Типы диодов
Основное разделение диодов происходит по их виду. Различают три категории: материал изготовления, площадь p-n перехода и назначение.
Материал
Для производства диодов используют один из четырех исходных полупроводников:
- германий – в маломощных и прецизионных цепях, имеет больший коэффициент передачи;
- кремний – недорогие и долговечные, устойчивы к воздействию температуры, но обладают меньшей проводимостью;
- арсенид галлия – дороже и сложнее кремниевых, высокая радиационная стойкость;
- фосфид индия – в светодиодах и для работы на сверхвысоких частотах.
Каждому материалу в разных системах соответствует своя буква или цифра, которую указывают в начале.
Площадь перехода
Есть два варианта конструкционного размещения катода и анода:
- Точечный диод. Один из электродов в виде узкой иглы вплавляется в кристалл, образуя p-n границу. Она имеет малую площадь, как следствие – высокая рабочая частота. Они почти вышли из применения по причине низкой прочности, уязвимости к перегрузкам и низкому максимальному току.
- Плоскостный диод. Область перехода больше – контакт проходит по площади пластинки полупроводника, соединяемой с кристаллом. Отличаются большей емкостью, низким уровнем помех, малым падением напряжения. Пример – диод Шоттки.
В современной маркировке разделение практически не встречается – плоскостные диоды постепенно вытесняют точечные.
Подтип
Следующее обозначение зависит от назначения прибора. Существует классификация диодов, применяемых в разных областях: туннельные, лазерные, варикапы, стабилитроны. Внутри подтипа также есть разделение – уже по техническим параметрам:
- рабочая частота;
- время восстановления;
- прямой и обратный ток;
- допустимые значения обратного и прямого напряжения;
- температурный режим.
Получается большое количество возможных сочетаний, отсюда – сложность создания единой системы маркировки.
SMD-диоды
Цветовая температура светодиодных ламп
Особенность SMD-диодов, монтирующихся прямо на поверхность плат, – невозможность полноценной маркировки из-за небольших размеров. Отсюда – своеобразная система идентификации. Несколько способов различить такие диоды:
Обратить внимание на форму исполнения корпуса. У каждого типа есть характерный внешний вид, например, электролитические конденсаторы цилиндрические, керамические – в форме параллелепипеда.
Свериться с таблицей типоразмеров
Обычно это четыре цифры, которые обозначают габариты резистора в дюймах.
Для каждого типа корпуса и назначения предусмотрена своя система обозначений, что делает расшифровку неудобной.
SMD-диоды – маркировка отличается в зависимости от корпуса
Полярность SMD-диода
Малый размер также не позволяет разместить привычные различимые обозначения полярностей. При определении катода руководствуются следующим:
- маркировка в виде цветных колец наносится на его сторону;
- некоторые корпуса без цветовых символов имеют паз на стороне катода;
- если на корпусе изображен треугольник, его вершина указывает на отрицательный полюс.
Это помогает избежать путаницы. Чаще всего во всех системах маркировки символы наносят на сторону катода, это справедливо и для SMD-элементов.
Классификация
Полупроводниковые диоды, выпускаемые промышленностью, по их назначению можно разделить на следующие основные группы:
- силовые,
- опорные (стабилитроны),
- фотодиоды,
- импульсные,
- высокочастотные,
- параметрические.
Особый интерес представляют туннельные диоды. Маркировку полупроводниковых диодов, производство которых освоено после 1965 г., определяют четыре элемента. Первым элементом обозначения является буква, которая указывает материал используемого полупроводника: Г — германий; К — кремний; А — арсенид галлия. Если первым элементом обозначения является цифра (1 вместо Г, 2 вместо К и 3 вместо А), то это указывает, что приборы могут работать при повышенных температурах (например, приборы с кремниевым основанием, обозначенные цифрой 2, могут работать при температуре до 120°С).
Вторым элементом маркировки является буква, определяющая назначение прибора: А — сверхвысокочастотные диоды; Д — выпрямительные универсальные, импульсные диоды; В — выпрямительные столбы (последовательное соединение ряда диодов); С — стабилитроны; И — туннельные диоды; Ф—фотодиоды и т. д. Третий элемент маркировки (число) характеризует электрические свойства прибора. Выпрямительные низкочастотные диоды обозначаются цифрами от 101 до 399, универсальные — от 401 до 499, импульсные — от 501 до 599, усилительные туннельные диоды —от 101 до 199, генераторные туннельные диоды — от 201 до 299, переключающие туннельные диоды — от 301 до 399, стабилитроны — от 101 до 999.
Четвертый элемент маркировки (буква) определяет разновидность типа прибора из данной группы приборов. Например, 1Д505Б — германиевый импульсный диод, разновидность типа Б, или 3И302Б — арсенид-галлиевый туннельный диод, разновидность типа Б. Полупроводниковые диоды, разработка которых была закончена до 1965 г., обозначаются тремя элементами: первым элементом является буква Д; вторым элементом — число, указывающее диапазоны частот и исходный материал, из которого изготовлен диод; третий элемент определяет разновидность прибора.
