Виды и особенности применения
Переменных резисторов существует немалое количество, с их помощью регулируют звук, громкость, подстраивают частоту, регулируют яркость света. В общем, практически везде, где происходят изменения настроек при помощи бегунков или вращением рукояток стоят эти элементы. Но для разных задач нужны резисторы с различным характером изменений или с разным числом выводов. Вот о разных видах регулируемых сопротивлений и поговорим.
Переменные резисторы бывают разных видов
Характер изменения сопротивления
Не стоит думать, что при перемещении подвижного контакта сопротивление изменяется линейно. Такие модели есть, но они используются в основном для регулировки или настройки, в делителях частоты. Гораздо чаще требуется нелинейная зависимость. Переменные резисторы с нелинейной характеристикой бывают двух типов:
- сопротивление изменяется по логарифмическому закону;
-
по показательному типу (обратному логарифмическому).
В акустике используют нелинейные элементы с сопротивлением, которое имеет потенциальную зависимость, в измерительной аппаратуре — по логарифмическому.
Сдвоенные, тройные, счетверенные
В плеерах, радиоприемниках и некоторых других видах бытовой аппаратуры часто применяются сдвоенные (двойные) переменные резисторы. В корпусе элемента скрыты две резистивные пластины. Внешне от обычных они отличаются наличием двух рядов выводов. Бывают двух типов:
- С одновременным изменением параметров. Обычно применяются в стереоаппаратуре для одновременного изменения параметров двух каналов. Такие резисторы имеют запараллеленные бегунки. Поворачивая или сдвигая рукоятку, меняем сопротивление сразу двух резисторов.
-
С раздельным изменением параметров. Называются еще соосными, так как ось одного находится внутри оси другого. Если надо одной ручкой изменять различные параметры (громкость и баланс) подойдет этот тип резисторов. Механическая связь бегунков отсутствует, что позволяет менять сопротивление независимо друг от друга.
Обозначаются разные типы сдвоенных переменных резисторов на схемах по-разному. С наличием механической связи бегунков при близком расположении изображений резисторов на схеме, ставят связанные между собой стрелочки (на рисунке выше слева). Принадлежность к одному резистору указывается через нумерацию: две части обозначаются как R1.1 и R 1.2. Если обозначение частей спаренного переменного резистора находятся на схеме далеко друг от друга, связь указывается при помощи пунктирных линий (на рисунке выше справа). Буквенное обозначение такое же.
Так выглядят сдвоенные и тройные переменные сопротивления
Двойной регулируемый резистор без физической связи между бегунками на схемах ничем не отличается от обычного регулируемого. Отличают их по буквенному обозначению с двумя цифрами, разделенными точкой через — как у спаренного — R15.1 и R15.2.
Частный случай сдвоенного переменного резистора — строенный, счетверенный и т.д. Они встречаются не так часто, все больше в акустической аппаратуре.
Дискретный переменный резистор
Чаще всего, изменение сопротивления при повороте ручки или передвижении ползунка происходит плавно. Но для некоторых параметров необходимо ступенчатое изменение параметров. Такие переменные сопротивления называют дискретными. Используют их для ступенчатого изменения частоты, громкости, некоторых других параметров.
Дискретный переменный резистор (со ступенчатой регулировкой) и его обозначение на схеме
Устройство этого типа резисторов отличается. По сути, внутри находится набор из постоянных резисторов, подключенных к каждому из выходов. При переключении подвижный контакт перескакивает с выхода на выход, подключая к цепи нужный в данный момент резистор. Принцип действия можно сравнить с многопозиционным переключателем.
С выключателем
Такие резисторы мы встречаем часто — в радио и других устройствах. Это с их помощью поворотом ручки включается питание, а затем регулируется громкость. Внешне их отличить невозможно, только по описанию.
Переменный резистор с выключателем в одном корпусе: внешний вид и обозначение на схемах
На схемах переменные резисторы с выключателем отображаются рядом с контактной группой, то что это единое устройство, отображается при помощи пунктирной линии, которая соединяет контактную группу с корпусом переменного резистора. С одной стороны — возле изображения сопротивления — пунктир заканчивается точкой. Она показывает, возле какого из выводов происходит разрыв цепи. При повороте руки регулятора в эту сторону питание отключается.
