10 простых схем зарядок литий-ионных аккумуляторов и как правильно заряжать

Содержание

Как греется модуль

В процессе зарядки, когда ток составляет 1 ампер, модуль прилично греется. Стоит учитывать этот факт при использовании модуля в закрытом устройстве. Так, на открытом воздухе температура модуля достигала значений более 70 градусов (по термопаре).

В случае установки модуля в закрытый корпус желательно снизить максимальный ток заряда до 500-700 мА. Но на терма-клей все же не стоит крепить.

У самого же модуля предусмотрена защита от перегрева. Так при перегреве модуль начинает ограничивать выходной ток. Так что от перегрева он скорее всего не сдохнет. Но не стоит полностью полагаться на защиту))

Подключение модуля заряда TP4056 с защитой и без защиты

Подключение модулей TP4056 с защитой и без защиты к источнику питания и к аккумулятору, а также в последствии к потребителю, немного отличается. Плата заряда без защиты имеет четыре вывода, два для входного напряжения и два для подключения аккумулятора, а также разъем для подключения питания. Питание подается на IN+ и на IN-, а аккумулятор подключается к выводам BAT+ и BAT-.

У модуля TP4056 с защитой выводов больше, так как здесь аккумулятор и нагрузка подключаются на разные выводы. Питание подается на IN+ и на IN-, аккумулятор необходимо подключать к B+ и B-, а нагрузка подключается к выводам OUT+ и OUT-. При этом выводы B+ и OUT+ совмещенные.

Что такое контроллер и какие разновидности этого устройства существуют?

Стандартных схем контроллеров не существует, однако все они имеют схожие черты. Как правило, большинство из них включают в себя два подстроечных резистора, который контролируют максимумы и минимумы напряжения. Кроме этого, в каждом контроллере есть обмотка реле, которое контролирует диапазон границ. Таким образом, если в аккумуляторе установлена максимальная граница в 15 В, устройство не сможет генерировать энергию выше этого предела.

В зависимости от строения контроллеры могут быть:

  • простой контроллер или универсальный;
  • гибридный контроллер.

Среди устройств, позволяющих контролировать данные параметры, различают:

  • контроллеры типа ВКЛ/ВЫКЛ;
  • Pulse width modulation (PWM) контроллер, или широтно-импульсный модулятор;
  • Maximum power point tracking (MPPT) контроллер или контроллер, который следит за направлением солнечных лучей.

Почему контроллер блокирует работу литиевых батарей

Причинами блокировки являются такие факторы:

  1. Короткое замыкание. Возникает при превышении допустимого уровня заряда. Контроллер разрывает электрическую цепь. Восстанавливается она только после устранения замыкания. Для разблокирования батарею подключают к зарядному устройству.
  2. Глубокий разряд. Система защиты не позволяет дальше потреблять энергию аккумулятора. Спасти батарейку можно, начав зарядку телефона оригинальным ЗУ.
  3. Течение опасных процессов. При критическом разряде начинается бурное течение химических реакций. Внутри корпуса образуются литиевые кристаллы. Взаимодействуя с электродами, они вызывают взрыв. Опасная ситуация возникает при подаче напряжения. Поступление тока блокируется контроллером.

Контролер заряда у Li-Ion батарей защищает аккумулятор от КЗ и перезаряда.

Способы подключения

Подключение завит от типа устройства.

PWM

Специально для пользователей, рядом с клеммами есть обозначения, что к ним подключать. Необходимо учесть строгую последовательность: 1. Подключите аккумулятор. 2. Включите предохранитель на плате, рядом с «+». 3. Вставьте контакты солнечных батарей. 4. Подсоедините контрольную лампу с напряжением 12 или 24 В.

Важно производить подключение в строгой последовательности, учитывая маркировки, нанесенные на клеммы и полярность проводов

MPPT

Подключение заметно отличается от ШИМ:

  1. Солнечную панель подключают к инвертору.
  2. От него плюс заводят в прибор. На минусовой кабель ставят предохранитель.
  3. Ко второму плюсу и минусу подключают АКБ с использованием предохранителей.
  4. Инвертор и контроллер подключают к заземлению.