Стабилитронами (опорными диодами) называются полупроводниковые диоды предназначенные для стабилизации постоянного напряжения. Для стабилизации напряжения в стабилитронах используют обратную ветвь вольт-амперной характеристики в области электрического пробоя, для этого их включают в обратном направлении. При изменении тока протекающего через стабилитрон от значения Iстmin до Iстmax напряжение на нем почти не изменяется.
Полупроводниковый диод.
Стабилитроны стабилизируют напряжение от 3,5 В, а для стабилизации меньшего напряжения используют стабисторы. В стабисторах используют прямую ветвь вольт-амперной характеристики, поэтому их включают в прямом направлении. Импульсным называется диод, который предназначен для работы в импульсных схемах. В прямом направлении импульсный диод хорошо проводит электрический ток. При обратном включении такого диода, обратный ток в нем резко увеличивается, а через короткий промежуток времени исчезает. Таким образом получается электрический импульс.
Маркировка светодиодов
В идентификации светодиодов сложностей меньше. Каждый тип обладает характерными внешними отличительными признаками. Различают две категории:
- Цвет SMD-светодиода. В свою очередь, делят на группы по излучению: многоцветные диоды, нейтральный, теплый и холодный белый.
- Размер элемента. По аналогии с зарубежной кодировкой используют 4 цифры, которые обозначают размер в миллиметрах. 3014 – размер 3 х 1.4 мм.
Число перед типом светодиода означает количество на 1 метр ленты. Для устройств с длинными выводами, заключенными в пластмассовый или стеклянный корпус, применяют систему цветовых элементов, ознакомиться с которой можно в таблице.
Пример цветовой маркировки светодиодов
Старая система обозначений
В соответствии с системой обозначений, разработанной до 1964 г., сокращенное обозначение диодов состояло из двух или трех элементов.
Первый элемент буквенный, Д — диод.
Второй элемент — номер, соответствующий типу диода: 1…100 — точечные германиевые, 101…200— точечные кремниевые, 201…300 — плоскостные кремниевые, 801…900 — стабилитроны, 901…950 — варикапы, 1001…1100 — выпрямительные столбы. Третий элемент — буква, указывающая разновидность прибора. Этот элемент может отсутствовать, если разновидностей диода нет.
В настоящее время существует система обозначений, соответствующая ГОСТ 10862-72. В новой, как и в старой системе, принято следующее разделение на группы по предельной (граничной) частоте усиления (передачи тока ) на:
- низкочастотные НЧ (до 3 МГц),
- средней частоты СЧ (от 3 до 30 МГц),
- высокочастотные ВЧ (свыше 30 МГц),
- сверхвысокочастотные СВЧ;
По рассеиваемой мощности:
- маломощные (до 0,3 Вт),
- средней мощности (от 0,3 до 1,5 Вт),
- большой (свыше 1,5 Вт) мощности.
Цветовая маркировка диодов
Тип диода |
Цвет корпуса или метка на корпусе |
Метка у анода (+) |
Метка у катода (-) |
Внешний вид |
Д9Б | — | Красное кольцо | — | |
Д9В | — | Оранжевое или красное + оранжевое кольцо |
— | |
Д9Г | — | Желтое или красное + желтое кольцо |
— | |
Д9Д | — | Белое или красное + белое кольцо |
— | |
Д9Е | — | Голубое или красное + голубое кольца |
— | |
Д9Ж | — | Зеленое или красное + зеленое кольцо |
— | |
Д9И | — | Два желтых кольца | — | |
Д9К | — | Два белых кольца | — | |
Д9Л | — | Два зеленых кольца | — | |
Д9М | — | Два голубых кольца | — | |
КД102А | — | Зеленая точка | — | |
КД102Б | — | Синяя точка | — | |
2Д102А | — | Желтая точка | — | |
2Д102Б | — | Оранжевая точка | — | |
КД103А | Черный | Синяя точка | — | |
КД103Б | Зеленый | Желтая точка | — | |
2Д103А | — | Белая точка | — | |
КД105Б | Точка остутсвует | Белая или желтая полоса |
— | |
КД105В | Зеленая точка | Белая или желтая полоса |
— | |
КД105Г | Красная точка | Белая или желтая полоса |
— | |
КД105Д | Белая или желтая точка |
Белая или желтая полоса |
— | |
КД208А | Желтая точка | Черная, зеленая или желтая точка |
— | |
КД209А | — | Черная, зеленая или желтая точка |
— | |
КД209Б | Белая точка | Черная, зеленая или желтая точка |
— | |
КД209В | Черная точка | Черная, зеленая или желтая точка |
— | |
