующее обычному закону Кулона, широко используется для формальных вычислений, для которых ценна его простота, несмотря на то, что реальных магнитных зарядов в природе не обнаружено; также может прямо применяться к вычислению силы, действующей со стороны магнитного поля на полюс длинного тонкого магнита или соленоида).

Выражение для плотности энергии магнитного поля

w=B22μ{\displaystyle w={\frac {B^{2}}{2\mu _{0}}}}

Оно в свою очередь входит (вместе с энергией электрического поля) и в выражение для энергии электромагнитного поля и в лагранжиан электромагнитного поля и в его действие. Последнее же с современной точки зрения является фундаментальной основой электродинамики (как классической, так в принципе и квантовой).

Взаимодействие магнитов

На двух сторонах каждого магнита расположены северный полюс и южный полюс. Два магнита притягиваются друг к другу разноимёнными полюсами и отталкиваются одноимёнными. Магниты могут действовать друг на друга даже сквозь вакуум! Всё это напоминает взаимодействие электрических зарядов, однако взаимодействие магнитов не является электрическим. Об этом свидетельствуют следующие опытные факты.

• Магнитная сила ослабевает при нагревании магнита. Сила же взаимодействия точечных зарядов не зависит от их температуры.

• Магнитная сила ослабевает, если трясти магнит. Ничего подобного с электрически заряженными телами не происходит.

• Положительные электрические заряды можно отделить от отрицательных (например, при электризации тел). А вот разделить полюса магнита не получается: если разрезать магнит на две части, то в месте разреза также возникают полюса, и магнит распадается на два магнита с разноимёнными полюсами на концах (ориентированных точно так же, как и полюса исходного магнита).

Таким образом, магниты всегда двухполюсные, они существуют только в виде диполей. Изолированных магнитных полюсов (так называемых магнитных монополей — аналогов электрического заряда)в при роде не существует (во всяком случае, экспериментально они пока не обнаружены). Это, пожалуй, самая впечатляющая асимметрия между электричеством и магнетизмом.

• Как и электрически заряженные тела, магниты действуют на электрические заряды. Однако магнит действует только на движущийся заряд; если заряд покоится относительно магнита, то действия магнитной силы на заряд не наблюдается. Напротив, наэлектризованное тело действует на любой заряд ,вне зависимости от того, покоится он или движется.

По современным представлениям теории близкодействия, взаимодействие магнитов осуществляется посредством магнитного поля.А именно, магнит создаёт в окружающем пространстве магнитное поле, которое действует на другой магнит и вызывает видимое притяжение или отталкивание этих магнитов.

Примером магнита служит магнитная стрелка компаса. С помощью магнитной стрелки можно судить о наличии магнитного поля в данной области пространства, а также о направлении поля.

Наша планета Земля является гигантским магнитом. Неподалёку от северного географического полюса Земли расположен южный магнитный полюс. Поэтому северный конец стрелки компаса, поворачиваясь к южному магнитному полюсу Земли, указывает на географический север. Отсюда, собственно, и возникло название «северный полюс» магнита.

Как увидеть строение поля

Впервые увидеть картину поля удалось в 1269 году, когда Петр Перегрин насыпал на постоянный сферический магнит небольшие железные иголки. Они выстроились в определенном порядке, расположившись по кривым, выходящим из одной точки и входящим в другую. Эти линии и называются теперь магнитными.

На сферическом магните точки, в которых сходились кривые, выглядели как полюса на глобусе и по аналогии с ними были названы. Позже было установлено, что Земля сама является огромным магнитом.

Эрстед с помощью своего знаменитого опыта установил влияние электричества на магнитную стрелку. Если поместить ее рядом с проводником, при пропускании тока по проводу указатель поворачивается перпендикулярно ему. Он повернется на 180 градусов, если пустить электроток в обратную сторону.

«Действие магнитного поля на проводник с током»

Если металлический проводник с током поместить в магнитное поле, то на этот проводник со стороны магнитного поля будет действовать сила, которая называется силой Ампера.

Сила Ампера зависит от длины проводника с током, силы тока в проводнике, модуля магнитной индукции и расположения проводника относительно линий магнитной индукции: FA = BIlsinа.

Для определения направления силы Ампера применяют правило левой руки. Если левую руку расположить в магнитном поле так, чтобы силовые линии входили в ладонь, а четыре пальца были направлены по току, то отогнутый большой палец укажет направление силы, действующей на проводник.