Последовательность и тип подключения будет незначительно отличаться:

  1. Переведите клеммы в неактивное положение.
  2. Достаньте предохранители.
  3. Подсоедините батареи.
  4. Подключите солнечные батареи.
  5. Позаботьтесь о заземлении.
  6. Добавьте в цепь датчик температуры.
  7. Верните предохранители, активируйте клеммы.

Что представляет собой контроллер зарядки Li─Ion аккумуляторов?

Простейший вариант контроллера зарядки литий─ионных АКБ можно увидеть, если разобрать аккумулятор планшетного компьютера или телефона. Он состоит из банки (аккумуляторного элемента) и печатной платы защиты BMS. Это и есть контроллер зарядки, который можно видеть на фото ниже.

Контроллер зарядки Li─Ion аккумулятора

В аккумуляторах смартфонов и планшетов плата BMS следит за процессом заряда и разряда одного элемента (банки). В аккумуляторах ноутбуков таких банок несколько. Обычно от 4 до 8.

Контроллер зарядки и литий─ионные элементы аккумулятора ноутбука

Также контроллер следит за процессом разрядки аккумуляторного элемента. При падении напряжения ниже порогового (обычно 3 вольта) схема отключает банку от потребителя тока. В результате устройство, работающее от аккумулятора, просто выключается. Среди прочих функций контроллера зарядки стоит отметить защиту от короткого замыкания. На некоторых платах защиты BMS устанавливается терморезистор для защиты аккумуляторного элемента от перегрева.

Схемы зарядного устройства для авто АБ

Для заряда аккумуляторов обычно используется бытовая сеть 220 В, которая преобразуется в пониженное напряжение при помощи преобразователя.

Простые схемы

Наиболее простой и эффективный способ — использование понижающего трансформатора. Именно он понижает 220 В до требуемых 13-15 В. Такие трансформаторы можно найти в старых ламповых телевизорах (ТС-180-2), компьютерных блоках питания, найти на «развалах» блошиного рынка.

Но на выходе трансформатора получается переменное напряжение, которое необходимо выпрямить. Делают это при помощи:

  • Одного выпрямляющего диода, который устанавливают после трансформатора. На выходе такого ЗУ ток получается пульсирующим, причем биения сильные — срезана только одна полуволна.

  • Диодного моста, который отрицательную волну «заворачивает» наверх. Ток тоже пульсирующий, но биения меньше. Именно эта схема чаще всего реализуется самостоятельно, хотя не является лучшим вариантом. Можно собрать диодный мост самостоятельно на любых выпрямляющих диодах, можно купить готовую сборку .

  • Диодного моста и сглаживающего конденсатора (4000-5000 мкФ, 25 В). На выходе этой схемы получаем постоянный ток.

В приведенных схемах присутствуют также предохранители (1 А) и измерительные приборы. Они дают возможность контролировать процесс заряда. Их из схемы можно исключить, но придется периодически использовать для контроля мультиметр. С контролем напряжения это еще терпимо (просто приставлять к клеммам щупы), то контролировать ток сложно — в этом режиме измерительный прибор включают в разрыв цепи. То есть, придется каждый раз выключать питание, ставить мультиметр в режиме измерения тока, включать питание. разбирать измерительную цепь в обратном порядке. Потому, использование хотя-бы амперметра на 10 А — очень желательно.

Недостатки этих схем очевидны — нет возможности регулировать параметры заряда.  То есть, при выборе элементной базы выбирайте параметры так, чтобы на выходе сила тока была те самые 10% от емкости вашего аккумулятора (или чуть меньше). Напряжение вы знаете — желательно в пределах 13,2-14,4 В. Что делать, если ток получается больше желаемого? Добавить в схему резистор. Его ставят на плюсовом выходе диодного моста перед амперметром. Сопротивление подбираете «по месту», ориентируясь на ток, мощность резистора — побольше, так как на них будет рассеиваться лишний заряд (10-20 ВТ или около того).

И еще один момент: зарядное устройство для автомобильного аккумулятора своими руками, сделанное по этим схемам, скорее всего, будет сильно греться. Потому желательно добавить куллер. Его можно вставить в схему после диодного моста.

Схемы с возможностью регулировки

Как уже говорили, недостаток всех этих схем — в невозможности регулировки тока. Единственная возможность — менять сопротивления. Кстати, можно поставить тут переменный подстроечный резистор. Это будет самый простой выход. Но более надежно реализована ручная регулировка тока в схеме с двумя транзисторами и подстроечным резистором.