КД209Г | Зеленая точка | Черная, зеленая или желтая точка |
— | |
КД221А | — | Голубая точка | — | |
КД221Б | Белая точка | Голубая точка | — | |
КД221В | Черная точка | Голубая точка | — | |
КД221Г | Зеленая точка | Голубая точка | — | |
КД221Д | Бежевая точка | Голубая точка | — | |
КД221Е | Желтая точка | Голубая точка | — | |
КД226А | — | — | Оранжевое кольцо | |
КД226Б | — | — | Красное кольцо | |
КД226В | — | — | Зеленое кольцо | |
КД226Г | — | — | Желтое кольцо | |
КД226Д | — | — | Белое кольцо | |
КД226Е | — | — | Голубое кольцо | |
КД243А | — | — | Фиолетовое кольцо | |
КД243Б | — | — | Оранжевое кольцо | |
КД243В | — | — | Красное кольцо | |
КД243Г | — | — | Зеленое кольцо | |
КД243Д | — | — | Желтое кольцо | |
КД243Е | — | — | Белое кольцо | |
КД243Ж | — | — | Голубое кольцо | |
КД247А | — | — | Два фиолетовых кольца |
|
КД247Б | — | — | Два оранжевых кольца | |
КД247В | — | — | Два красных кольца | |
КД247Г | — | — | Два зеленых кольца | |
КД247Д | — | — | Два желтых кольца | |
КД247Е | — | — | Два белых кольца | |
КД247Ж | — | — | Два голубых кольца | |
КД410А | — | Красная точка | — | |
КД410Б | — | Синяя точка | — | |
КД509А | — | Синее узкое кольцо | Синее широкое кольцо | |
2Д509А | — | Синяя точка и узкое кольцо |
Синее широкое кольцо | |
КД510А | — | Два зеленых узких кольца |
Зеленое широкое кольцо |
|
2Д510А | — | Зеленая точка и узкое кольцо |
Зеленое широкое кольцо |
|
КД521А | — | Два синих узких кольца |
Синее широкое кольцо | |
КД521Б | — | Два серых узких кольца |
Серое широкое кольцо | |
КД521В | — | Два желтых узких кольца |
Желтое широкое кольцо |
|
КД521Г | — | Два белых узких кольца |
Белое широкое кольцо | |
КД522А | — | Черное широкое кольцо |
Черное узкое кольцо | |
КД522Б | — | Черное широкое кольцо |
Два черных узких кольца |
|
2Д522Б | — | Черное широкое кольцо |
Черная точка | |
КД906 | Белая полоса у четвертого вывода |
— | — | |
КДС111А | Красная точка | — | — | |
КДС111Б | Зеленая точка | — | — | |
КДС111В | Желтая точка | — | — | |
КЦ422А | — | — | Черная точка | |
КЦ422Б | Белая точка | — | Черная точка | |
КЦ422В | Черная точка | — | Черная точка | |
КЦ422Г | Зеленая точка | — | Черная точка |
Индекс цветопередачи CRI
Один из неочевидных параметров в кодировке – значение CRI, определяющее, насколько естественным выглядит свечение. Средний параметр равен 100 – это солнечный свет; меньшее значение применимо к источникам искусственного света. Соответственно, чем выше CRI, тем лучше.
Помимо определения нужного типа прибора в магазине, цветовую маркировку можно использовать в практических целях. Например, зная расположение и цвет элементов, можно рассчитать сопротивление резистора. Для этого достаточно занести данные в форму онлайн калькулятора. Понимание систем маркировки облегчает правильное использованию диодов и решает множество проблем, связанных с выбором нужного типа устройства.
Маркировка диодов
На корпусе диода обычно указывают материал полупроводника, из которого он изготовлен (буква или цифра), тип (буква), назначение или электрические свойства прибора (цифра), букву, соответствующую разновидности прибора, и дату изготовления, а также его условное обозначение.
Условное обозначение диода (анод и катод) указывает, как нужно подключать диод на платах устройств. Диод имеет два вывода, один из которых катод (минус), а другой — анод (плюс).
Условное графическое изображение на корпусе диода наносится в виде стрелки, указывающей прямое направление, если стрелки нет, то ставится знак «+».
На плоских выводах некоторых диодов (например, серии Д2) прямо выштамповано условное обозначение диода и его тип. При нанесении цветового кода, цветную метку, точку или полоску наносят ближе к аноду (рис. 1).
Для некоторых типов диодов используется цветная маркировка в виде точек и полосок (табл. 1). Диоды старых типов, в частности точечные, выпускались в стеклянном оформлении и маркировались буквой «Д» с добавлением цифры и буквы, обозначающих подтип прибора. Германиево-индиевые плоскостные диоды имели обозначение «Д7».
Рис. 1. Нанесение цветового кода на диоды.
