Принцип работы коллекторного мотора
Электрический ток (DC или direct current), поступая на обмотки якоря (в зависимости от их количества на каждую по очереди) создает в них электромагнитное поле, которое с одной стороны имеет южный полюс, а с другой стороны северный.
Многие знают, что, если взять два любых магнита и приставить их одноименными полюсами друг другу, то они не за что не сойдутся, а если приставить разноименными, то они прилипнут так, что не всегда возможно их разъединить.
Так вот, это электромагнитное поле, которое возникает в любой из обмоток якоря, взаимодействуя с каждым из полюсов магнитов статора, приводит в действие (вращение) сам якорь. Далее ток, через коллектор и щетки переходит к следующей обмотке и так последовательно, переходя от одной обмотки якоря к другой, вал электродвигателя совместно с якорем вращается, но лишь до тех пор, пока к нему подается напряжение.
В стандартном коллекторном моторе якорь имеет три полюса (три обмотки) – это сделано для того чтобы движок не «залипал» в одном положении.
Принцип работы инверторного двигателя
Стиралки с электродвигателями этого типа начали появляться, начиная с 2005 года. Впервые машинку с инверторным мотором выпустила компания LG. Однако немного позже на рынке бытовой техники стали появляться аналогичные модели от других популярных брендов: Вирпул, Самсунг, Бош.
Инвертор – это крышка с магнитами, которая оснащена обоймой с катушками. Эта комплектующая интегрирована в барабан стиралки. Ключевая особенность конструкции – отказ от коллекторно-щеточного механизма. Инверторный двигатель в стиральной машинке устанавливается на барабан, поэтому пропадает необходимость в использовании соединительного ремня.
Якорь собран на магнитах. Подача напряжения осуществляется на обмотку катушки в преобразованном виде. Пользователь получает возможность контролировать и регулировать скорость вращения.
Основные преимущества технологии:
- простая конструкция;
- высокая скорость отжима;
- компактные размеры;
- энергоэффективность;
- бесшумная работа;
- отсутствие деталей с ограниченным эксплуатационным ресурсом;
- минимальная вибрация при отжиме.
Инверторный двигатель исключает потребность в потреблении электроэнергии для преодоления силы трения. Поэтому стиральная машина рационально расходует электричество. Владельцы такой техники смогут сэкономить около 5% на оплате счетов за электроэнергию.
Некоторые модели поддерживают возможность настройки режимов вращения барабана. Создателем этой технологии стала компания LG. В спецификациях агрегата эта функция обозначается «6 Motion». Однако за такое устройство придется существенно переплатить, да и стоимость обслуживания заметно выше, если сравнивать с представителями низшего и среднего ценовых сегментов.
Плюсы и минусы сравниваемых двигателей
Электродвигатели с коллектором применяются в детских игрушках, моделях автомобиля, судомоделировании и т.п. Более мощные устройства с обмоткой возбуждения применяются в автомобилестроении, бытовой технике, в токарном станке или сверлильном и т.д.
Широкое применение обусловлено:
- Невысокой ценой.
- Простотой управления. Для регулировки скорости достаточно иметь реостат, а для осуществления реверса — изменить полярность в цепи возбуждения или якоря.
- Можно подключать непосредственно к питающей сети.
- Скорости вращения ротора можно менять в широком диапазоне.
- Небольшие пусковые токи.
Но при простоте устройства коллекторные двигатели имеют недостатки:
- Невысокий КПД.
- Ограниченный срок службы.
- Необходимость в постоянном обслуживании.
- Невысокая надежность устройства.
При этом такие двигатели применяются не во всех отраслях промышленности. Их нельзя использовать во взрывоопасных помещениях. При эксплуатации на высоких скоростях быстро выходит из строя коллектор и щетки.
В результате происходит снижение мощности, а токоподводящие щетки начинают искрить. Такое конструктивное отличие приводит к быстрому выходу из строя ламелей коллектора, создаются помехи в радиоаппаратуре.