Схема зарядного устройства для автомобильного аккумулятора с возможностью ручной регулировки тока заряда

Ток заряда изменяется переменным резистором. Он стоит уже после составного транзистора VT1-VT2, так что ток через него протекает небольшой. Потому мощность может быть порядка 0,5-1 Вт. Его номинал зависит от выбранных транзисторов, подбирается опытным путем (1-4,7 кОм).

Трансформатор мощностью 250-500 Вт, вторичная обмотка 15-17 В. Диодный мост собирается на диодах с рабочим током 5А и выше.

Транзистор VT1 — П210, VT2 выбирается из нескольких вариантов: германиевые П13 — П17; кремниевые КТ814, КТ 816. Для отвода тепла устанавливать на металлической пластине или радиаторе (не менее 300 см2).

Предохранители: на входе ПР1 — на 1 А, на выходе ПР2 — на 5 А. Также в схеме есть сигнальные лампы — наличия напряжения 220 В (HI1) и тока заряда (HI2). Тут можно ставить любые лампы на 24 В (в том числе и светодиоды).

Принцип работы модуля TP4056 с защитой и без

Литиевые аккумуляторы очень требовательны к методам их заряда. Их нельзя заряжать выше 4.2 В и не желательно заряжать большим тока, чем меньше ток заряда, до разумных пределов, тем дольше проживут аккумуляторы. Контроллер TP4056 как раз обеспечивает правильный заряд литиевых аккумуляторов методом CC/CV. CC означает заряд постоянным током, а CV означает заряд постоянным напряжением.

Модули TP4056 с защитой и без защиты производят заряд литиевых аккумуляторов методом CC/CV, обеспечивая постоянный заданный ток заряда в начале заряда, и постоянное напряжение заряда 4.2В в конце заряда. Дополнительно в контроллере реализован метод TC, при котором сильно разряженный аккумулятор заряжается током 1/10 от номинального до достижения аккумулятором напряжения 2.9 В.

По умолчанию на всех модулях заряда TP4056 настроен максимальный ток заряда 1 А. Если напряжение на аккумуляторе более 2.9 В, то заряд аккумулятора сразу равен 1 А, и держится на таком уровне практически до полного заряда. В этот момент на плате горит красный светодиод. Когда напряжение на аккумуляторе приближается к номинальному, ток заряда начинает уменьшаться, при этом поддерживается постоянное напряжение на выходе зарядного устройства 4.2 В. Кривые заряда литиевых аккумуляторов тока и напряжения по методу CC/CV можно посмотреть на графике ниже.


Когда ток заряда снижается до 100 мА, контроллер TP4056 прекращает процесс заряда. В этот момент гаснет красный светодиод и загорается синий.

Модуль TP4056 с защитой контролирует также и разряд литиевого аккумулятора. Аккумулятор защищается от короткого замыкания, при этом, если замкнуть выводные контакты платы, нагрузка будет просто отключаться от аккумулятора, пока не исчезнет КЗ. Во время разряда аккумулятора контролируется ток разряда и напряжение. Ток разряда ограничивается на уровне 3 А, если протекающий ток становится больше, нагрузка отключается от аккумулятора. При понижении напряжения на клеммах аккумулятора ниже 2.5 В нагрузка также отключается от аккумулятора, защищая его от переразряда.

Как заряжать аккумулятор, правила

Литий-ионные аккумуляторы похожи на людей тем, что они не ведут себя одинаково и работают лучше всего при температурах, которые не являются ни слишком жаркими, ни холодными.

Эти батареи работают лучше при высоких температурах, чем при низких, так как тепло снижает внутреннее сопротивление и ускоряет химическую реакцию внутри батареи. Побочным эффектом этого процесса является то, что он создает нагрузку на батарею, что может привести к сокращению срока службы в жарких условиях в течение продолжительных периодов.

С другой стороны, низкие температуры увеличивают внутреннее сопротивление, что увеличивает нагрузку на аккумулятор и сокращает его емкость. Батареи, которые обеспечивают 100% -ную емкость при 27 ° C, обычно уменьшаются на 50% при -18 ° C и так далее.

Li ion аккумуляторы как правильно заряжать?

