Разновидности лабораторных блоков питания
Для начала, давайте разберёмся с существующими названиями. Чем отличается лабораторный блок питания от просто блока питания? Или в чём отличие блока питания от источника питания? Вот простые определения:
1. Лабораторным блоком питания называют прибор, который предназначен для формирования регулируемого напряжения или тока по одному или нескольким каналам. Лабораторный блок питания содержит дисплей, элементы управления, защиту от неправильного использования, а также полезные дополнительные функции. Весь материал на этой странице посвящён именно таким приборам.
2. Лабораторный источник питания — это то же самое, что и лабораторный блок питания.
3. Просто блоком питания называют электронное устройство, которое предназначено для формирования заранее заданного напряжения по одному или нескольким каналам. Блок питания, как правило, не имеет дисплея и кнопок управления. Типичный пример — это компьютерный блок питания на несколько сотен ватт.
4. Источники питания бывают двух типов: первичные источники питания и вторичные источники питания. Первичные источники электропитания преобразуют неэлектрические виды энергии в электрическую. Примеры первичных источников: электрическая батарейка, солнечная батарея, ветрогенератор и другие. Вторичные источники электропитания преобразуют один вид электрической энергии в другой для обеспечения необходимых параметров напряжения, тока, частоты, пульсаций и т.д. Примеры вторичных источников питания: трансформатор, AC/DC преобразователь (например, компьютерный блок питания), DC/DC преобразователь, стабилизатор напряжения и т.д. Кстати, лабораторный блок питания — это одна из разновидностей вторичного источника электропитания.
Теперь подробно обсудим разновидности и главные характеристики лабораторных блоков питания:
1. : линейные или импульсные.
2. : фиксированный или с автоматическим ограничением мощности.
3. : одноканальные или многоканальные.
4. : с гальванически изолированными каналами или с неизолированными.
5. : стандартные или большой мощности.
6. : от перегрузки по напряжению, по току, от перегрева и другие.
7. : постоянное напряжение и ток или переменное напряжение и ток.
8. : только ручное управление или ручное плюс программное управление.
9. Дополнительные функции: компенсация падения напряжения в проводах подключения, встроенный прецизионный мультиметр, изменение выхода по списку заданных значений, активация выхода по таймеру, имитация аккумулятора с заданным внутренним сопротивлением, встроенная электронная нагрузка и другие.
10. Надёжность: качество элементной базы, продуманность дизайна, тщательность выходного контроля.
Рассмотрим каждую из этих характеристик подробнее, поскольку все они важны для правильного и обоснованного выбора лабораторного блока питания.
Предупреждение
Показанный в данной статье способ коррекции пригоден далеко не во всех случаях и может быть непреемлем для отдельного ряда задач!
ВНИМАНИЕ!!! Показанный способ коррекции следует использовать с особой осторожностью, зная принцип работы настраиваемого устройства и хорошо представляя, что Вы делаете! В других схемах при определённых положениях движка резисторов могут возникать недопустимые токи, способные вывести из строя резисторы или иные детали рабочего устройства!!! Используя описанный способ коррекции в своём устройстве вы действуете на свой страх и риск, а ещё лучше, представляете, что делаете. Ни какой ответственности за возможные причинённые неисправности Ваших устройств при применении корректирующего резистора по моей схеме лично я не несу
Данный способ коррекции в конкретной представленной схеме на рисунке 2 абсолютно безопасен при любых номиналах корректирующего резистора и любых положениях движков корректирующего и переменного резисторов R7 и R6.
Пользуйтесь и наслаждайтесь творческим процессом
Файлы
Схема достаточно проста для повторения даже начинающими радиолюбителями, но, если кого интересует готовая печатка, качайте файл — Регулируемый БП 24 В 5 А
Кроме схемы и печатки в архиве содержится файл таблица с графиком, визуально отражающий изменение харауеристики равномерности регулирования при введении в схему корректирующего резистора, может кому то будет интересно, или даже полезно. Там в красных ячейках можно задавать величину сопротивлений переменного и корректирующего резистора. Изменение характеристики визуально можно наблюдать по представленным в файле графикам.
Сборка блока питания с регулировкой тока/напряжения своими руками
Вот очередная версия лабораторного блока питания с напряжением от 0 до 30 В и регулировкой потребляемого тока 0-2 А, что всегда бывает полезно, когда используется БП для настройки самодельных схем или когда они неизвестные приборы запускаются в первый раз.