Чем отличается резистор от реостата, транзистора
Реостат является электрическим аппаратом. Который способен регулировать ток и напряжение в электрической цепи. В общем это аналог переменного резистора. Он включает проводящий элемент и регулятор сопротивления. Влиять на изменение показателя можно плавно, а при желании это можно сделать ступенчато. В стандартизации реостатом называют резисторы переменные, регулировочные и подстроечные.
Транзистор является прибором для управления электрическим током. По сути он усиливает ток и может им управлять, а проводник регулирует сопротивление в сети. Внешне два элемента значительно отличаются друг от друга. Резистор имеет цилиндрическую форму и цветную окраску, а транзистор облачен в пластиковый или металлический квадратный корпус.
Выводы: проводники имеют одинаковую функциональность, а у транзистора разную. Также транзистор – это полярный элемент, а резистор – неполярный. По этой причине перепутать два элемента можно только в том случае, если человек совершенно далек от электротехники и радиоэлектроники.
Резистор необходимый элемент во всех микросхемах современных электроприборах. Оказывая сопротивление в цепи, полупроводник делит или уменьшает напряжение, благодаря чему, различные приборы могут работать от сети. Сопротивление тока измеряется в Омах, а грамотный подбор полупроводника обеспечит продолжительную работу любого электроприбора. Так мы выяснили, что такое резистор и для чего он нужен, чем отличается от реостата и транзистора и как обозначается на схемах.
Сопротивление, проводимость и закон Ома
Электрическое сопротивление – физическая величина, характеризующая способность проводника препятствовать прохождению по нему электрического тока.
Сопротивление часто обозначается через R или r и в Международной системе единиц (СИ) измеряется в Омах.
В зависимости от среды проводника и носителей зарядов, физическая природа сопротивления может отличаться. Так, например, в металле движущиеся под действием поля электроны рассеиваются на неоднородностях ионной решетки, теряют свой импульс, и энергия их движения преобразуется во внутреннюю энергию кристаллической решетки (то есть становится меньше).
Сопротивление проводника при прочих равных условиях зависит от его геометрии и от удельного электрического сопротивления материала, из которого он выполнен.
Сопротивление однородного проводника постоянного сечения зависит от свойств вещества проводника, его длины, сечения и определяется согласно зависимости
где ρ – удельное сопротивление вещества проводника, Ом·м, l — длина проводника, м, а S — площадь сечения, мм².
Удельное сопротивление ρ – скалярная физическая величина, численно равная сопротивлению однородного цилиндрического проводника единичной длины и единичной площади сечения (рисунок 1). При расчетах это значение выбирается из таблицы.
Рис. 1. Удельное сопротивление проводника, ρ
Сопротивление проводника R зависит от внешнего фактора – температуры T, но для разных групп веществ эта зависимость имеет различные зависимости. Так, при снижении температуры металлов их сопротивление снижается (то есть способность проводить ток увеличивается). Если температура металла достигает низких значений, он переходит в состояние так называемой свехрпроводимости и его сопротивление R стремится к 0. Поведение полупроводников под воздействием температур обратное – при снижении температуры T сопротивление R растет, а при его росте наоборот падает (рисунок 2).
Рис. 2. Зависимость сопротивления R от температуры T для металлов и полупроводников
Закон Ома
В 1826 году немецкий физик Георг Ом открыл важный в электронике закон, названный впоследствии его фамилией. Закон Ома определяет количественную зависимость между электрическим током и свойствами проводника, характеризующими его способность противостоять электрическому току.
Существует несколько интерпретаций закона Ома.