Не разряжать полностью

Несоблюдение этих советов и инструкций может привести к повреждению аккумулятора до такой степени, что он станет непригодным для использования. Вы также можете поставить под угрозу свою безопасность и безопасность других людей, если батарея не используется должным образом. В сочетании с несовпадающим зарядным устройством может произойти перегрев или перезарядка, и существует риск возгорания.

Полная разрядка производится не чаще раза в 3 месяца

Как правильно заряжать литий ионные аккумуляторы?

Зарядка ионно-литиевых батарей очень отличается от зарядки никель-кадмиевых или никель-металлогидридных батарей.

Различия заключаются в том, что литий-ионные аккумуляторы имеют более высокое напряжение на элемент. Они также требуют гораздо более жестких допусков на напряжение при обнаружении полной зарядки, а после полной зарядки они не допускают или требуют подзарядки

Особенно важно иметь возможность точно определять состояние полной зарядки, поскольку литий-ионные аккумуляторы не допускают перезарядки

Хранение с небольшим зарядом

Большинство литий-ионных аккумуляторов, ориентированных на потребителя, заряжаются до напряжения 4,2 В на элемент, и это допускает отклонение около ± 50 мВ на элемент. Зарядка сверх этого вызывает напряжение в элементе и приводит к окислению, что сокращает срок службы и производительность. Это также может вызвать проблемы с безопасностью.

Заряжать только оригинальной зарядкой

Зарядку литий-ионных аккумуляторов можно разделить на два основных этапа:

  • Заряд постоянного тока: на первой стадии зарядки литий-ионного аккумулятора или элемента тока заряда контролируется. Как правило, это составляет от 0,5 до 1,0 С. (Примечание: для батареи емкостью 2000 мАч скорость зарядки будет равна 2000 мА для скорости зарядки С). Для потребительских элементов LCO и батарей рекомендуется скорость зарядки не более 0,8 ° C.На этом этапе напряжение на ионно-литиевом элементе увеличивается для заряда постоянного тока. Время зарядки может быть около часа для этой стадии.
  • Заряд насыщения: Через некоторое время напряжение достигает пика в 4,2 В для элемента LCO. В этот момент элемент или батарея должны войти во вторую стадию зарядки, известную как заряд насыщения. Поддерживается постоянное напряжение 4,2 В, и ток будет постоянно падать. Конец цикла зарядки достигается, когда ток падает примерно до 10% от номинального тока. Время зарядки может быть около двух часов для этой стадии в зависимости от типа элемента и производителя и т. Д.

Эффективность заряда, то есть величина заряда, удерживаемого батареей или элементом, относительно количества заряда, поступающего в элемент, является высокой. Эффективность зарядки составляет от 95 до 99%. Это отражает относительно низкие уровни повышения температуры клеток.

Не перегревать аккумулятор при зарядке

Есть моменты, когда вы не можете использовать аккумулятор в течение длительного периода времени. Вот советы по поддержанию максимальной емкости батареи для длительного хранения.

Как определить качественную BMS (советы сведущих людей)

1. Если говорить о продукции приобретаемой на всенародно любимом AliExpress, то у хорошей платы должно быть большое количество положительных отзывов от покупателей их Европы, США и естественно России.

2. Количество баланс-резисторов и светодиодных элементов (при их наличии), должно быть равно числу ячеек в аккумуляторной батарее.

3

Разводка и пайка должны быть выполнены аккуратно хотя бы внешне, кроме того, нужно обращать внимание на «полиграфические изыски», проще говоря на наклейку, и толщину силовых дорожек

4. Весьма хорошим вариантом будет поиск информации о присмотренной вами платы управления в рунете. Ищите особенности оборудования, нюансы и отзывы реальных людей.

5. Отнеситесь к выбору BMS с максимальной степенью ответственности. Не рационально экономить на этом устройстве, ведь даже качественное, стоит не так уж и много, а запороть аппаратуру в случае с некачественным вариантом может на приличную сумму.

Заключение

Ну что же, как видим, Battery Management System, вещь действительно необходимая современным аккумуляторам. От чего она только не спасает! Если на вашей АКБ установлена подобная система — можете спасть спокойно, ваш агрегат не пропадёт и кроме того, прослужит вам максимально долго, радуя своей предельной отдачей при этом!