Таблица 1 Цветовая маркировка полупроводниковых диодов.
Тип диода |
Цвет кольца (к), точки (т) |
|
со стороны катоде (в середине корпуса) | со стороны анода | |
Д2Б Д2В Д2Д Д2Е Д2Ж Д2И |
Белая т. Оранжевая т Голубая т. Зеленая т. Черная т. Красная т. |
|
Д9Б Д9В Д9Г Д9Д Д9Е Д9Ж Д9И Д9К Д9Л |
Красная т. Оранжевая т. Желтая т. Белая т. Голубая т. Зеленая и голубая т. Две желтые т. Две белые т. Две зеленые т. |
Красная т. |
КД102А КД102Б |
Желтая т. Оранжевая т. |
Зеленая т. Синяя т. |
КД103А КД103Б |
Синяя т. Желтая т. |
|
КД105А КД105Б КД105В КД105Г |
Белая или желтая полоса на торце корпуса |
Зеленая т. Красная т. Белая или желтая т. |
КД106 КД209А* КД209Б КД209В КД209Г |
Метка черного, зеленого или желтого цвета |
Белая т. Черная т. Зеленая т. |
* Цвет корпуса коричневый.
Тип диода |
Цвет кольца (к), точки (т) |
|
со стороны катода (в середине корпуса} | со стороны анода | |
КД226А КД226Б КД226В КД226Г КД226Д КД226Е |
Оранжевое к. Красное к. Зеленое к. Желтое к. Белое к. Голубое к. |
|
КД243А КД243Б КД243В КД243Г КД243Д КД243Е КД243Ж |
Фиолетовое к. Оранжевое к. Красное к. Зеленое к. Желтое к. Белое к. Голубое к. |
|
КД510А | Одно широкое и два узких зеленых к. | |
2Д510А | Одно широкое и одно узкое зеленое к. | |
КД521А | 1 шир + 2 узкие | |
КД521Б | Синие полосы | |
КД521В | Желтые полосы | |
КД522А | Одно узкое черное к. | Одно широкое |
КД522Б | Два узких черных к. | Черное кольцо |
КД522В | Три узких черных к. | + тип диода |
Литература: В.М. Пестриков. Энциклопедия радиолюбителя.
Зачем нужно охлаждать светодиод
Мнение о том, что светодиод не нагревается ошибочно. Оно строится на том, что прикасаясь к такому маломощному прибору, не чувствуешь тепла. Согласно, закона сохранения энергии: энергия не появляется из ничего и не пропадает бесследно, а преобразуется из одного вида в другой. Светодиоды, как твердотельные источники света, излучают видимую часть спектра и выделяют при этом тепло. Вследствие термоэлектрических явлений, происходящих в полупроводниковых светодиодах, выделяется тепло. В прямой зависимости от температуры нагрева светодиодов меняются его показатели и характеристики. Такая сильная зависимость показателей от температуры приводит к тому, что:
Рис. 1. График зависимости показателя относительного светового потока от температуры перехода (светодиод MKR)
- полупроводниковый переход при нагреве светодиодного кристалла деградирует, и он быстро изнашивается, а срок эксплуатации снижается;
- тепловой рубеж у светодиодов, после которого наступает пробой, достигается после повышения температуры до 150°С. В зависимости от применяемых материалов, изменяется количество светового потока и срока износа;
- постепенно уменьшается количество светового потока, что отражают кривые зависимости, изображенные на Рис.1;
- с изменением температуры меняется и величина прямого падения напряжения на светодиоде. При нагреве источника света увеличивается показатель прямого падения напряжения. На графиках кривыми изображается такая зависимость.
Перечисленные выше причины являются серьезным поводом, чтобы обеспечить отвод тепла от светодиодного прибора.
Диоды Шоттки: описание, принцип работы, схема, основные параметры, применение, характеристики
В конце 30-х годов XX века немецкий физик Вальтер Шоттки обнаружил, что внешнее электрическое поле заставляет свободные электроны покидать зону проводимости и в буквальном смысле выходить из твёрдого тела. Данная квантовая зависимость впоследствии была названа именем её первооткрывателя и теперь известна, как эффект Шоттки.
Несмотря на то, что открытие германского учёного относится к области теоретической физики, оно находит применение в практической радиотехнике и лежит в основе функциональности таких радиокомпонентов, как диоды Шоттки. Их отличие от обычных электрических вентилей заключается в отсутствии классического полупроводникового p-n-перехода. Его роль играет контакт между полупроводником и металлом.
Металл и полупроводник: особенности контакта.
В контактной области полупроводниковых и металлических материалов эффект Шоттки приводит к образованию в полупроводнике слоя, сильно обеднённого электронами. Он обладает вентильными свойствами, присущими полупроводниковому p-n-переходу. Эта зона представляет собой преграду для носителей заряда, поэтому данные радиокомпоненты часто называют диодами с барьером Шоттки.