Схема ИП с регулировкой тока и напряжения
Сама схема питания — это популярный комплект из таких элементов:
- Сам регулируемый стабилизатор, в котором заменен T1 — BC337 на BD139, T2 — BD243 на BD911
- D1-D4 — диоды 1N4001 заменены на RL-207
- C1 — 1000 мкФ / 40 В заменен на 4700 мкФ / 50 В
- D6, D7 — 1N4148 на 1N4001
У используемого трансформатора есть напряжения: 25 В, 2 А и 12 В, которое полезно для управления вентилятором, охлаждающим радиатор и силовые диоды на панели. Для этого была создана небольшая плата с мостовым выпрямителем, фильтрующими конденсаторами и стабилизатором LM7812 (с радиатором).
Внутри корпуса лабораторного источника питания размещены трансформатор, плата самого регулируемого блока питания, платы стабилизаторов — 12 В и 24 В, радиатор с охлаждающим вентилятором (запускается при 50 С).
На передней части корпуса установлены выключатель, три светодиода, информирующих о состоянии блока питания (сеть 220 В, включение вентилятора и защита — ограничение тока или короткое замыкание), синие и красные LED дисплеи с наклеенной на них затемняющей пленкой. Рядом с дисплеями расположены регулирующие потенциометры, а справа выводы питания. На задней части корпуса имеется разъем для сети, предохранитель и охлаждающий вентилятор 60×60 мм.
Полезное: Cхема высоковольтного преобразователя напряжения
Что касается индикаторных дисплеев, они показывают:
- синий — текущее напряжение в вольтах V
- красный — текущий ток в амперах A
Источник питания получился реально удобный и надёжный. Вся сборка заняла несколько дней. Что касается охлаждения, оно включается только при высокой нагрузке и то на короткое время, примерно на пару минут.
С этим БП удобно работать даже при слабом освещении, так как яркости индикаторов хватает с головой. Если хотите повысить ток до 3-4 ампера, выбирайте трансформатор по-мощнее и транзисторы регулятора, с хорошим запасам по току. Ещё пару неплохих схем источников питания смотрите по ссылкам:
6— 4,50
НАЖМИТЕ ТУТ И ОТКРОЙТЕ КОММЕНТАРИИ
Переделка БП ATX в регулируемый или лабораторный блок питания
А теперь самое время сделать из БП компьютера своими руками импульсный лабораторный блок питания. Дорабатывать будем блок питания, ШИМ контроллер которого собран на специализированной микросхеме TL494 (она же: μА494, μPC494, M5T494P, KIA494, UTC51494, AZ494AP, KA7500, IR3M02, AZ7500BP, КР1114ЕУ4, МВ3759 и подобные аналоги).
Для примера мы доработаем блок питания, схема которого приведена ниже. Поняв идею вносимых изменений, подобрать алгоритм переделки любого другого блока не составит особого труда.
Разбираем БП, вынимаем плату. Сразу же отпаиваем все ненужные провода шлейфов питания, оставив один желтый, один черный и зеленый.
Также выпаиваем сглаживающие электролитические конденсаторы по всем линиям питания. На схеме они обозначены как С30, С27, С29, С28, С35. Мы собираемся существенно (до 25 В по шине +12 В) поднять выходное напряжение, на которое эти конденсаторы не рассчитаны. На место того, что стоял по шине +12 В, устанавливаем конденсатор той же или большей емкости на напряжение не менее 35 В. Остальные места оставляем пустыми. Зеленый провод припаиваем на место, где был любой черный, чтобы разрешить блоку питания запускаться. Теперь можно заняться доработкой контроллера.
Взглянем на назначение выводов микросхемы TL494. Нас интересуют два узла – усилитель ошибки 1 и усилитель ошибки 2. На первом собран стабилизатор напряжения, на втором – контроллер тока. То есть нас интересует обвязка выводов 1, 2, 3, 4, 13, 14, 15, 16.
Изменим схему обвязки таким образом, чтобы усилитель ошибки 1 отвечал за регулировку выходного напряжения, а усилитель 2 – за регулировку тока. В первую очередь перережем дорожки, обозначенные на приведенной ниже схеме крестиками.