Назначение и схема зарядного контролера

Предлагаемый к самостоятельной сборке контроллер чрезвычайно простой, и поэтому безотказный. Он прекрасно дополняет альтернативные источники энергии, такие как ветрогенераторы или солнечные панели. Особых знаний в схемотехнике и пайке не потребуется. Разумеется, что если паяльник вы не пользовались по назначению, то лучше потренироваться на каких-то ненужных проводках, чтобы случайно не перегреть рабочие детали.

В базовую схему добавлены несколько элементов, которые делают работу контролера более стабильной. Например, сопротивления 15-18, подбирались эмпирически. Они устранили спонтанный нагрев таймера-микросхемы (3) и сделали установку значений подстроечных резисторов (1 и 2) более точной. Дополнительно, реле (10) было припаяно «навесным монтажом». Для неопытных радиолюбителей это будет существенным подспорьем в работе, и такой вариант делает плату универсальной, т.е. с реле можно экспериментировать в процесс эксплуатации.

Установка полевого транзистора IRF 540 обусловлена тем, что сигнал от таймера NE 555 выходит с напряжением 5V, а реле 1N4007 12-тивольтовое.

Принципы работы контроллера заряда АКБ

После выставления нужных параметров на подстроечных резисторах и включении прибора в систему, работа контроллера происходит следующим образом:

  1. Аккумулятор получает зарядный ток до достижения выставленного уровня напряжения. Затем зарядка останавливается, а напряжение с альтернативного источника энергии направляется только к потребителю.
  2. При разрядке аккумулятора до нижнего предела, выставленного в подстроечном резисторе (1), автоматически включается зарядка.

Обратите внимание, что в автоматическом режиме, во время зарядки питание к потребителю от АКБ не подаётся. Для того чтобы подать напряжение, есть кнопки 11 и 13, которые работают в ручном режиме

Список деталей контроллера зарядки АКБ

Каждая деталь пронумерована в снимке, а на схеме видно размещение резисторов 12 и 12/1, они припаяны с обратной стороны платы.

1 Подстроечный резистор (установка нижнего предела ≈11,8 V);

2 Подстроечный резистор (установка верхнего предела ≈14,4 V (оба резистора на 10 kOm);

3 Таймер — Микросхема NE 555 + гнездо для микросхемы;

4 Стабилизатор напряжения LM7805 (5V);

5 Конденсатор неполярный 330 nF (на вход);

6 Конденсатор неполярный 100 nF (на выход);

7 Полевой транзистор IRF 540;

8 Биполярный NPN транзистор 2N3904;

9 Светодиоды индикации: синий и красный;

10 Реле 1N4007 (12 вольт 10 ампер);

11 Резистор 300 Om + провод для отключения «Режима заряда»(оформляется на корпусе);

12/12-1 Резисторы 100 Om + 330 Om (припаяны с обратной стороны);

13 На кнопку включения «Режима зарядки» (оформляется на корпусе);

14 Радиатор;

15 Резистор 1,5 kOm;

16 Резистор 39 kOm;

17 Резистор 6,2 kOm;

18 Резистор 30 kOm;

19/20/21 Резистор 1 kOm;

На этой схеме обозначены места фиксации каждой детали.

Платы защиты BMS для литий─ионных аккумуляторов

Контроллер, рассмотренный выше, является простейшим вариантом защиты BMS. На самом деле разновидностей таких плат гораздо больше и есть довольно сложные и дорогостоящие. В зависимости от сферы применения выделяют следующие виды:

  • Для портативной мобильной электроники;
  • Для бытовой техники;
  • Применяемые в возобновляемых источниках энергии.

Пример контроллера заряда для солнечной панели

При увеличении напряжения на аккумуляторе более 15 вольт срабатывают реле и размыкают цепь заряда. После этого источник энергии работает на предусмотренный для этого балласт. Как говорят специалисты, в случае с солнечными панелями это может дать нежелательные побочные эффекты.

В случае ветряных генераторов BMS контроллеры применяются обязательно. Контроллеры зарядки литий─ионных аккумуляторов для бытовой техники и мобильных устройств имеют существенные различия. А вот контроллеры аккумуляторов ноутбуков, планшетов и телефонов имеют одинаковую схему. Разница заключается только в количестве контролируемых аккумуляторных элементов.