Щетки приходится менять, а коллектор протачивать, что сокращает срок службы двигателя. Это является основным недостатком таких устройств.
В бесколлекторных электродвигателях отсутствует коллектор. В этом состоит отличие бесеколлекторных двигателей от коллекторных, в связи с чем и отсутствуют указанные выше недостатки.
Достоинствами таких электрических машин являются:
- Отсутствие трущихся частей позволяет сократить потери мощности на трение. Не требуется постоянно следить за состоянием щеток, так как они отсутствуют. Это отличие позволяет увеличить межремонтный период.
- Возможность использования корпуса в качестве рабочего органа. Эта конструктивная разница позволяет применять механизмы непосредственно в качестве колес.
- Бесколлекторные электродвигатели, в отличие от коллекторных более долговечны. При этом они менее подвержены перегреву, т.к. отсутствует коллектор и щетки, которые в процессе работы сильно нагреваются.
- Мгновенно набирают обороты.
- Могут применяться во всех отраслях промышленности, в пожаро- и взрывоопасных помещениях. Из-за отсутствия коллектора не возникает искрения, чем они и лучше.
Но у данного типа двигателя имеется существенный недостаток: бесколлекторные модели можно использовать только с драйвером-коммутатором. С помощью этого устройства задаются режимы работы, скорость и направление вращения. При этом стоимость бесколлекторных двигателей значительно выше. Разница в стоимости может быть значительной. Это то, чем отличаются они от устройств с коллектором.
Малый вес и высокая мощность — это то, что лучше сочетается в приборах с дистанционным управлением, например, для квадрокоптера, где от веса и КПД зависит дальность и время полёта.
Коллекторные vs асинхронные двигатели
Вопрос – коллекторный двигатель или асинхронный – решаем первоочередно. Процесс несложный. Коллектором называется барабан, разделенный медными секциями, формой близкой прямоугольной, сделанными из меди. Формирует токосъемник, в коллекторных двигателях ротор всегда питается электрическим током. Постоянным, переменным – поле создается приложенным напряжением.
Коллекторный двигатель содержит минимум две щетки. Трехфазные встретим редко. Сведения о таких агрегатах описаны литературой середины прошлого века. Применялись коллекторные трехфазные двигатели, регулируя скорость вращения вала в широких пределах. Мотор указанного типа снабжен щетками, медным барабаном, разделенным секциями. Пропустить признак и невооруженным глазом затруднительно. Примеры коллекторных двигателей:
- Пылесос, стиральная машина.
- Болгарка, дрель, электрический ручной инструмент.
Коллекторные двигатели широко используются, обеспечивая сравнительно простой реверс, реализуемый переменой коммутации обмоток. Скорость регулируется изменением угла отсечки питающего напряжения, либо амплитуды. К общим недостаткам коллекторных двигателей относятся:
- Шумность. Трение щетками барабана неспособно происходить бесшумно. При переходе секцией идет искрение. Эффект вызывает помехи радиочастотного диапазона, издается сонм посторонних звуков. Коллекторные двигатели сравнительно шумные. Потрудитесь вспомнить пылесос. Стиральная машина, выполняя режим стирки работает не так громко? Низкие обороты коллекторных двигателей хороши.
- Необходимость обслуживания обуславливается наличием трущихся деталей. Токосъемник чаще загрязнен графитом. Попросту недопустимо, может замкнуть соседние секции. Грязь повышает уровень шума, прочие негативные эффекты.
Все хорошо в меру. Коллекторные двигатели позволят получить заданную мощность (крутящий момент), на старте, после разгона. Сравнительно просто регулировать обороты. Названа причина увлечения бытовой техники коллекторными разновидностями, асинхронные двигатели выступают сердцем оборудования, обладающего повышенными требованиями к уровню звукового давления. Вентиляторы, вытяжки. Серьезные нагрузки потребуют внесения серьезных конструктивных изменений. Повышаются стоимость, размеры, сложность, делая невыгодным изготовление.