Теперь находим резисторы R17 и R18. Первый имеет сопротивление 2.15 кОм, второй 27 кОм. Меняем их на номиналы 1.2 кОм и 47 кОм соответственно. Добавляем в схему два переменных резистора, один постоянный на 10 кОм (отмечены зеленым), клеммы для подключения внешнего потребителя, амперметр и вольтметр. В результате у нас получится вот такая схема.
Как видно из схемы, резистор на 22 кОм позволяет плавно регулировать напряжение в пределах 3-24 В, резистор 330 Ом – ток от 0 до 8 А. Кл1 и КЛ2 служат для подключения нагрузки. Вольтметр имеет предел измерения 25-30 В, амперметр – 10 А. Приборы могут быть как стрелочными, так и с цифровыми шкалами, главное, малогабаритными – ведь они должны войти в корпус блока питания. Можно начинать проверку и градуировку.
Все в порядке? Включаем БП напрямую в сеть, выводим движки резисторов в нижнее по схеме положение. К клеммам КЛ1, Кл2 подключаем нагрузку – 2 лампы дальнего света, включенные последовательно. Вращаем резистор регулировки напряжения и убеждаемся по встроенному вольтметру, что напряжение плавно изменяется от 3 до 24 вольт. Для верности подключаем к клеммам контрольный вольтметр, к примеру, тестер. Градуируем ручку регулятора напряжения, ориентируясь по показаниям приборов.
Возвращаем движок в нижнее по схеме положение, выключаем блок питания, а лампы соединяем параллельно. Включаем блок питания, устанавливаем регулятор тока в среднее положение, а регулятор напряжения – на отметку 12 В. Вращаем ручку регулятора тока. При этом показания амперметра должны плавно изменяться от 0 до 8 А, а лампы – плавно менять яркость. Градуируем регулятор тока, ориентируясь по показаниям амперметра.
Отключаем устройство и собираем его. Наш лабораторный блок питания готов. С его помощью мы можем получить любое напряжение от 3 до 24 вольт и устанавливать ограничение тока через нагрузку в пределах 0-10 А.
Как выбрать тихий блок питания
Мощный БП — это круто, но хотелось бы, чтобы он был как можно тише. Из-за конструктивных особенностей большинства корпусов, именно блок питания создает большую часть шума. Даже если вы купили якобы бесшумный корпус с антивибрационным покрытием и толстыми стальными стенками, но забыли про тихий БП, то посидеть в тишине точно не получится. Но есть несколько советов, которые помогут вам подобрать блок питания с минимальным уровнем шума.
Чем больше вентилятор, тем лучшеЧем больше вентилятор, тем лучше
Во-первых, смотрите на диаметр вентилятора. Чем он больше, тем меньшие обороты потребуются для охлаждения, а значит и уровень звука будет ниже. Если хотите максимально тихий БП, то ищите модели, у которых вентилятор имеет диаметр 120 мм и выше. А вот брать БП без вентилятора вообще, то есть с пассивным охлаждением, не стоит. Потому что у вас не офисный компьютер, а игровой, а значит и нагрузка на него будет соответствующая.
Во-вторых, при выборе блока питания вам следует обратить внимание, есть ли у него функция автоматического регулирования скорости вращения. Сейчас она есть почти на всех моделях, но лучше все-таки проверить
С ней БП будет снижать скорость вращения при низкой нагрузке. Это поможет сделать работу компьютера более тихой во время выполнения простых задач, таких как работа в офисных приложения, просмотр фильмов, прослушивание музыки и так далее.
На всякий случай напоминаем: наличие подсветки и прочих укарашательств никак не влияет на работу блока питанияНа всякий случай напоминаем: наличие подсветки и прочих укарашательств никак не влияет на работу блока питания
К слову, шум также может зависеть от нагрузки: чем меньше блок «напрягается», тем он тише. Это значит, что ваш БП на 400 Ватт работает на пределе, то будет шумно. Именно поэтому некоторые берут блок с большим запасом.
Во-третьих, обязательно загляните в подробный список характеристик. В нем должны быть указаны минимальный и максимальный уровень шума. Чем меньше оба этих показателя, тем тише в целом будет работать блок питания. Если вы выбираете между двумя похожими БП, то лучше отдать предпочтение тому, у которого меньше меньше уровень шума. Особенно максимальный, потому что именно он может доставлять неудобства.