Преимущества второго варианта

2-ой вариант является более подходящим, потому что напряжение в батарее достаточно стремительно падает с наибольшего показателя до малого (с 16,8 до 14,8 В). Для электронного мотора, чем, фактически говоря, не является шуруповерт, превышение в 4,8 В не является критической отметкой.

Самый маленький показатель напряжения у 3S-Li-Ion-модификации. Он равен 7,5 В, что является недостающим для производственной деятельности электронного приспособления. Смонтировав четыре конфигурации, мы увеличим электрическую емкость аккумулятора.

В этой статье вы узнаете как недорого переделать аккумулятор шуруповерта с Ni Cd на Li Ion аккумуляторы 18650, тем самым модернизировав аккумулятор шуруповерта, сделав его более мощнее и увеличив время автономной работы. Все этапы переделки подробно описаны, поэтому проблем возникнуть не должно, все необходимые компоненты указанны и доступны.

Необходимые компоненты для переделки

Для перебелки были использованы высокотоковые аккумуляторы 18650 ёмкостью 2500 мА/ч. Данные аккумуляторы имеют уже приваренные выводы для пайки, что очень удобно и ко всему прочему можно существенно сэкономить на батарейных отсеках. Заказать их можно в интернете, поставляются партией по 4 или 6 штук. Купить их можно по ссылкам ниже:

Так же для переделки понадобятся две платы BMS 12.6V 40A, покупал тут:

Зарядное устройство тоже нужно будет переделать и для этого понадобится модуль стабилизации напряжения и тока.

На момент переделки, все компоненты (на две батареи) обошлись всего 1100 рублей, это на много дешевле чем купить новый аккумулятор для шуруповерта, в котором будут стоять всё те же Ni Cd аккумуляторы. Посмотрев цены в интернете, я обнаружил что одна батарея стоит от 1200 рублей, а для переделки ДВУХ батарей, я потратил всего 1100! Все ссылки на компоненты так же можно найти в конце статьи!

Переделка аккумулятора

Первым делом нужно аккуратно разобрать корпус аккумулятора и выбросить старые Ni Cd аккумуляторы.

Затем необходимо отсоединить клемму питания аккумулятора.

К неё нужно припаять два провода, желательно с крупным сечением, в данной переделки были использованы провода сечением 4 мм² и длиной примерно 100 мм. На фото выше можно заметить красный провод, оставлен он был для того, что бы не перепутать полярность, к этому проводу желательно тоже припаять красный провод, что бы избежать неприятностей и вы точно будете знать что это +.

К блестящему контакту нужно припаять минусовой провод:

Затем нужно вставить клемму с припаянными проводами обратно в корпус на своё место, обязательно соблюдая полярность!

Для фиксации клеммы, можно залить вовнутрь стакана термоклей, более лучшего варианта фиксации я не нашел, тем более что держит он очень хорошо!

Теперь можно приступить к пайки аккумуляторов. Снимаем с аккумуляторов термоусадочную трубку и сгибаем их таким образом что бы можно было их спаять последовательно.

Далее спаиваем контакты:

Далее наносим термоклей на ту сторону получившейся батареи, где контакты торчат на верх и приклеиваем плату BMS как показано на фото ниже

Обратите внимание, что плюс и минус платы и батареи, находятся друг на против друга

Затем загибаем контакты батареи на контакты платы и припаиваем их, начиная с минуса!

К контакту платы B1 припаиваем короткий провод, другой конец которого припаиваем к месту соединения аккумуляторов!

К контакту B2 так же припаиваем короткий провод, другой конец которого, припаиваем к месту соединения аккумуляторов на противоположной стороне!

Ну и в конце, припаиваем последний, плюсовой контакт.

Теперь осталось соединить клеммы корпуса с получившейся аккумуляторной батареей, для этого припаиваем красный провод к контакту «P+», а синий, минусовой провод, к контакту «P-«.

На этом переделка аккумулятора закончена! Осталось закрепить изготовленную батарею и поставить на место вторую часть корпуса. На переделку двух аккумуляторов было потрачено не больше часа времени и как говорилось выше, 1100 рублей денег. После тестов, шуруповёрт стал работать ни хуже чем с заводской батареей и я бы сказал, на много лучше, в плане мощности и заряд держится дольше. Всем советую переделать свои старые батареи! ))