Элементы отличаются от обычных полупроводниковых вентилей следующими качествами:
- пониженное падение напряжения при прямом смещении;
- незначительная собственная ёмкость;
- малый обратный ток;
- низкое допустимое обратное напряжение.
При прямом смещении разность потенциалов на диоде Шоттки не превышает 0,5 В, тогда как на обычном выпрямительном вентиле падение напряжения составляет около 2-3 В. Это объясняется небольшим сопротивлением переходного участка между полупроводником и металлом.
Хорошие частотные характеристики диодов Шоттки обусловлены отсутствием в переходной зоне неосновных носителей заряда. Из-за этого в контактной области не протекают обычные для чисто полупроводникового p-n-перехода процессы диффузии и рекомбинации дырок и электронов. Следовательно, собственная ёмкость этого слоя стремится к нулю. Данное свойство делает диоды с барьером Шоттки предпочтительными для использования в высоко- и сверхвысокочастотных схемах, а также аппаратуре с импульсными режимами работы – всевозможных цифровых устройствах, системах управления электроникой и импульсных блоках питания.
Низковольтные диоды.
Особенность диодов Шоттки состоит в том, что они являются низковольтными. Если приложенная разность потенциалов превышает некоторый допустимый уровень, то в соответствии с квантовыми законами происходит пробой, который в обычном полупроводниковом радиокомпоненте может быть туннельным, лавинным или тепловым. После первых двух диод восстанавливается и продолжает исправно работать. Тепловой пробой означает фатальную поломку.
В диодах с барьером Шоттки пробой всегда бывает только тепловым. Такова особенность металло-полупроводникового перехода. При большом обратном смещении элемент выходит из строя и нуждается в замене. Этим, кстати, объясняется сильная чувствительность диодов Шоттки к статическому электричеству – при их монтаже и обслуживании радиоаппаратуры с этими элементами необходимо заземлять спецодежду и инструменты.
Однако чувствительность этих радиокомпонентов не всегда является их недостатком. Например, благодаря этой характеристике диоды с барьером Шоттки используются в особо чувствительных гетеродинах, которые получают способность обрабатывать радиосигналы очень малой мощности.
Основные параметры.
- Максимальное постоянное обратное напряжение;
- Максимальное импульсное обратное напряжение;
- Максимальный (средний) прямой ток;
- Максимальный импульсный прямой ток;
- Постоянное прямое напряжение на диоде при заданном прямом токе через него;
- Обратный ток диода при предельном обратном напряжении;
- Максимальная рабочая частота диода;
- Время обратного восстановления;
- Общая емкость диода.
Производство диодов Шоттки.
В качестве полупроводниковой составляющей используются стандартные материалы – кремний, германий и арсенид галлия. На них в процессе изготовления радиокомпонентов напыляются такие металлы, как золото, серебро, палладий, вольфрам. Именно эти элементы таблицы Менделеева обеспечивают достаточно высокий потенциальный барьер, определяющий функциональность диодов Шоттки.
Германиевые радиокомпоненты показывают высокую устойчивость к изменению температурного режима, поэтому данный материал чаще кремния и арсенида галлия используется при производстве диодов для мощных схем питания. Зато кремниевые и галлиевые элементы демонстрируют лучшие частотные параметры.
Сфера применения
Диод Шоттки может включать в себя любой аккумулятор.
Он входит в устройство солнечной батареи. Солнечные панели, которые уже давно успешно работают в условиях космического пространства, собираются именно на основании барьерных переходов Шоттки. Такие гелиосистемы устанавливаются на космических аппаратах (спутниках и телескопах, проводящих работу в жестких условиях безвоздушного пространства).
Устройство незаменимо при работе компьютеров, бытовой техники, радиоприемников, блоков электропитания. При правильном использовании диод Шоттки увеличивает производительность любого устройства, предотвращает потери тока. Он способен принимать на себя альфа-, бета- и гамма-излучение. Именно поэтому он незаменим в условиях космоса.
С помощью такого устройства можно осуществить параллельное соединение диодов, используя их в качестве сдвоенных выпрямителей. Таким образом можно объединить межлу собой два параллельных источника питания. Один корпус включает в себя два полупроводника, а концы положительного и отрицательного зарядов связываются друг с другом. Есть и более простые схемы, где диоды Шоттки очень малы. Это характерно для очень мелких деталей в электронике.
Диод Шоттки является незаменимым элементом во многих электронных устройствах. Главное — понимать специфику его работы и использовать его корректно.