Лабораторный блок питания
Блок питания БП-4А куплен был больше 10 лет назад под один самодельный проект. В паспорте указавалось, что защита от короткого замыкания и перегрева есть. На практике блок питания работал на режимах по току больше рекомендованного (2,7 А), понижающий трансформатор легко отдавал ток до 6А и в конце концов блок сгорел.
С тех пор ему совсем не везло, купленные для ремонта микросхемы стабилизатора сгорали одна за другой и блок питания был заменен импульсным и забыт. Однако прямые стабилизаторы при своей работе не создают помех, что очень удобно для питания радиоаппаратуры.
Под новые проекты решено было переделать блок питания в лабораторный с регулируемым стабилизированным напряжением от 3 до 18 Вольт и током до 5 Ампер.
Как сделать лабораторный блок питания своими руками
Как сделать лабораторный блок питания своими руками / Электронные самоделки Sekretmastera
Для переделки была применена простая, но мощная схема на полевом транзисторе и регулируемом параллельном стабилизаторе TL431. Схема блока питания простая.
От старого блока питания, кроме корпуса и трансформатора, используется выпрямитель с электролитическими конденсаторами и радиатор. Вся скромная обвязка полевого транзистора размещена на небольшой платке, но может быть легко установлена и навесным монтажом.
Транзистор закреплен на радиаторе, обязательно через штатную изолируюшую прокладку. Термопаста также не помешат. Для удобства монтажа радиатор повернут на 180 градусов. Смотри фото и видео. Регулирующий напряжение потенциометр установлен вместо корпуса плавково предохранителя по сети 220 Вольт.
Так как напряжение питания вольтметра превышало 20 Вольт, то на микросхему питания вольтметра установлен небольшой радиатор. Вольтметр и резистор регулировки напряжения закреплены на корпусе термоклеем. Конденсатор 5000×25В на выходе стабилизатора не устанавливался в виду избыточности и был заменен конденсаторм в несколько сот мкф.
Лабораторный блок питанияБлок питания БП-4АБлок питания БП-4АВнутренности блока питания БП-4АБлока питания разобранСхема лабораторного блока питанияПроверка макетаОкно под вольтметрВольтметр встроен в панельЭлектроника блока питанияРадиатор вольтметраЛабораторный блок питания
При сборке корпуса блока питания в целях безопасности необходимо проложить изолирующую прокладку со стороны пайки на плату обвязки транзистора. Полевой транзистор может быть типа IRLZ24, IRLZ34, IRLZ44.
Для более надежной защиты на плате выпрямителя установлен предохранитель на 6 А. Полевые транзисторы выдерживают ток десятки ампер и предохранитель скорее всего предназначен для защиты трансформатора и выпрямителя.
Если к блоку питания будет подключаться индуктивная нагрузка (например, электродвигатель), то обязательно подключение параллельно выходу мощного выпрямительного диода (анодом к +) . Испытания показали, что лабораторный блок питания с поставленными задачами справляется.
Понравилась идея строительства лабораторного блока питания своими руками? Добавьте инструкцию в избранное и поделитесь ссылкой с друзьями.
И в заключении для занятых вот ссылки на приобретение готового блока питания на 3-12 Вольт http://ali.pub/2h8tf0 и на 9 — 24 Вольт http://ali.pub/2h8rxc.
Схема для лабораторного БП
Для преобразования ненужного блока питания компьютера в лабораторный источник с регулируемым выходным напряжением подойдут блоки питания ATX (но возможно и AT), выполненные по схеме ШИМ на микросхеме TL494 или ее аналогах.
Хотя все они построены по одной и той же структурной схеме и работают по схожему принципу, блоки питания могут быть физически реализованы по-разному. Поэтому первым делом нужно попытаться найти принципиальную схему реально существующего агрегата.
Процедуру конвертации можно увидеть на примере модели LC-250ATX. Разобравшись в принципе, можно будет работать с другими подобными блоками.
В основе LC-250ATX лежит принцип ШИМ, реализованный на стандартной для таких схем микросхеме TL494. Он генерирует импульсы, которые усиливаются ключами на транзисторах Q6, Q7, затем через трансформатор T2 с ключей на транзисторах Q1 формируются импульсы Q2 на первичной обмотке трансформатора T1. Эти импульсы преобразуются через вторичные обмотки и поступают на выпрямители различного напряжения, из которых только канал +12 вольт представляет интерес для изменения.