Закон Ома для участка цепи (рисунок 3) определяет величину электрического тока I в проводнике как отношение напряжения на концах проводника U и его сопротивления R
Рис. 3. Закон Ома для участка цепи
Интерпретировать закон Ома для участка цепи можно следующим образом: если к концам проводника сопротивлением R = 1 Ом приложено напряжение U = 1 В, тогда величина тока I в проводнике будет равна 1 А
На представленном выше простом примере разберем физическую интерпретацию закона Ома, используя аналогию электрического тока и воды. В качестве аналога проводника электрического тока возьмем воронку, сужение в которой возникает из-за наличие в проводнике сопротивления R (рисунок 4). Пусть в воронку из некоторого источника поступает вода, которая просачивается через узкое горлышко. Усилить поток воды на выходе горлышка воронки можно за счет давления на воду, например, силой поршня. В аналогии с электричеством, поршень будет являться аналогом напряжения – чем сильнее на воду давит поршень (то есть чем больше значение напряжения), тем сильнее будет поток воды на выходе из воронки (тем больше будет значение силы тока).
Рис. 4. Интерпретация закона Ома для участка цепи с использованием водной аналогии
Закон Ома может быть применен не всегда, а лишь в ограниченном числе случаев. Так закон Ома «не работает» при расчете напряжения и тока в полупроводниковых или электровакуумных приборов, содержащих нелинейные элементы. В этом случае зависимость тока и напряжения можно определить только с помощью построение так называемой вольтамперной характеристики (ВАХ). К категории нелинейных элементов относятся все без исключения полупроводниковые приборы (диоды, транзисторы, стабилитроны, тиристоры, варикапы и т.д.), а также электронные лампы.
Разновидности резисторов
Резисторы классифицируют по нескольким признакам.
Для дискретных элементов деление происходит по месту установки:
- вводные. На монтажной плате их монтируют сквозь нее. Контакты таких узлов располагаются по аксиальному или радиальному принципу. На языке инженеров-электронщиков их называют ножками. Этот тип резисторов применяют уже очень давно. Их можно найти как на старом оборудовании, так и на современном. Они заменяют SMD-элементы, если их применение затруднено или абсолютно невозможно.
- SMD. Представляют из себя компоненты электрической цепи без ножек. Выводы находятся на корпусе. Хотя назвать их таковым очень сложно, так как выступают они на поверхность незначительно. К преимуществам таких компонентов относят дешевизну, простоту сборки и экономию места на схеме.
Маркировка SMD резисторов ничем не отличается от вводных элементов. Она также определяется по полоскам и по цвету.
Виды кодирования параметров с использованием цветных колец
Номинальная мощность резисторов может варьироваться от менее одной десятой ватта до многих сотен ватт в зависимости от его размера, конструкции и рабочей температуры окружающей среды. Максимальная резистивная мощность большинства резисторов дана для температуры окружающей среды +70 o C или ниже.
Электрическая мощность – это скорость, с которой энергия используется или потребляется (преобразуется в тепло). Стандартной единицей электрической мощности является ватт , символ W, а номинальная мощность резисторов также указывается в ваттах. Как и в случае других электрических величин, к слову «Ватт» добавляются префиксы при выражении очень больших или очень малых величин мощности резистора. Некоторые из наиболее распространенных из них:
Единицы электропитания
Единица измерения | Символ | Ценность | Сокращение |
милливатт | мВт | 1/1000 Вт | 10 -3 Вт |
киловатт | кВт | 1000 Вт | 10 3 Вт |
мегаватт | МВт | 1 000 000 Вт | 10 6 Вт |
Мощность резистора (P)
Из закона Ома мы знаем, что когда ток протекает через сопротивление, на него падает напряжение, создавая продукт, связанный с мощностью. Обычно за стандарт для сравнения берут Е24 резисторы, резистор R1 используется куда реже.
Другими словами, если сопротивление подвергается воздействию напряжения или оно проводит ток, то оно всегда будет потреблять электроэнергию, и мы можем наложить эти три величины мощности, напряжения и тока в треугольник, называемый силовым треугольником, с мощностью , который будет рассеиваться в виде тепла в резисторе сверху, с потребляемым током и напряжением на нем внизу, как показано. Ряд сопротивлений резисторов рассмотрим ниже.
Стандартное обозначение резисторов. Маркировка резисторов по мощности.
Ряд резисторов Е24 маркируется так:
Цифро-буквенная маркировка
Стандартная таблица маркировки:
Маркировка помогает использовать треугольник мощности, который отлично подходит для расчета мощности, рассеиваемой в резисторе, если мы знаем значения напряжения на нем и тока, протекающего через него. Но мы также можем рассчитать мощность, рассеиваемую сопротивлением, используя закон Ома. Ряды резисторов невозможно было бы установить без таких рассчетов.