ЦВЕТОВАЯ МАРКИРОВКА ДИОДОВ
В основу системы обозначений положен буквенно-цифровой код, установленный отраслевым стандартом ОСТ 11 336.919-81 и базируется на ряде классификационных признаков этих приборов:
ПЕРВЫЙ ЭЛЕМЕНТ
— обозначав исходный полупроводниковый материал, на основе которого изготовлен прибор: Г(1) — для германия или его соединений; К(2) — для кремния или его соединений; А(3) — для соединений галия; И(4) — для соединений из индия.ВТОРОЙ ЭЛЕМЕНТ — буква, определяющая подкласс (или группу) приборов: Д — диоды выпрямительные и импульсные; Ц — выпрямительные столбы и блоки; В — варикапы; И — туннельные диоды; А — сверхвысокочастотные диоды: С — стабилитроны; Г — генераторы шума; Д — излучающие оптоэлектронные приборы; О — оптопары; Н — диодные тиристоры; У — триодные тиристоры.ТРЕТИЙ ЭЛЕМЕНТ — цифра, определяющая основные функциональные возможности прибора.ЧЕТВЕРТЫЙ ЭЛЕМЕНТ — число, обозначающее порядковый номер разработки технологического типа.ПЯТЫЙ ЭЛЕМЕНТ — буква, условно определяющая разбраковку по параметрам приборов, изготовленных по единой технологии.
ЦВЕТОВАЯ МАРКИРОВКА ИМПУЛЬСНЫХ И ВЫПРЯМИТЕЛЬНЫХ ДИОДОВ.
тип диода | Inp. А | Up.в | цвет корпуса или метка | цветовая маркировка |
со стороны анода | со стороны катода | |||
Д9Б | 0.09 | 10 | красное кольцо | |
Д9В | 0.01 | 30 | оранжевое кольцо | |
Д9Г | 0.03 | 30 | желтое кольцо | |
Д9Д | 0.03 | 30 | белое кольцо | |
Д9Е | 0.05 | 50 | голубое кольцо | |
Д9Ж | 0.01 | 100 | зеленое кольцо | |
Д9И | 0.03 | 30 | два желтых кольца | |
Д9К | 0.06 | 30 | два белых кольца | |
Д9Л | 0.03 | 100 | два зеленых кольца | |
Д9М | 0.03 | 30 | два голубых кольца | |
КД102А | 0.1 | 250 | зеленая точка | |
2Д102А | 0.1 | 250 | желтая точка | |
КД102Б | 0.1 | 300 | синяя точка | |
2Д102Б | 0.1 | 300 | оранжевая точка | |
КД103А | 0.1 | 50 | черный торец | синяя точка |
КД103Б | 0.1 | 50 | зеленый торец | желтая точка |
КД105А | 0.3 | 200 | белое (желтое) кольцо | |
КД105Б | 0.3 | 400 | зеленая точка | белое (желтое) |
КД105В | 0.3 | 600 | красная точка | кольцо белое (желтое)кольцо |
КД105Г | 0.3 | 800 | белая или желтая точка | белое (желтое) кольцо |
КД208А | 1.0 | 100 | черная (зеленая, желтая) точка | белое (желтое) кольцо |
КД209А | 0.7 | 400 | черная (зеленая или желтая) точка | |
КД209А | 0.7 | 400 | красная полоса на торце | |
КД209Б | 0.7 | 600 | белая точка | черная (зеленая или желтая) точка |
КД209Б | 0.7 | 600 | белая точка | красная полоса на торце |
КД209В | 0.5 | 800 | черная точка | черная (зеленая или желтая) точка |
КД209В | 0.5 | 800 | черная точка | красная полоса на торце |
КД209Г | 0.2 | 1000 | зеленая точка | черная (зеленая или желтая) точ. |
КД209Г | зеленая точка | красная полоса на торце | ||
КД221А | 0.7 | 100 | голубая точка | |
КД221Б | 0.5 | 200 | белая точка | голубая точка |
КД221В | 0.3 | 400 | черная точка | голубая точка |
КД221Г | 0.3 | 600 | зеленая точка | голубая точка |
КД226А | 2 | 100 | оранжевое кольцо | |
КД226Б | 2 | 200 | красное кольцо | |
КД226В | 2 | 400 | зеленое кольцо | |
КД226Г | 2 | 600 | желтое кольцо | |
КД226Д | 2 | 800 | белое кольцо | |
КД226Е | 2 | 600 | голубое кольцо | |
КД243А | 1 | 50 | фиолетовое кольцо | |
КД243Б | 1 | 100 | оранжевое кольцо | |
КД243В | 1 | 200 | красное кольцо | |
КД243Г | 1 | 400 | зеленое кольцо | |
КД243Д | 1 | 600 | желтое кольцо | |
КД243Е | 1 | 800 | белое кольцо | |
КД243Ж | 1 | 1000 | голубое кольцо | |
КД247А | 1 | 50 | 2 фиолетовых кольца | |
КД247Б | 1 | 100 | 2 оранжевых кольца | |
КД247В | 1 | 200 | два красных кольца | |
КД247Г | 1 | 400 | два зеленых кольца | |
КД247Д | 1 | 600 | два желтых кольца | |
КД247Е | 1 | 800 | два белых кольца | |
КД247Ж | 1 | 1000 | два голубых кольца | |
КД410А | 0.05 | 1000 | красная точка | |
КД410Б | 0.05 | 600 | синяя точка | |
КД509А | 0.1 | 50 | уз.синее кольцо | широкое синее кольцо |
2Д509А | 0.1 | 50 | широкое синее кольцо | |
КД510А | 0.2 | 50 | два зеленых узких кольца | широкое зеленое кольцо |