Магнитное взаимодействие можно наблюдать между двумя параллельными токами (опыт Ампера): два параллельных проводника с током отталкиваются, если направления токов в них противоположны, и притягиваются, если направления токов совпадают.

Экспериментальное исследование показывает, что сила Ампера прямо пропорциональна длине проводника l и силе тока I в проводнике. Коэффициентом пропорциональности в этом равенстве является модуль вектора магнитной индукции В. Соответственно, F = BIl. В таком виде зависимость силы, действующей на проводник с током в магнитном поле, записывается в том случае, если линии магнитной индукции перпендикулярны проводнику с током. Из приведённой формулы понятно, что магнитная индукция является силовой характеристикой магнитного поля.

Единица магнитной индукции =  1Н / 1А • 1м = 1 Тл. За единицу магнитной индукции принимают магнитную индукцию такого поля, в котором на проводник длиной 1 м действует сила 1Н при силе тока в проводнике 1 А.

Магнитное поле действует также на движущиеся заряженные частицы. При этом сила (сила Лоренца) зависит от модуля магнитной индукции, заряда частицы, а также от модуля и направления её скорости.

Электрический двигатель

Движение проводника с током в магнитном поле лежит в основе работы электрического двигателя. Если поместить прямоугольную рамку в магнитное поле и пропустить по ней электрический ток, то рамка повернётся, потому, что на стороны рамки действует сила Ампера. При этом сила, действующая на сторону рамки ab, противоположна силе, действующей на сторону cd.

Для того чтобы рамка не остановилась в тот момент, когда её плоскость перпендикулярна линиям магнитной индукции, и продолжала вращаться, изменяют направление тока в проводнике. Для этого к концам рамки припаяны полукольца, по которым скользят контакты, соединённые с источником тока. При повороте рамки на 180° меняются контактные пластины, которых касаются полукольца и, соответственно, направление тока в рамке.

В электрическом двигателе энергия электрического и магнитного полей превращается в механическую энергию.

Действие магнитного поля на проводник с током

Конспект урока по физике в 8 классе «Действие магнитного поля на проводник с током».

Следующая тема: «Электромагнитная индукция. Опыты Фарадея».

Направление индукционного тока и сохранение энергии

Индукционный ток, возникший в проводнике, немедленно начинает взаимодействовать с породившим его током или магнитом. Если магнит (или катушку с током) приближать к замкнутому проводнику, то появляющийся индукционный ток своим магнитным полем обязательно отталкивает магнит (катушку). Для сближения магнита и катушки нужно совершить работу. При удалении магнита возникает притяжение. Это правило выполняется неукоснительно. Представьте себе, что дело обстояло бы иначе: вы подтолкнули магнит к катушке, и он сам собой устремился бы внутрь нее. При этом нарушился бы закон сохранения энергии. Ведь механическая энергия магнита увеличилась бы и одновременно возникал бы ток, что само по себе требует затраты энергии, ибо ток тоже может совершать работу. Природа мудро распорядилась направлением индукционного тока, с тем чтобы запасы энергии не изменялись. Индуцированный в якоре генератора электрический ток, взаимодействуя с магнитным полем статора, тормозит вращение якоря. Только поэтому для вращения якоря нужно совершать работу, тем большую, чем больше сила тока. За счет этой работы и возникает индукционный ток.

Интересно отметить, что если бы магнитное поле нашей планеты было очень большим и сильно неоднородным, то быстрые движения проводящих тел на ее поверхности и в атмосфере были бы невозможны из-за интенсивного взаимодействия индуцированного в теле тока с этим полем. Тела двигались бы как в плотной вязкой среде и при этом сильно разогревались бы. Ни самолеты, ни ракеты не могли бы летать. Человек не мог бы быстро двигать ни руками, ни ногами, так как человеческое тело — неплохой проводник.

Если катушка, в которой наводится ток, неподвижна относительно соседней катушки с переменным током, как, например, у трансформатора, то и в этом случае направление индукционного тока диктуется законом сохранения энергии. Этот ток всегда направлен так, что созданное им магнитное поле стремится уменьшить изменения тока в первичной обмотке.