Закон Ома позволяет нам рассчитать рассеиваемую мощность с учетом значения сопротивления резистора. Используя закон Ома, можно получить два альтернативных варианта приведенного выше выражения для мощности резистора, если нам известны значения только двух, напряжения, тока или сопротивления, следующим образом:
Мощность = Вольт х Ампер
Мощность = ток 2 x Ом
Мощность = Вольт 2 ÷ Ом
Рассеивание электрической мощности любого резистора в цепи постоянного тока может быть рассчитано с использованием одной из следующих трех стандартных формул:
где:
- V – напряжение на резисторе в вольтах
- Я в ток, протекающий через резистор в амперах
- R – сопротивление резистора в омах (Ом)
Поскольку номинальная мощность рассеиваемого резистора связана с его физическим размером, резистор 1/4 (0,250) Вт физически меньше, чем резистор 1 Вт, и резисторы с одинаковым омическим значением также доступны в различных номиналах мощности. Углеродные резисторы, например, обычно изготавливаются с номинальной мощностью 1/8 (0,125) Вт, 1/4 (0,250) Вт, 1/2 (0,5) Вт, 1 Вт и 2 Вт.
Вообще говоря, чем больше их физический размер, тем выше его номинальная мощность. Однако всегда лучше выбрать резистор определенного размера, который способен рассеивать в два или более раз больше расчетной мощности. Когда требуются резисторы с более высокой номинальной мощностью, резисторы с проволочной обмоткой обычно используются для отвода избыточного тепла.
Номиналы резисторов. Таблица:
Тип | Оценка мощности | Стабильность |
Металлическая пленка | Очень низкий, менее 3 Вт | Высокий 1% |
углерод | Низкая, менее 5 Вт | Низкий 20% |
Проволочный | Высокая до 500 Вт | Высокий 1% |
Делитель напряжения
Чаще всего резистор применяется как ограничивающий элемент тока или напряжения. Кроме этого, используя последовательное соединение двух резисторов, можно сделать простейший делитель напряжения. Точка соединения их контактов между собой называется общей, а противоположные контакты — плечами.
При таком включении напряжение, измеренное по отношению к общей точке и контакту плеча, будет отличаться от выдаваемого источником питания. Связано это с тем, что падение напряжения на каждом резисторе, в соответствии с законом Ома, пропорционально сопротивлению. Такой делитель у начинающего радиолюбителя нужен для использования в электрическом фильтре. Но этим его применение не ограничивается.
Делитель имеет большое значение и используется практически в 90% сложных схем. Он применяется в качестве параметрического стабилизатора напряжения, в цепях усилительных каскадов и даже как элемент памяти в аналого-вычислительных машинах.
Таким образом, резистор — важный пассивный элемент электрической цепи. Основной его параметр — сопротивление. Предназначен резистор для ограничения тока или уменьшения напряжения на определённом участке. При этом он также может использоваться в качестве датчика, следящего за изменением интенсивности света, давления, температуры или электромагнитного поля.
Как выбрать подходящий резистор
Итак, пришло время наиболее важной части нашей статьи. Давайте узнаем, как определить, какой именно резистор нам нужен для вашего первого проекта печатной платы
Мы разобьем эту задачу на следующие три шага:
-
Расчет требуемого сопротивления;
-
Расчет номинальной мощности;
-
И, наконец, выбор резистора исходя из двух значений найденных ранее.
Шаг 1 – Расчет требуемого сопротивления
Именно здесь для расчета требуемого сопротивления нам понадобится закон Ома. Вы можете воспользоваться одной из стандартных формул ниже, если значения напряжения и силы тока известны.
Шаг 2 – Расчет номинальной мощности
Теперь необходимо выяснить, какое количество энергии должен будет рассеивать резистор. Эту величину можно рассчитать по следующей формуле:
В данной формуле P – мощность рассеивания в Ваттах, V – падение напряжения на резисторе в Вольтах, а R – сопротивление резистора в Омах. Ниже мы привели краткий пример использования данной формулы для расчета в конкретной цепи.