Четырехразрядные модификации своими руками
Сделать четырехразрядный бесколлекторный двигатель своими руками можно абсолютно просто. Для этого необходимо в первую очередь заготовить пластину с пазами. Толщина металла в данном случае должна составлять примерно 2.3 мм. Пазы в этой ситуации обязаны находиться на расстоянии в 1.2 см. Если рассматривать простую модель, то катушку следует подбирать диаметром в 3.3 см. При этом пороговое напряжение она обязана выдерживать на уровне 20 В.
Колодки для устройства чаще всего подбираются стальные. В данном случае многое зависит от размеров роторной пластины. Непосредственно статор надо использовать с двойной обмоткой
При этом сердечник важно заготавливать стального типа. Если рассматривать модификации без регуляторов, то закончить сборку бесколлекторного двигателя можно установкой изолирующего затвора
При этом контакты устройства необходимо вывести на внешнюю сторону пластины. Для обычного вентилятора такие бесколлекторные модели подойдут идеально.
Принцип работы бесколлекторного мотора
Здесь все наоборот, у моторов бесколлекторного типа отсутствуют как щетки так и коллектор. Магниты в них располагаются строго вокруг вала и выполняют функцию ротора. Обмотки, которые имеют уже несколько магнитных полюсов, размещаются вокруг него. На роторе бесколлектоных моторов устанавливается так называемый сенсор (датчик) который будет контролировать его положение и передавать эту информацию процессору который работает в купе с регулятором скорости вращения (обмен данными о положении ротора происходит более 100 раз в секунду). На выходе мы получаем более плавную работу самого мотора с максимальной отдачей.
Бесколлекторные моторы могут быть с датчиком (сенсором) и без него. Отсутствие датчика незначительно снижает эффективность работы мотора, поэтому их отсутствие вряд ли расстроит новичка, но зато, приятно удивит ценник. Отличить друг от друга их просто. У моторов с датчиком, помимо 3-х толстых проводов питания есть еще дополнительный шлейф из тонких, которые идут к регулятору скорости. Не стоит гнаться за моторами с датчиком как новичку так и любителю, т.к их потенциал оценит только профи, а остальные просто переплатят, причем значительно.
Характеристики[править]
Следующая характеристика, на которую нужно обращать внимание при выборе двигателя, это номинальное напряжение на которое он рассчитан. Например, в классе двигателей «Speed 400» имеются моторы с рабочим напряжением 4,8 вольта, 6 вольт, и 7,2 вольта. Эти цифры указывают, с каким количеством аккумуляторов (банок) в батарее предназначен работать этот двигатель
Напряжение на одном NiCd (никель-кадмиевом) или NiMH (никель-металгидридном) аккумуляторе составляет 1,2 вольта. Не трудно подсчитать, что мотор с рабочим напряжением 4,8 вольт предназначен для работы от 4-х баночной аккумуляторной батареи. Однако, эти цифры не более чем ориентировочные, моторы способны прекрасно работать и при повышенных напряжениях. Обычно, для увеличения мощности, моделисты используют в батарее на 1-2 банки больше, чем рекомендовано. Таким образом, без увеличения размера и веса двигателя, в режиме «перекала», из него удается выжать дополнительную мощность, которая в моделизме «лишней» никогда не бывает.
Эти цифры указывают, с каким количеством аккумуляторов (банок) в батарее предназначен работать этот двигатель. Напряжение на одном NiCd (никель-кадмиевом) или NiMH (никель-металгидридном) аккумуляторе составляет 1,2 вольта. Не трудно подсчитать, что мотор с рабочим напряжением 4,8 вольт предназначен для работы от 4-х баночной аккумуляторной батареи. Однако, эти цифры не более чем ориентировочные, моторы способны прекрасно работать и при повышенных напряжениях. Обычно, для увеличения мощности, моделисты используют в батарее на 1-2 банки больше, чем рекомендовано. Таким образом, без увеличения размера и веса двигателя, в режиме «перекала», из него удается выжать дополнительную мощность, которая в моделизме «лишней» никогда не бывает.