2Д510А | 0.2 | 50 | зеленая точка | широкое зеленое кольцо |
КД521А | 0.05 | 75 | два синих узких кольца | широкое синее кольцо |
КД521Б | 0.05 | 50 | два серых узких кольца | широкое серое кольцо |
КД521В | 0.05 | 30 | два желтых узких кольца | широкое желтое кольцо |
КД521Г | 0.05 | 120 | два белых узких кольца | широкое белое кольцо |
КД522А | 0.1 | 30 | черное широкое кольцо | черное узкое кольцо |
КД522Б | 0.1 | 50 | черное широкое кольцо | два черных узких кольца |
2Д522Б | 0.1 | 50 | черное широкое кольцо | черная точка |
КД906 (А-Г) | 0.1 | 75… …50… 30 | белая полоса у 4 вывода | |
2Д906А | 0.2 | 75 | белая пол. у 4 вывода +красная точ. | |
2Д906Б | 0.2 | 50 | белая пол. у 4 вывода + красная точ. | |
2Д906В | 0.2 | 30 | белая пол. у 4 вывода + 2 красных т. | |
КДС111А | 0.2 | 300 | красная точка | |
КДС111Б | 0.2 | 300 | зеленая точка | |
КДС111В | 0.2 | 300 | желтая точка | |
КЦ422А | 0.5 | 50 | точка отсутствует | черная точка |
КЦ422Б | 0.5 | 100 | белая точка | черная точка |
КЦ422В | 0.5 | 200 | черная точка | черная точка |
КЦ422Г | 0.5 | 400 | зеленая точка | черная точка |
Индекс цветопередачи CRI
Один из неочевидных параметров в кодировке – значение CRI, определяющее, насколько естественным выглядит свечение. Средний параметр равен 100 – это солнечный свет; меньшее значение применимо к источникам искусственного света. Соответственно, чем выше CRI, тем лучше.
Помимо определения нужного типа прибора в магазине, цветовую маркировку можно использовать в практических целях. Например, зная расположение и цвет элементов, можно рассчитать сопротивление резистора. Для этого достаточно занести данные в форму онлайн калькулятора. Понимание систем маркировки облегчает правильное использованию диодов и решает множество проблем, связанных с выбором нужного типа устройства.
Обратный ток утечки
Но раз уж диоды Шоттки такие крутые, то почему бы их не использовать везде? Почему мы до сих пор используем простые диоды?
Если мы подключим диод в обратном направлении, то он будет блокировать прохождение электрического тока. Это верно, но не совсем. Очень маленький ток все равно будет проходить через диод
В некоторых случаях это не принимают во внимание. Этот маленький ток называется обратным током утечки
На английский манер это звучит как reverse leakage current.
Он очень мал, но имеет место быть.
Проведем простой опыт. Возьмем лабораторный блок питания, выставим на нем 19 В и подадим это напряжение на диод в обратном направлении
Замеряем ток утечки
обратный ток утечки диода
Как вы видите, его значение составляет 0,1 мкА.
Давайте теперь повторим этот же самый опыт с диодом Шоттки
обратный ток утечки диода Шоттки
Ого, уже почти 20 мкА! Ну да, в некоторых случаях это сущие копейки и ими можно пренебречь. Но есть схемы, где все-таки недопустим такой незначительный ток. Например, в схемах пикового детектора
схема пик детектора
В этом случае эти 20 мкА будут весьма значительны.
Но есть также еще один камень преткновения. С увеличением температуры обратный ток утечки возрастает в разы!
зависимость обратного тока утечки от температуры корпуса диода Шоттки
Поэтому, вы не можете использовать Шоттки везде в схемах.
Но и это еще не все. Обратное напряжение для диодов Шоттки в разы меньше, чем для простых выпрямительных диодов. Это можно также увидеть из даташита. Если для диода 1N4007 обратное напряжение составляет 1000 В
То для диода Шоттки 1N5817 это обратное напряжение уже будет составлять всего-то 20 В
Поэтому, если это напряжение превысит значение, которое описано в даташите, мы в итоге получим:
Корпус
Что касается корпуса, то здесь обозначение полупроводниковых диодов, точно так же, как и других, является уникальным. Указывается четыре цифры, которые обозначают типоразмер. В целом они никак не соответствуют габаритам. Если хочется об этом узнать более подробно, то необходимо обратиться к ГОСТам. Люди, которые не имеют возможности работать с нормативными актами в следствии каких-либо нюансов, могут использовать обычные справочные таблицы.