§ 84. Линии индукции магнитного поля. Единица индукции

Линия, проведенная в магнитном поле так, что в любой ее точке касательная совпадает с вектором индукции ( и рис. 119, а) магнитного поля в этой точке, называется линией индукции магнитного поля. Чтобы получить картину линий индукции, надо большое число магнитных стрелок поместить в магнитное поле. Расположение стрелок и покажет форму линий индукции. В качестве таких стрелок берутся железные опилки, которые в магнитном поле намагничиваются и, взаимодействуя друг с другом, сцепляются своими концами, образуя цепочки, изображающие линии индукции. За направление линии индукции принято направление, которое показывает северный полюс магнитной стрелки в данном месте поля. Поэтому вектор индукции в данной точке поля имеет направление, совпадающее с направлением линии индукции, проведенной через эту точку.

Рис. 119. Линии индукции магнитного поля

Линии индукции прямого проводника с током представляют концентрические окружности, расположенные в плоскостях, перпендикулярных направлению тока, причем центры всех этих окружностей находятся на оси проводника (см. рис.118, б). Их направление определяется по правилу буравчика. У магнитного поля прямого тока магнитных полюсов нет. Линии индукции, магнитного поля катушки с током внутри нее параллельны (см. рис. 119, б), а вне катушки не параллельны. Катушка с током имеет два магнитных полюса. Ее полярность, а следовательно, и направление линий индукции внутри катушки, определяется по правилу обхвата ее правой рукой (рис. 119, в): если взять катушку правой рукой так, чтобы четыре пальца указывали направление тока, то расположенный вдоль катушки большой палец укажет на конец катушки, который является северным магнитным полюсом, а также покажет направление линий индукции внутри катушки. Магнитные поля катушки с током и постоянного магнита тождественны. Северный и южный полюсы существуют только парами — получить один полюс невозможно.

Как и в случае электростатического поля, через каждую точку пространства можно провести только одну линию индукции. Следовательно, эти линии нигде не пересекают друг друга. В отличие от линий напряженности электростатического поля (см. рис. 50) линии индукции магнитного поля являются замкнутыми линиями как магнитного поля тока, так и постоянного магнита (рис. 119, г). Замкнутость линий индукции указывает на то, что магнитное поле является вихревым. Они всегда охватывают тот ток или движущийся заряд, с которым связано магнитное поле. Некоторые из линий индукции замыкаются в непосредственной близости тока, другие — вдали от него, и тогда нам кажется, что они уходят обоими концами в бесконечность (см. рис. 119, б, г).

Условились линии индукции проводить так, чтобы число линий, проходящих через единицу площадки, перпендикулярной вектору индукции в данной точке, было равно величине индукции поля в этом месте. Магнитные спектры дают представление о распределении магнитной индукции по величине и направлению.

Исходя из формулы индукции, установим единицу измерения индукции магнитного поля в Международной системе единиц:

Рис. 120. К понятию тесла и измерение магнитометром индукции магнитного поля магнита

За единицу индукции магнитного поля тесла принята индукция такого однородного магнитного поля, в котором на прямолинейный проводник длиной в 1 м, с током 1 а, расположенный перпендикулярно к линиям индукции*, действует сила в 1 н (рис. 120, а). На рис. 120, б показано измерение магнитометром величины магнитного поля постоянного магнита.

* ()

Индукция магнитного поля Земли невелика: у экватора около 32*10-6 тл, у полюсов — 65*10-6 тл, в районе Курской магнитной аномалии — 190*10-6 тл. В настоящее время в лабораториях с помощью катушек получены магнитные поля с индукцией до 15 тл.

Рис. 121. Зависимость индукции магнитного поля тока от формы проводника

Зависит ли величина индукции магнитного поля тока от формы проводника? Между сторонами проводника, имеющего форму, как на рис. 121, а, поместим магнитную стрелку и проводник подключим к источнику тока. Наблюдаем большое отклонение стрелки. Сделав проводник прямолинейным (рис. 121, б) и расположив под ним магнитную стрелку, пропустим по нему ток, как и в первом случае. Заметим небольшое отклонение стрелки. Скрутим проводник, как показано на рис. 121, в; видим, что стрелка не отклоняется, т. е. у скрученного (бифилярного) проводника магнитного поля нет. Чем больше индукция магнитного поля, тем сильнее оно действует на магнитную стрелку. Из опытов делаем вывод: величина индукции магнитного поля тока зависит от формы проводника: а> б, в =0. При прочих равных условиях величина индукции магнитного поля наибольшая у проводника в форме катушки.

Открытия Лоренца

Выделим основные открытия Лоренца.

Лоренц установил, что магнитное поле действует на движущуюся в нём частицу, заставляя её двигаться по дуге окружности:

(1.3.)