Цепь дежурного напряжения собирается на транзисторе Q3, трансформаторе Т3 и интегральном стабилизаторе 7805. Этот участок также понадобится для будущего проектирования. На операционном усилителе LM339 установлена схема для генерации сигнала PWR_OK и запуска источника питания с помощью сигнала с материнской платы.
Подпишись на RSS!
Подпишись на RSS и получай обновления блога!
Получать обновления по электронной почте:
-
-
Измеритель тока напряжения и мощности на INA226
11 сентября 2020 -
Программа взаимодействия INA226 с микроконтроллером PIC
29 июля 2020 -
Миллиомметр цифровой на базе модулей ADS1115 и TM1637
22 июля 2020 -
Транзисторный ключ с ограничением тока
3 июня 2020 -
Зарядное для аккумуляторов шуруповерта на базе XL4015
5 апреля 2020
-
Измеритель тока напряжения и мощности на INA226
-
- Зарядное устройство для автомобильных аккумуляторов – 237 498 просмотров
- Стабилизатор тока на LM317 – 173 703 просмотров
- Стабилизатор напряжения на КР142ЕН12А – 125 019 просмотров
- Реверсирование электродвигателей – 101 848 просмотров
- Зарядное для аккумуляторов шуруповерта – 98 528 просмотров
- Карта сайта – 96 170 просмотров
- Зарядное для шуруповерта – 88 495 просмотров
- Самодельный сварочный аппарат – 87 896 просмотров
- Схема транзистора КТ827 – 82 543 просмотров
- Регулируемый стабилизатор тока – 81 588 просмотров
-
- DC-DC (4)
- Автомат откачки воды из дренажного колодца (5)
- Автоматика (34)
- Автомобиль (3)
- Антенны (2)
- Ассемблер для PIC16 (3)
- Блоки питания (30)
- Бурение скважин (6)
- Быт (11)
- Генераторы (1)
- Генераторы сигналов (8)
- Датчики (4)
- Двигатели (7)
- Для сада-огорода (11)
- Зарядные (17)
- Защита радиоаппаратуры (8)
- Зимний водопровод для бани (2)
- Измерения (36)
- Импульсные блоки питания (2)
- Индикаторы (6)
- Индикация (10)
- Как говаривал мой дед … (1)
- Коммутаторы (6)
- Логические схемы (1)
- Обратная связь (1)
- Освещение (3)
- Программирование для начинающих (17)
- Программы (1)
- Работы посетителей (7)
- Радиопередатчики (2)
- Радиостанции (1)
- Регуляторы (5)
- Ремонт (1)
- Самоделки (12)
- Самодельная мобильная пилорама (3)
- Самодельный водопровод (7)
- Самостоятельные расчеты (37)
- Сварка (1)
- Сигнализаторы (5)
- Справочник (13)
- Стабилизаторы (16)
- Строительство (2)
- Таймеры (4)
- Термометры, термостаты (27)
- Технологии (21)
- УНЧ (2)
- Формирователи сигналов (1)
- Электричество (4)
- Это пригодится (12)
-
Архивы
Выберите месяц Сентябрь 2020 (1) Июль 2020 (2) Июнь 2020 (1) Апрель 2020 (1) Март 2020 (3) Февраль 2020 (2) Декабрь 2019 (2) Октябрь 2019 (3) Сентябрь 2019 (3) Август 2019 (4) Июнь 2019 (4) Февраль 2019 (2) Январь 2019 (2) Декабрь 2018 (2) Ноябрь 2018 (2) Октябрь 2018 (3) Сентябрь 2018 (2) Август 2018 (3) Июль 2018 (2) Апрель 2018 (2) Март 2018 (1) Февраль 2018 (2) Январь 2018 (1) Декабрь 2017 (2) Ноябрь 2017 (2) Октябрь 2017 (2) Сентябрь 2017 (4) Август 2017 (5) Июль 2017 (1) Июнь 2017 (3) Май 2017 (1) Апрель 2017 (6) Февраль 2017 (2) Январь 2017 (2) Декабрь 2016 (3) Октябрь 2016 (1) Сентябрь 2016 (3) Август 2016 (1) Июль 2016 (9) Июнь 2016 (3) Апрель 2016 (5) Март 2016 (1) Февраль 2016 (3) Январь 2016 (3) Декабрь 2015 (3) Ноябрь 2015 (4) Октябрь 2015 (6) Сентябрь 2015 (5) Август 2015 (1) Июль 2015 (1) Июнь 2015 (3) Май 2015 (3) Апрель 2015 (3) Март 2015 (2) Январь 2015 (4) Декабрь 2014 (9) Ноябрь 2014 (4) Октябрь 2014 (4) Сентябрь 2014 (7) Август 2014 (3) Июль 