Чаще всего, недорогие электродвигатели не имеют подшипников, вместо них стоят бронзовые втулки. Если главным фактором в выборе мотора является цена — то это вполне приемлемое решение. В том случае, если на первый план выходит КПД, имеет смысл выбрать двигатель с шарикоподшипниками. Такие моторы маркируются буквами BB — (Ball Bearing).
Еще один резерв мощности — в усилении магнитного потока от собственных постоянных магнитов двигателя. Для усиления этого потока, вокруг корпуса двигателя делается дополнительный магнитовод в виде широкого металлического кольца. Такие двигатели маркируются как «Turbo» или «Race». Особо стоит отметить двигатели 480-го класса. Это двигатели имеют размеры сопоставимые с размерами моторов 400-го класса, но при этом имеют значительно повышенную мощность. Это своего рода форсированные 400-е моторы. Их ставят там, где мощность является критическим фактором при ограниченных размерах. Щёточный узел у этих моторов сделан открытым, что улучшает охлаждение, и делает возможной замену щеток.
В процессе работы коллекторных двигателей происходит постепенный износ графитовых щеток и металла коллектора, по которым щетки скользят. Периодически щетки нужно менять, а двигатель прочищать от графитовой и металлической пыли. При продолжительной интенсивной работе следует также протачивать коллектор, для компенсации его неравномерного износа. После замены щеток и ухода за коллектором, двигатель желательно обкатать при пониженной нагрузке для того чтобы щетки правильно «притерлись» к коллектору. Это же касается и новых моторов. Одним из методов обкатки является непродолжительная работа двигателя в ёмкости с дистилированной водой.
Коллекторные двигатели производства других фирм являются либо аналогами серии «Speed», либо «тюнинговые» варианты двигателей специально предназначенные для тех или иных видов моделей (для автомоделей или для вертолетов).
Как правило, улучшение характеристик моторов достигается за счет применения мощных редкоземельных магнитов, обязательным использованием подшипников, прецизионным изготовлением коллекторного узла. Но даже с применением всех перечисленных технологических уловок, коллекторные двигатели уступают по всем параметрам бесколлекторным моторам.
Трехфазные бесколлекторные электродвигатели
Очень много бесколлекторных электродвигателей для авиамоделей выполняется под питание постоянным током. Но существуют и трехфазные экземпляры, в которых устанавливаются преобразователи. Они позволяют из постоянного напряжения сделать трехфазные импульсы.
Работа происходит следующим образом:
- На катушку “А” поступают импульсы с положительным значением. На катушку “В” – с отрицательным значением. В результате этого якорь начнет двигаться. Датчики фиксируют смещение и подаётся сигнал на контроллер для осуществления следующей коммутации.
- Происходит отключение катушки “А”, при этом импульс положительного значения поступает на обмотку “С”. Коммутация обмотки “В” не претерпевает изменений.
- На катушку “С” попадается положительный импульс, а отрицательный поступает на “А”.
- Затем вступает в работу пара “А” и “В”. На них и подаются положительные отрицательные значения импульсов соответственно.
- Затем положительный импульс опять поступает на катушку “В”, а отрицательный на “С”.
- На последнем этапе происходит включение катушки “А”, на которую поступает положительный импульс, и отрицательный идет к С.
И после этого происходит повтор всего цикла.
Различение типов однофазных двигателей на практике
Научимся, как отличить бифилярный двигатель от конденсаторного. Следует сказать, разница чисто номинальная. Схема подключения однофазного двигателя схожа. Бифилярная обмотка не предназначена работать постоянно. Будет мешать, снижать КПД. Поэтому обрывается после набора оборотов пускозащитным реле (присуще бытовым холодильникам), либо центробежными выключателями. Считается, пусковая обмотка работает несколько секунд. По общепринятым нормам, обеспечит запуск 30 раз в час длительностью 3 секунды каждый. Дальше витки могут перегреться (сгореть). Причина, ограничивающая нахождение пусковой обмотки под напряжением.