Поскольку сила Лоренца – центростремительная сила, перпендикулярная направлению скорости. Прежде всего, открытый Лоренцем закон, позволяет определять такую важнейшую характеристику как отношение заряда к массе – удельный заряд.

(1.4.)

Значение удельного заряда – величина уникальная для каждой заряженной частицы, что позволяет их идентифицировать, будь-то электрон, протон или любая другая частица. Таким образом, учёные получили мощный инструмент для исследования. Например, Резерфорд сумел провести анализ радиоактивного излучения и выявил его компоненты, среди которых присутствуют альфа-частицы – ядра атома гелия и бета-частицы – электроны. В ХХ веке появились ускорители, работа которых основана на том, что заряженные частицы ускоряются в магнитном поле. На этом принципе разработан Большой адронный коллайдер. Благодаря открытиям Лоренца наука получила принципиально новый инструмент для физических исследований, открывая дорогу в мир элементарных частиц.

Для того чтобы охарактеризовать влияние учёного на технический прогресс вспомним о том, что из выражения для силы Лоренца вытекает возможность рассчитать радиус кривизны траектории частицы, которая движется в постоянном магнитном поле. При неизменных внешних условиях этот радиус зависит от массы частицы, её скорости и заряда. Таким образом, получаем возможность классифицировать заряжённые частицы по этим параметрам и, следовательно, можем проводить анализ какой-либо смеси. Если смесь веществ в газообразном состоянии ионизировать, разогнать и направить в магнитное поле, то частицы начнут двигаться по дугам окружностей с различными радиусами – частицы будут покидать поле в разных точках и остаётся только зафиксировать эти точки вылета, что реализуется при помощи экрана, покрытого люминофором, который светится при попадании на него заряжённых частиц. Именно по такой схеме работает масс-анализатор. Масс-анализаторы широко применяют в физике и химии для анализа состава смесей.

Это ещё не все технические устройства, которые работают на основе разработок и открытий Ампера и Лоренца, ведь научное знание рано или поздно перестает быть исключительной собственностью учёных и становится достоянием цивилизации, при этом оно воплощается в различных технических устройствах, которые делают нашу жизнь более комфортной.

Магнитное поле электромагнита (соленоида)

Соленоид — это катушка цилиндрической формы, витки которой намотаны вплотную, а длина значительно больше диаметра.

Число витков в соленоиде N определяется формулой:

l — длина соленоида, d — диаметр проволоки.

Линии магнитной индукции являются замкнутыми, причем внутри соленоида они располагаются параллельно друг другу. Поле внутри соленоида однородно.

Если ток по виткам соленоида идет против часовой стрелки, то вектор магнитной индукции → B внутри соленоида направлен вверх, если по часовой стрелке, то вниз. Для определения направления линий магнитной индукции можно воспользоваться правилом правой руки для витка с током.

Модуль вектора магнитной индукции в центральной области соленоида:

Модуль напряженности магнитного поля в центральной части соленоида:

Алгоритм определения полярности электромагнита

Пример №3. Через соленоид пропускают ток. Определите полюсы катушки.

Ток условно течет от положительного полюса источника тока к отрицательному. Следовательно, ток течет по виткам от точки А к точке В. Мысленно обхватив соленоид пальцами правой руки так, чтобы четыре пальца совпадали с направлением тока в витках соленоида, отставим большой палец на угол 90 градусов. Он покажет направление линий магнитной индукции внутри соленоида. Проделав это, увидим, что линии магнитной индукции направлены вправо. Следовательно, они выходят из В, который будет являться северным полюсом. Тогда А будет являться южным полюсом.

а) вертикально вверх в плоскости витка

б) вертикально вниз в плоскости витка

в) вправо перпендикулярно плоскости витка

г) влево перпендикулярно плоскости витка

Алгоритм решения

Решение

По условию задачи мы имеем дело с круглым проволочным витком. Поэтому для определения вектора → B магнитной индукции мы будем использовать правило правой руки.

Чтобы применить это правило, нам нужно знать направление течение тока в проводнике. Условно ток течет от положительного полюса источника к отрицательному. Следовательно, на рисунке ток течет по витку в направлении хода часовой стрелки.