Следует заметить, что корпуса SMD-устройств от производителя к производителю могут между собой отличаться по мелочам. Дело в том, что любой производитель создает базу под свою технику, соответственно, некоторые детали приходится менять.
Соответственно, также габариты корпусов вышеописанных приборов SMD нужны разные, они также должны выполнять другие требования для корректной работы, такие как условие отвода тепла и так далее. Поэтому перед покупкой следует не только руководствоваться цифрами справочника, но и сделать замеры. Особенно если речь идет о ремонте какой-либо техники. Иначе такие диоды могут попросту не установиться в те места, где они необходимы.
Старая система обозначений
В соответствии с системой обозначений, разработанной до 1964 г., сокращенное обозначение диодов состояло из двух или трех элементов.
Первый элемент буквенный, Д — диод.
Второй элемент — номер, соответствующий типу диода: 1…100 — точечные германиевые, 101…200— точечные кремниевые, 201…300 — плоскостные кремниевые, 801…900 — стабилитроны, 901…950 — варикапы, 1001…1100 — выпрямительные столбы. Третий элемент — буква, указывающая разновидность прибора. Этот элемент может отсутствовать, если разновидностей диода нет.
В настоящее время существует система обозначений, соответствующая ГОСТ 10862-72. В новой, как и в старой системе, принято следующее разделение на группы по предельной (граничной) частоте усиления (передачи тока ) на:
- низкочастотные НЧ (до 3 МГц),
- средней частоты СЧ (от 3 до 30 МГц),
- высокочастотные ВЧ (свыше 30 МГц),
- сверхвысокочастотные СВЧ;
По рассеиваемой мощности:
- маломощные (до 0,3 Вт),
- средней мощности (от 0,3 до 1,5 Вт),
- большой (свыше 1,5 Вт) мощности.
Миниатюризация
С развитием микроэлектроники стали широко применяться специальные микросхемы, однокристальные микропроцессоры. Все это не исключает использования навесных элементов. Однако если для этой цели использовать радиоэлементы обычных размеров, то это сведет на нет всю идею миниатюризации в целом. Поэтому были разработаны бескорпусные элементы – smd компоненты, которые в 10 и более раз меньше обычных деталей. ВАХ таких компонентов ничем не отличается от ВАХ обычных приборов, а их уменьшенные размеры позволяют использовать такие запчасти в различных микросборках.
Компоненты smd имеют несколько типоразмеров. Для ручной пайки подходят smd размера 1206. Они имеют размер 3,2 на 1,6 мм, что позволяет их впаивать самостоятельно. Другие элементы smd более миниатюрные, собираются на заводе специальным оборудованием, и самому, в домашних условиях, их паять невозможно.
Принцип работы smd компонента также не отличается от его большого аналога, и если, к примеру, рассматривать ВАХ диода, то она в одинаковой степени будет подходить для полупроводников любого размера. По току изготавливаются от 1 до 10 ампер. Маркировка на корпусе часто состоит из цифрового кода, расшифровка которого приводится в специальных таблицах. Протестировать на пригодность их можно тестером, как и большие аналоги.
Маркировка импортных диодов
В настоящее время широко используются SMD-диоды зарубежного производства. Конструкция элементов выполнена в виде платы, на поверхности которой закреплен чип. Слишком маленькие размеры изделия не позволяют нанести на него маркировку. На более крупных элементах обозначения присутствуют в полном или сокращенном варианте.
В электронике SMD-диоды составляют около 80% всех используемых изделий этого типа. Такое разнообразие деталей заставляет внимательнее относиться к обозначениям. Иногда они могут не совпадать с заявленными техническими характеристиками, поэтому желательно провести дополнительную проверку сомнительных элементов, если они планируются к использованию в сложных и точных схемах. Следует учитывать, что маркировка диодов этого типа может быть разной на совершенно одинаковых корпусах. Иногда присутствует только буквенная символика, без каких-либо цифр. В связи с этим рекомендуется использовать таблицы с типоразмерами диодов от разных производителей.
Для SMD-диодов чаще всего используется тип корпуса SOD123. На один из торцов может наноситься цветная полоса или тиснение, что означает катод с отрицательной полярностью для открытия р-п-перехода. Единственная надпись соответствует обозначению корпуса.
Тип корпуса не играет решающей роли при использовании диода. Одной из основных характеристик является рассеивание некоторого количества тепла с поверхности элемента. Кроме того, учитываются значения рабочего и обратного напряжения, величина максимально допустимого тока через р-п-переход, мощность рассеивания и другие параметры. Все эти данные указаны в справочниках, а маркировка лишь ускоряет поиск нужного элемента.