Фотосфера
Наконец, есть фотосфера, видимая поверхность Солнца. Именно здесь солнечный свет и тепло, излученные и поднятые на поверхность, распространяются в космос. Температуры в этом слое варьируются между 4500 и 6000 градусами. Поскольку верхняя часть фотосферы холоднее нижней, Солнце кажется ярче в центре и темнее по бокам: это явление известно как затемнение лимба.
Энергия, испускаемая фотосферой, распространяется в космосе и достигает атмосферы Земли и других планет Солнечной системы. Здесь, на Земле, верхний слой атмосферы (озоновый слой) фильтрует большую часть ультрафиолетового излучения Солнца, но пропускает часть на поверхность. Затем эта энергия поглощается воздухом и земной корой, согревает нашу планету и обеспечивает организмы источником энергии.
Солнце находится в центре биологических и химических процессов на Земле. Без него жизненный цикл растений и животных закончился бы, циркадные ритмы всех земных существ были бы сорваны, и жизнь на Земле перестала бы существовать
Важность Солнца была признана еще в доисторические времена, и многие культуры рассматривали его как божество (и зачастую помещали его в качестве главного божества в свои пантеоны)
Однако только в последние несколько столетий мы начали понимать процессы, которые питают Солнце. Благодаря постоянным исследованиям физиков, астрономов и биологов, мы теперь можем понять, как Солнце производит энергию и как она проходит через нашу Солнечную систему. Изучение известной Вселенной с ее разнообразием звездных систем и экзопланет также помогает нам провести аналогию с другими типами звезд.
Последствия ионизирующего излучения для здоровья
Радиационное повреждение тканей и/или органов зависит от полученной дозы облучения или поглощенной дозы, которая выражается в грэях (Гр).
Эффективная доза используется для измерения ионизирующего излучения с точки зрения его потенциала причинить вред. Зиверт (Зв) — единица эффективной дозы, в которой учитывается вид излучения и чувствительность ткани и органов. Она дает возможность измерить ионизирующее излучение с точки зрения потенциала нанесения вреда. Зв учитывает вид радиации и чувствительность органов и тканей.
Зв является очень большой единицей, поэтому более практично использовать меньшие единицы, такие как миллизиверт (мЗв) или микрозиверт (мкЗв). В одном мЗв содержится тысяча мкЗв, а тысяча мЗв составляют один Зв. Помимо количества радиации (дозы), часто полезно показать скорость выделения этой дозы, например мкЗв/час или мЗв/год.
Выше определенных пороговых значений облучение может нарушить функционирование тканей и/или органов и может вызвать острые реакции, такие как покраснение кожи, выпадение волос, радиационные ожоги или острый лучевой синдром. Эти реакции являются более сильными при более высоких дозах и более высокой мощности дозы. Например, пороговая доза острого лучевого синдрома составляет приблизительно 1 Зв (1000 мЗв).
Если доза является низкой и/или воздействует длительный период времени (низкая мощность дозы), обусловленный этим риск существенно снижается, поскольку в этом случае увеличивается вероятность восстановления поврежденных тканей. Тем не менее риск долгосрочных последствий, таких как рак, который может проявиться через годы и даже десятилетия, существует. Воздействия этого типа проявляются не всегда, однако их вероятность пропорциональна дозе облучения. Этот риск выше в случае детей и подростков, так как они намного более чувствительны к воздействию радиации, чем взрослые.
Эпидемиологические исследования в группах населения, подвергшихся облучению, например людей, выживших после взрыва атомной бомбы, или пациентов радиотерапии, показали значительное увеличение вероятности рака при дозах выше 100 мЗв. В ряде случаев более поздние эпидемиологические исследования на людях, которые подвергались воздействию в детском возрасте в медицинских целях (КТ в детском возрасте), позволяют сделать вывод о том, что вероятность рака может повышаться даже при более низких дозах (в диапазоне 50-100 мЗв).
Дородовое воздействие ионизирующего излучения может вызвать повреждение мозга плода при сильной дозе, превышающей 100 мЗв между 8 и 15 неделей беременности и 200 мЗв между 16 и 25 неделей беременности. Исследования на людях показали, что до 8 недели или после 25 недели беременности связанный с облучением риск для развития мозга плода отсутствует. Эпидемиологические исследования свидетельствуют о том, что риск развития рака у плода после воздействия облучения аналогичен риску после воздействия облучения в раннем детском возрасте.
Общая характеристика
Солнце – это огромный разогретый шар из газа, чей диаметр оценивается в 1,392 млн км. Это в 109 раз больше диаметра нашей планеты. На звезду приходится 99,87% всей массы Солнечной системы.
С Земли кажется, что светило имеет желтый цвет, однако это иллюзия, связанная с влиянием атмосферы нашей планеты на солнечный свет. На самом деле Солнце излучает почти белый свет.