2014 (2) Июнь 2014 (6) Май 2014 (4) Апрель 2014 (2) Март 2014 (2) Февраль 2014 (5) Январь 2014 (4) Декабрь 2013 (7) Ноябрь 2013 (6) Октябрь 2013 (7) Сентябрь 2013 (8) Август 2013 (2) Июль 2013 (1) Июнь 2013 (2) Май 2013 (4) Апрель 2013 (7) Март 2013 (7) Февраль 2013 (7) Январь 2013 (11) Декабрь 2012 (7) Ноябрь 2012 (5) Октябрь 2012 (2) Сентябрь 2012 (10) Август 2012 (14) Июль 2012 (5) Июнь 2012 (21) Май 2012 (13) Апрель 2012 (4) Февраль 2012 (6) Январь 2012 (6) Декабрь 2011 (2) Ноябрь 2011 (9) Октябрь 2011 (14) Сентябрь 2011 (22) Август 2011 (1) Июль 2011 (5)
Как все работает
Перед тем, как сделать ЛБП самому, необходимо определиться с принципом работы аппарата и используемыми деталями. В комплект входит трансформатор. На вторичной обмотке он имеет выход в 3 А и 24 В. Для контактов используются клемма 1 и 2
Важно учесть, что именно он оказывает влияние на качество выходного сигнала
Лабораторный БП на Ардуино
Собираемый прибор с предрегулятором имеет диодный мост, выпрямляющий напряжение. Он собран из элементов от D1 до D4. Избавиться от возможных пульсаций помогает установленный фильтр. Он включает в себя конденсатор и резистор. В цепи присутствуют определенные особенности, отличающие сборку его из компьютерного железа.
Обычно применяют для управления выходным напряжением обратную связь. В предлагаемой схеме для данной цели к блоку питания в лабораторной схеме предлагается использовать операционный усилитель. Это позволит сформировать необходимый константный вольтаж. На выходных клеммах он будет наддать до уровня U1.
Регулируемый блок питания лабораторный на lm317 (схема)
В цепи участвует диод D8 с напряжением 5,6 В (зенеровский). Он эксплуатируется с нулевым температурным коэффициентом. Также напряжение падает на выходе U1, выключая D8. После такого события происходит стабилизация цепи, а заряженный поток идет к точке сопротивления R5. Протекающий поток по оперусилителю варьируется незначительно, соответственно он тоже пойдет по точке R6, а также R5. При том, что один и другой рассчитаны для одинакового напряжения, то общий их показатель будет удвоен, ведь это сопоставимо с параллельным соединением.
В результате получим в блоке питания с предрегулятором на выходе из усилителя напряжение в 11,2 В. Схема будет иметь значение усиления в трехкратных пределах.
Корректировать выходные параметры в вольтах помогают элемент сопротивления R10 и RV1. Второй является триммером. В такой ситуации удается снизить вольтаж практически до нуля, несмотря на количество имеющихся потребителей.
С помощью такого агрегата удается сформировать наибольший ток на выходе, получаемый из PSU. Для обеспечения такого явления создаем падение вольт на R7. Он имеет прямую связь с нагрузкой. Выход U3 инвертирует сигнал с нулевым вольтажом, отправляя его на R21.
Схематическое изображение функционала
Предположим, что для последнего выхода имеется несколько вольт. Именно Р2 помогает своей установкой в схеме обеспечить на выходе сигнал в 1 В. При повышении нагрузки получим константное напряжение. После этого установленный R7 будет оказывать не такое существенное влияние на процессы. Этому способствует пониженное его значение. Когда потребители и вольтаж стабильны, то система работает слаженно. Если повышать количество потребителей, то вольтаж на R7 повысится более чем одного вольта. U3 функционирует и сбалансирует имеющиеся показатели к исходным значениям.