Разница номинальная, но профессионалы отмечают любопытную особенность, по которой судят, находится перед нами бифилярный, либо конденсаторный двигатель. Сопротивление вспомогательной обмотки. Отличается номиналом от рабочей более чем в 2 раза, скорее всего, двигатель бифилярный. Соответственно, обмотка пусковая. Конденсаторный двигатель работает, пользуясь услугами двух катушек. Обе постоянно находятся под напряжением.
Однофазный асинхронный двигатель
Тест нужно проводить осторожно, при отсутствии термопредохранителей, других средств защиты пусковая обмотка может сгореть. Придется вал раскручивать вручную, явно нелегкая задачка
Иногда целесообразно подключение однофазного асинхронного двигателя к однофазной сети выполнить, используя аналогичную схему, как сделано в предшествующем оборудовании. Рядовой холодильник снабжен пускозащитным реле, отдельная тема разговора. Параметры устройства тесно связаны с типом используемого двигателя, взаимная замена возможна далеко не в каждом случае (нарушение простого правила может вызвать поломку).
Упомянем дважды: выводов обмоток может быть три-четыре. Число неинформативно. Допустима пара контактов термопредохранителя. Плюс описанное выше, включая центробежный выключатель. В случае при прозвонке сопротивление либо мало, либо наоборот – фиксируем разрыв. Кстати, не забудьте при определении сопротивления каждый конец катушки пробовать на корпус. Изоляция стандартно не ниже 20 МОм. В противном случае стоит задуматься о наличии пробоя. Также допускаем, что трехфазный двигатель, имеющий внутреннюю коммутацию обмоток по типу звезды, может иметь выход нейтрали на корпус. В этом случае двигатель требует непременного заземления, под которую предусматривается клемма (но более вероятно, что мотор просто вышел из строя из-за пробоя изоляции).
Бесколлекторный мотор
Теперь можно поговорить о том, чем же коллекторный двигатель в действительности отличается от рассматриваемого бесколлекторного аналога.
Внешний вид двигателя бесколлекторного типа
Очевидная разница просматривается при изучении принципа работы бесколлекторного двигателя (БКД). Хотя часто бесколлекторный и коллекторный двигатель сопоставляют друг с другом, воспринимая их как конкурентов, по сути это два разных мотора. Потому и отличия между ними обязательно присутствуют.
Фактически БКД работает наоборот.
- В конструкции не предусмотрено наличие щёток и самого коллектора, что становится очевидным уже исходя из самого названия;
- Если говорить о магнитах, то в случае с бесколлекторником они размещаются обязательно вокруг вала. При этом магниты выполняют роль или функции ротора;
- Обмотки с несколькими магнитными полюсами располагаются вокруг установленного ротора;
- На роторе присутствует датчик. Он же сенсор. Его задача заключается в контроле положения ротора и передаче полученной информации на процессор;
- Этот процессор работает параллельно с регулятором скорости, который отвечает за скорости вращения. Суммарно за 1 секунду обмен информацией происходит около 100 раз минимум.
Подобное устройство и принцип работы позволяет получить более плавный режим работы двигателя при его максимальной отдаче.
В случае с бесколлекторными электродвигателями они могут оснащаться датчиками или сенсорами, а также эксплуатироваться без них. Если датчика нет, это в определённой, но незначительной степени снизит эффективность работы всего электродвигателя.
Распознать БКД с сенсором и без него достаточно просто. Если у обычного двигателя присутствует 3 провода питания, то в моделях с датчиком дополнительно имеется шлейф, состоящий из тонких проводов. Он идёт от самого моторчика к регулятору скорости.