Простая цепь для демонстрации расчета номинальной мощности
Цепь выше содержит светодиод, падение напряжения на котором составляет 2 В, резистор с сопротивлением 350 Ом и источник питания 9 В. Какая мощность будет рассеиваться на искомом резисторе? Давайте посмотрим. Сначала нам необходимо найти падение напряжения на резисторе. Поскольку источник питания дает 9 В, а на светодиоде падает 2 В, то получим:
9 В – 2 В = 7 В
Эти значения можно подставить в формулу:
P = 7 В * 7 В / 350 Ом = 0,14 Ватта
Шаг 3 – Выбор резистора
Теперь, когда у нас есть величины сопротивления и мощности, пора подобрать подходящий радиоэлемент у поставщика радиодеталей. Мы всегда рекомендуем выбирать из стандартных резисторов, которые поставляются в продажу каждым продавцом. Выбирая стандартные резисторы, вы значительно упростите себе жизнь, когда дело дойдет до производства устройства. В США тремя ведущими поставщиками радиоэлементов, качество которых не вызывает сомнений – это Digikey, Mouser и Farnell/Newark.
Чем полезны резисторы?
Для практической иллюстрации полезности резисторов посмотрите фотографию ниже. Это изображение печатной платы: сборка, состоящая из изолирующих слоев стеклотекстолита и слоем проводящих медных дорожек, в которую можно вставлять компоненты и закреплять их с помощью процесса низкотемпературной сварки, называемого «пайкой». Различные компоненты на этой печатной плате обозначены напечатанными метками. Резисторы обозначаются любой меткой, начинающейся с буквы «R».
Рисунок 6 – Пример резисторов на печатной плате
Эта конкретная печатная плата представляет собой дополнение к компьютеру, называемое «модемом», которое позволяет передавать цифровую информацию по телефонным линиям. На плате этого модема можно увидеть, как минимум, дюжину резисторов (все с номинальной рассеиваемой мощностью 0,25 Вт). Каждый из черных прямоугольников (называемых «интегральными схемами» или «микросхемами», или «чипами») также содержит свой собственный массив резисторов, необходимый для работы. На другом примере печатной платы показаны резисторы, упакованные в еще меньшие корпуса, называемые SMD («surface mount device», «устройство поверхностного монтажа»). Эта конкретная печатная плата является нижней стороной жесткого диска компьютера; и снова припаянные к ней резисторы обозначены метками, начинающимися с буквы «R»:
Рисунок 7 – Пример резисторов на печатной плате
На этой печатной плате более сотни резисторов поверхностного монтажа, и это количество, конечно, не включает резисторы, встроенные в черные «чипы». Эти две фотографии должны убедить любого, что резисторы (устройства, которые «просто» препятствуют прохождению электрического тока) – очень важные компоненты в области электроники!
Использование в электрической схеме
Яркость лампочки зависит от тока, протекающего по нити накаливания — чем больше ток, тем ярче горит лампочка. По закону Ома ток можно высчитать разделив напряжение на сопротивление, значит, чем меньше сопротивление, тем больше ток. На практике работать это будет следующим образом.
Допустим, лампочка рассчитана на напряжение в 9 В, имеет сопротивление 70 Ом (в рабочем, горячем состоянии), батарея на 9 в и переменное сопротивление 100 Ом. Для нормальной работы ток, проходящий через лампочку, должен быть примерно 0,13 А (напряжение батареи 9 В делится на сопротивление лампочки 70 Ом). В эту цепь последовательно подсоединяется переменный резистор в 100 Ом, ток цепи составит примерно 0,05 А (напряжение батареи 9 В делится на общее сопротивление 170 Ом), — это примерно треть от требуемого тока и лампочка, следовательно, не будет гореть.
В этом случае резистор помогает плавно гасить свет. Подобный принцип используется, например, в кинотеатрах. Если батарея на 9 В, а лампочка рассчитана на 2,5 В, то для ее нормальной работы необходим делитель или гаситель напряжения. В чем суть? В цепи необходимо создать нормальный для лампочки ток.