Подготовка к переделке
Перед тем, как приступить к работе над созданием лабораторного агрегата, необходимо определиться, какое напряжение и ток вам нужно от него получить, и выбрать подходящий блок питания от компьютера с контроллером TL494 или аналогом.
Это устройство будет иметь защиту от короткого замыкания, перегрева и перегрузки. Это позволит получать плавно регулируемое напряжение от нуля до 25 В, при токе до 8-10 А.
Подготовка агрегата к модификации заключается в отключении вентилятора, выходных электролитических конденсаторов на линиях +12, +5, + 3,3 В и ненужных жил общей разводки. Карта должна иметь желтый, черный, зеленый и сетевой провода.
Какие детали нужно докупить
Чтобы модифицировать силовой модуль вашего компьютера, вам необходимо приобрести некоторые детали и устройства. Радиолюбители могут оказаться в домашней лаборатории.
Электролитические конденсаторы:
- 22 мкФ / 16 В;
- количество остальных элементов и их мощность такие же, как у деталей, свариваемых в процессе подготовки, но они должны выдерживать напряжение не менее 35-40 В.
Резисторы:
- переменная — 22 кОм и 330 Ом;
- постоянная (кОм) — 47, 15, 10, 1,2 и 3 шт. 2.7.
Устройства:
- вольтметр;
- амперметр — желательно с внутренним шунтом.
Схема доработки компьютерного БП
Для начала нужно удалить все ненужные предметы из обвязки TL494. Чтобы не резать рельсы и не искать детали, которые нужно снимать, можно сделать проще: выпарить и приподнять ножки 1-4 и 13-16 микросхемы.
Капитальный ремонт осуществляется навесным монтажом по схеме:
- Между общим проводом и выводами 1, 2 и 4 контроллера припаяны резисторы 2,7, 2,7 и 1,2 кОм соответственно.
- 2-й и 3-й контакты TL494 подключены через резистор 47 кОм и конденсатор 0,01 мкФ (он находится на плате).
- Между первой ногой и шиной +12 В установлен регулятор на 22 кОм — он будет изменять напряжение на выходе блока питания. Туда же припаян положительный провод вольтметра.
- Пятнадцатый вывод подключен к центральному выводу переменного резистора 330 Ом. Он будет регулировать ток.
- один из его концов идет «в минус», а второй проходит через резистор 10 кОм на выводах 13 и 14, спаянных между собой.
- шестнадцатая ветвь микросхемы подключена к «минусу» через амперметр».
- 14-й вывод подключен ко 2-й и 4-й ногам TL494 через резистор 2,7 кОм и параллельный конденсатор 22 мкФ / 16 В и сопротивление 15 кОм соответственно.
- Устройства подключаются к плате кабелем длиной 10-20 см.
- Припаиваются электролитические конденсаторы на 35-40В.
- Зеленый провод соединен переключателем с «минусом» платы.
Напряжение
После этих изменений на линиях +12 и +5 В напряжение будет установлено на + 25-30 и +10 В. Это можно проверить с помощью тестера.
Далее устанавливается вентилятор. Поскольку он подключен к линии 10 В, это приведет к небольшому снижению скорости вращения.