Теперь можем применить правило правой руки. Для этого мысленно направим четыре пальца правой руки в направлении тока в проволочном витке. Теперь отставим на 90 градусов большой палец. Он показывает относительно рисунка влево. Это и есть направление вектора магнитной индукции.

pазбирался: Алиса Никитина | обсудить разбор | оценить

а) повернётся на 180°

б) повернётся на 90° по часовой стрелке

в) повернётся на 90° против часовой стрелки

г) останется в прежнем положении

Алгоритм решения

Решение

Одноименные полюсы магнитов отталкиваются, а разноименные притягиваются. Изначально южный полюс магнитной стрелки находится справа, а северный — слева. Полосовой магнит подносят к ее южному полюсу северной стороной. Поскольку это разноименные полюса, положение магнитной стрелки не изменится.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Алгоритм решения

Решение

Чтобы определить направление тока в соленоиде, посмотрим на расположение полюсов источника тока. Ток условно направлен от положительного полюса к отрицательному. Следовательно, относительно рисунка ток в витках соленоида направлен по часовой стрелке.

Зная направление тока в соленоиде, можно определить его полюса. Северным будет тот полюс, из которого выходят линии магнитной индукции. Определить их направление поможет правило правой руки для соленоида. Мысленно обхватим соленоид так, чтобы направление четырех пальцев правой руки совпадало с направлением тока в витках соленоида. Теперь отставленный на 90 градусов большой палец покажет направление вектора магнитной индукции. Проделав все манипуляции, получим, что вектор магнитной индукции направлен вниз. Следовательно, внизу соленоида расположен северный полюс, а вверху — южный.

Известно, что одноименные полюса магнитов отталкиваются, а разноименные — притягиваются. Подвешенный полосовой магнит обращен к южному полюсу соленоида северным полюсом. А это значит, что при замыкании электрической цепи он будет растягивать пружину, притягиваясь к соленоиду (двигаться вниз).

pазбирался: Алиса Никитина | обсудить разбор | оценить

§ 28. Индукция магнитного поля. Линии индукции магнитного поля

Рис. 147

Направление линий индукции магнитного поля. Определить направление линий индукции магнитного поля можно, используя правило буравчика: если поступательное движение буравчика совпадает с направлением тока, то рукоятка буравчика поворачивается в направлении линий индукции магнитного поля. В случае прямолинейного проводника с током линии индукции магнитного поля представляют собой концентрические окружности, которые находятся в плоскостях, перпендикулярных к проводнику (рис. 147).

Определить направление линий индукции магнитного поля прямолинейного проводника с током можно также с помощью правила правой руки: если мысленно обхватить проводник правой рукой так, чтобы большой палец указывал направление тока, то остальные пальцы окажутся согнуты в направлении линий индукции магнитного поля (рис. 148).

Картину линий индукции магнитного поля можно получить, используя мелкие железные опилки, которые в магнитном поле ведут себя как магнитные стрелки. На рисунке 149 представлена картина магнитного поля прямолинейного участка проводника с током. Картина магнитного поля кругового витка с током и графическое изображение линий индукции представлены на рисунках 150, а, б.

Рис. 148 Рис. 149 Рис. 150

Полагают, что линии индукции магнитного поля, созданного постоянным магнитом, направлены внутри магнита от его южного полюса S к северному N (рис. 151).

Магнитное поле соленоида подобно полю полосового магнита. На рисунках 152, а, б представлена картина магнитного поля соленоида с током и дано графическое изображение линий индукции. Соленоид представляет собой цилиндрическую катушку, на которую виток к витку намотан провод, изолированный тонким слоем лака. Если длина соленоида много больше его диаметра, то внутри центральной части соленоида линии индукции магнитного поля практически параллельны и направлены вдоль его оси.

Рис. 151 Рис. 152

Однородное магнитное поле — поле, индукция которого во всех точках пространства одинакова.

Рис. 153

Линии индукции такого поля параллельны. В противном случае поле называют неоднородным. Магнитное поле внутри длинного соленоида практически однородно, а вблизи краёв — неоднородно. Неоднородно и магнитное поле прямолинейного проводника с током (см. рис. 148).

Для наглядности на рисунках линии индукции изображают гуще в тех местах магнитного поля, где больше значение индукции магнитного поля (рис. 152, б). При этом на линии индукции указывают стрелкой направление индукции магнитного поля. Для крайних витков соленоида магнитное поле «кругового» витка с током, проходящим в направлении движения часовой стрелки, эквивалентно полю южного полюса постоянного магнита, а магнитное поле «кругового» витка с током, проходящим против направления движения часовой стрелки, эквивалентно полю северного полюса постоянного магнита (правило часовой стрелки) (рис. 153).

От теории к практике

Рис. 154

На рисунке 154 схематически изображено магнитное поле кругового витка с током. Однородно ли такое магнитное поле? Почему?