Если используется гаситель, то к источнику тока последовательно подключаются 2 или более резистора и лампочка. Общее сопротивление выбирается с таким расчетом, чтобы ток, протекающий по цепи, соответствовал номинальному току лампочки. Допустим, имеются: источник постоянного тока 9 В, лампочка напряжением 2,5 В и номинальным током 0,12 А.
Рассчитывается сопротивление лампочки, для этого напряжение делится на ток и получается примерно 20,8 Ом. Чтобы по цепи шел ток в 0,12 А, рассчитывается общее сопротивление: 9 В делённое на 0,12 А дает 75 Ом. Вычитается сопротивление лампочки и получится 54,2 Ом — такое сопротивление необходимо добавить к лампочке.
Если используется делитель, то тогда берутся два и более резистора и подключаются последовательно источнику питания. Параллельно какой-то части делителя подключается нагрузка, получается схема со смешанным подключением: источник — часть делителя — параллельно подключенные часть делителя и нагрузка — источник тока. Это только один вариант, на самом деле схем подключения множество, но всегда идет смешанное подключение.
Далее делается расчет нужного сопротивления. При параллельном подключении ток идет по двум цепям, значит, на нагрузке его будет меньше (подключенный последовательно резистор ограничивает ток). Для нормальной работы нагрузки высчитываются все токи, проходящие по делителю, а затем подбирается ограничивающий.
Как устроен реостат
Реостат это управляемое переменное сопротивление, которое может изменять параметры тока в электрической цепи.
В результате большого количества экспериментов и научно-технических исследований появились различные модели реостатов, такие как:
- проволочный;
- ползунковый;
- жидкостный;
- ламповый.
Проволочный
Это простейший реостат. Он состоял из проволоки с высоким удельным сопротивлением, натянутой на раму. Она проходила сразу через несколько разъёмов. Включая тот или иной контакт, добивались изменения длины проводника. Тем самым получали нужную величину сопротивления, следовательно, изменялись параметры силы тока и напряжения в электрической цепи. Недостатком такого устройства являлась ограниченность длины проводника, соответственно, диапазона изменений характеристик тока.
Ползунковый
Ползунковый прибор – это классика строения реостата. РС представляет собой удлинённую катушку, которая выглядит как цилиндр из диэлектрического материала с намотанным на него проводом, покрытого окалиной. По штанге поступательно передвигается ползунок, который касается контактами спирали катушки. Прибор подключают к электрической цепи в двух точках: это контакт ползунка и один из концов катушки.
Жидкостный
Аппарат представляет собой ёмкость, заполненную электролитом, в которую погружены два электрода в виде металлических пластин. Сопротивление тока, протекающего через электролит, напрямую зависит от промежутка между электродами и обратно пропорционально площади поверхности электродов.
Ламповый
Сопротивление в цепи регулируется количеством включённых параллельно ламп накаливания. Это не очень удачное решение. Регулировка параметров тока дорого обходится за счёт большой траты электроэнергии, потребляемой лампами накаливания.
Важно! Все вышеперечисленные устройства давно канули в прошлое, кроме ползункового реостата. Это были пионеры в сфере регулировки параметров электрического тока. На смену им пришли экономичные и компактные переменные резисторы
Несмотря на это, принцип работы устройств остался прежним
На смену им пришли экономичные и компактные переменные резисторы. Несмотря на это, принцип работы устройств остался прежним.
Резюме
- Устройства, называемые резисторами, предназначены для обеспечения точного значения сопротивления в электрических цепях. Резисторы оцениваются как по их сопротивлению (Ом), так и по их способности рассеивать тепловую энергию (Вт).
- Номинальное сопротивление резистора не может быть определено по его физическому размеру, хотя судя по размеру можно сказать о приблизительном значении номинальной мощности. Чем больше резистор, тем большую мощность он может рассеять без повреждений.
- Любое устройство, которое выполняет с помощью электроэнергии какую-либо полезную задачу, обычно называют нагрузкой. Иногда символ резисторов используется в схемах для обозначения неконкретизированной нагрузки, а не для реального резистора.
Оригинал статьи:
Resistors