Источники
- https://Zapitka.ru/masterskaya/peredelka-kompyuternogo-bloka-pitaniya-v-laboratornyy
- https://datagor.ru/practice/power/2246-peredelka-bloka-at-v-reguliruemyy-bolk-pitaniya-0-30v-0-11a.html
- https://SdelaySam-SvoimiRukami.ru/3871-laboratornyy-istochnik-pitaniya-iz-bp-kompyutera.html
- https://Acums.ru/bespereboyniki-i-bloki-pitaniya/skhemy-peredelki-v-laboratorniy-ili-reguliruemiy-v-zaryadnoe-ustroystvo
- https://CleverDIY.ru/kak-samomu-sdelat-blok-pitaniya-iz-kompyuternogo-bp
- https://radioskot.ru/publ/bp/laboratornyj_bp_s_zashhitoj_iz_obychnogo_kompjuternogo/7-1-0-1063
Схема
Импульсный БП состоит из следующих функциональных блоков:
- фильтр. Не пропускает помехи из сети и обратно (генерируются самим БП);
- выпрямитель со сглаживающим конденсатором. Обычный диодный мост, дает на выходе почти ровное (с низким коэффициентом пульсаций) постоянное напряжение, равное действующему значению переменного селевого напряжения — 311 В;
- инвертор. Состоит из быстро переключающихся силовых ключевых транзисторов и управляющей ими микросхемы. На выходе дает прямоугольный переменный ток. Процесс преобразования в инверторе называют широтно-импульсной модуляцией (ШИМ), а микросхему — ШИМ-контроллером. В рабочем режиме реализована обратная связь, потому в зависимости от мощности подключенной к БП загрузки, контроллер регулирует продолжительность открытия транзисторов, то есть ширину импульсов. Также благодаря обратной связи, компенсируются скачки напряжения на входе и броски, обусловленные коммутацией мощных потребителей. Это обеспечивает высокое качество выходного напряжения;
- импульсный высокочастотный трансформатор. Понижает напряжение до требуемых 12 или 24 В;
- выпрямитель со сглаживающим конденсатором. Преобразует высокочастотное переменное напряжение в постоянное.
Дроссель переменного тока
Основной элемент сетевого фильтра — дроссель. Его сопротивление (индуктивное) возрастает с увеличением частоты тока, потому высокочастотные помехи нейтрализуются, а ток частотой 50 Гц проходит свободно. Дроссель работает тем эффективнее, чем больше размеры магнитопровода, толщина проволоки и больше витков. Дополнительно установленные конденсаторы улучшают фильтрацию, закорачивая высокочастотные помехи и отводя их на «землю».
Также емкостные сопротивления не позволяют в/ч помехам, генерируемым БП, поступать в сеть. Высокочастотный трансформатор отличается от обычного материалом магнитопровода: используются ферриты или альсифер. Выпрямитель после трансформатора собирается на диодах Шоттки, отличающихся высоким быстродействием.
Существует два способа генерации высокочастотного переменного тока:
- однотактная схема. Применяется в БП небольшой мощности — до 50 Вт (зарядки телефонов, планшетов и т.п.). Конструкция простая, но у нее велика амплитуда напряжения на первичной обмотке трансформатора (защищается резисторами и конденсаторами);
-
двухтактная схема. Сложнее в устройстве, но выигрывает в экономичности (выше КПД). Двухтактная схема делится на три разновидности:
- двухполупериодная. Самый простой вариант;
- двухполярная. Отличается от предыдущей присутствием 2-х дополнительных диодов и сглаживающего конденсатора. Реализован обратноходовый принцип работы. Такие схемы широко применяются в усилителях мощности. Важная особенность: продлевается срок службы конденсаторов за счет того, что через них протекают меньшие токи;
- прямоходовая. Используется в БП большой мощности (В ПК и т.п. устройствах). Выделяется наличием габаритного дросселя, накапливающего энергию импульсов ШИМ (направляются на него через два диода, обеспечивающих одинаковую полярность).
2-тактные БП отличаются схемой силового каскада, есть три модификации:
- полумостовая: чувствительна к перегрузкам, потому требуется сложная защита;
- мостовая: более экономична, но сложна в наладке;
- пушпульная. Наиболее экономична и потому весьма востребована, особенно в мощных БП. Отличается присутствием среднего вывода у первичной и вторичной обмоток трансформатора. В течение периода работает то одна, то другая полуобмотка, подключаемая соответствующим ключевым транзистором.
Стабилизации выходного напряжения добиваются следующими способами:
- применением дополнительной обмотки на трансформаторе. Это самый простой способ, но и наименее действенный. Снимаемое с нее напряжение корректирует сигнал на первичной обмотке;
- применением оптопары. Это более эффективный способ. Основные элементы оптопары — светодиод и фототранзистор. Схема устроена так, что протекающий через светодиод ток пропорционален выходному напряжению. Свечение диода управляет работой фототранзистора, подающего сигналы ШИМ-контроллеру.
Таким образом, в данной методике контролируется непосредственно напряжение на вторичной обмотке, при этом отсутствует гальваническая связь с генератором ключевого каскада.
При подключении последовательно с оптопарой стабилитрона качество стабилизации становится еще выше.