Преимущества и недостатки
Главный и неоспоримый плюс бесщёточных электромоторов заключается в практически полном отсутствии деталей, способных изнашиваться. Говорить о полном их отсутствии нельзя, поскольку роторный вал устанавливается на подшипники. Именно они всё же могут с течением времени износиться. Хотя даже у подшипников ресурс огромный. Плюс всегда можно быстро и без особого труда заменить подшипник в случае его износа.
Бесколлекторный бесщеточный электродвигатель в разборке
Такие особенности конструкции породили преимущества в виде надёжности, высокой эффективности и длительного срока службы. За счёт наличия датчика положения ротора улучшается его производительность и точность в процессе работы.
Вспомните недостаток коллекторных аналогов, где щётки искрятся и быстро изнашиваются, параллельно провоцируя помехи в процессе работы узла, механизма или машины, в которой установлен КД. В случае с бесколлекторными или бесщёточными моторами от такой проблемы удалось избавиться. Никаких искрений здесь не наблюдается.
Бесколлекторники не трутся, не перегреваются, что также справедливо относится к весомым достоинствам механизма. Дополнительное обслуживание в процессе даже очень активной эксплуатации тут не требуется.
Если же говорить про недостатки, то из существенного и всё равно условного можно выделить только один минус. Это более высокая стоимость. Минус условный по причине того, что при своей цене исключается необходимость в замене пружин, якоря, коллектора или щёток. Потому стоимость целиком и полностью себя оправдывает.
Далее уже можно сделать собственные субъективные выводы, отталкиваясь от приведённой выше информации.
Плюсы бесколлекторных моторов
Почти нет изнашиваемых деталей. Почему «почти», потому что вал ротора устанавливается на подшипники, которые в свою очередь имеют свойство изнашиваться, но ресурс у них крайне велик, да и взаимозаменяемость их очень проста. Такие моторы очень надежны и эффективны. Устанавливается датчик контроля положения ротора. На коллекторных моторах работа щеток всегда сопровождается искрением, что впоследствии вызывает помехи в работе радиоаппаратуры. Так вот у бесколлектоных, как вы уже поняли, эти проблемы исключены. Нет трения, нет перегрева, что так же является существенным преимуществом. По сравнению с коллекторными моторами не требуют дополнительного обслуживания в процессе эксплуатации.
Выбор типа электродвигателя для механизма
Нижний порог для выбора между компонентами любого типа — это тип приложения и ограничение затрат для конечного продукта. Например, игрушечный робот, ориентированный на детей от шести до восьми лет, может потребовать от четырех до девяти электродвигателей. Они могут быть коллекторными или бесколлекторными машинами постоянного тока или их компоновкой.
Если данный робот выполняет только основные движения или входит в игрушечный набор, нет необходимости применять бесколлекторные BLDC машины, которые стоят дороже, чем их коллекторные аналоги. Игрушка или набор, вероятно, попадут в мусорный ящик задолго до того, как щетки электрической машины выйдут из строя.
Типичные электроприводы с электродвигателем постоянного тока включают моторизованные игрушки, приборы и компьютерную периферию. Автопроизводители «привлекают» их к электроприводам окон, сидений и другим конструкциям в салоне из-за их низкой стоимости и простого исполнения.
Бесколлекторные электродвигатели более универсальны, главным образом из-за их «сообразительности» в отношении скорости и крутящего момента. Они также поставляются в компактных корпусах, что делает их «жизнеспособными» для различных небольших конструкций. Типичные приложения включают компьютерные жесткие диски, механические мультимедийные проигрыватели, вентиляторы с электронным управлением, беспроводные электроинструменты, HVAC и холодильные установки, промышленные и производственные системы и CD приводы.
Автомобильная промышленность применяет бесколлекторные BLDC машины для электрических и гибридных автомобилей. Эти электродвигатели представляют собой, по существу, синхронные машины с постоянными магнитами в роторе. Другие уникальные применения включают электрические велосипеды, где двигатели устанавливаются в колеса или колпаки, промышленное позиционирование и управление, монтажные роботы и линейные приводы для управления клапаном.