Солнце – это одна из сотен миллиардов звезд галактики Млечный путь. Ближайшая к Солнцу звезда – это Проксима Центавра, находящаяся от неё на расстоянии 4,24 световых лет. Для сравнения – расстояние от Земли до Солнца, принимаемое за астрономическую единицу (а.е.), солнечный свет проходит всего за 8,32 минут.
По астрономической классификации Солнце относится к типу «желтых карликов». Это значит, что оно не так и велико по сравнению с размерами других звезд, но довольно ярко светит. Наше светило входит 15% самых ярких звезд Млечного Пути. Вместе с тем в галактике есть звезды, чей радиус превышает солнечный в 2000 раз!
Источником тепла, излучаемого звездой, являются термоядерные реакции. В центре Солнца атомы водорода сливаются друг с другом, в результате чего образуется атом гелия и некоторое количество энергии. Это реакция называется протон-протонным циклом, на него приходится порядка 98% энергии, вырабатываемой светилом. Однако имеют место и иные реакции, в ходе которых «сгорают» такие элементы, как гелий, углерод, кислород, неон и кремний, а образуются металлы (железо, магний, кальций, никель) и другие элементы (сера). Все эти процессы называют звездным нуклеосинтезом.
Влияние Солнца на окружающие небесные тела огромно. Солнечный ветер (частицы вещества, излучаемого звездой), доминируют в межпланетном пространстве на расстоянии до 100-150 а.е. от светила. Считается, что гравитация нашей звезды определяет орбиты тел, находящихся даже на расстоянии светового года от неё (в облаке Оорта).
Само Солнце также вращается вокруг своей оси. Так как оно состоит из газов, то разные его слои вращаются с разной угловой скоростью. Если в районе экватора период обращения составляет 25 дней, то на полюсах он увеличивается до 34 дней. Более того, последние исследования показывают, что внутренние области совершают оборот значительно быстрее, чем внешняя оболочка.
Таблица «Основные физические характеристики Солнца»
Средний диаметр | 1 392 000 км |
Длина экватора | 4 370 000 км |
Масса | 1,9885•1030 кг (примерно 333 тысячи масс Земли) |
Площадь поверхности | 6 триллионов км² |
Объем | 1,41•1018 км³ |
Плотность | 1,409 г/м³ |
Температура на поверхности | 6000° С |
Температура в центре звезды | 15 700 000° С |
Период вращения вокруг своей оси (на экваторе) | 25,05 дней |
Период вращения вокруг своей оси (на полюсах) | 34,3 дня |
Наклон оси вращения к эклиптике | 7,25° |
Минимальное расстояние до Земли | 147 098 290 км |
Максимальное расстояние до Земли | 152 098 232 км |
Вторая космическая скорость | 617 км/с |
Ускорение свободного падения | 27,96g |
Светимость (мощность излучения) | 3,828•1026 Вт |
Что оно скрывает и почему так холодно?
Одной из фундаментальных загадок Солнца является температурная аномалия солнечной короны — проблема нагрева. Корона – последняя внешняя оболочка Солнца. Её температура — от 600 000 до 2 000 000 градусов, а в случае вспышек может достигать десятков миллионов градусов Кельвина. Несмотря на это, корона видна невооружённым глазом только во время полного солнечного затмения. Её яркость невелика, так как плотность вещества в короне очень мала. Парадокс заключается в том, что хотя и в недрах Солнца, где протекают термоядерные реакции синтеза, температура достигает миллионов градусов Кельвина, но между короной и недрами Солнца расположен еще один слой — фотосфера, температура которой на три порядка ниже — всего около 5-6 тысяч градусов Кельвина. Существует более десятка конкурирующих теорий, которые связывают этот эффект с трансформацией энергии магнитного поля в тепловую энергию. Солнечная корона, поскольку ее температура очень велика, интенсивно испускает лучи в ультрафиолетовом и рентгеновских диапазонах. Эти излучения не проходят сквозь земную атмосферу, но сейчас уже ученые могут исследовать их при помощи космических аппаратов.
Справка: Валерий Михайлович Накаряков — профессор Уорикского Университета (Великобритания), председатель Департамента физики Солнца Великобритании, эксперт в отделе грантов по астрономии, член совета Королевского астрономического общества и автор известного обзора «Корональные волны и колебания» в the Living Reviews of Solar Physic, а также автор более двухсот научных статей в рецензируемых журналах
Основные научные достижения профессора Накарякова связаны с магнитогидродинамической корональной сейсмологией. Текущая деятельность Накарякова, помимо преподавания, включает исследования по физике Солнца, руководство и участие в международных научных проектах Solar Orbiter, АРКА, HiRISE, SPARK и PROBA-3.
Автор текста:
Краснопевцева Екатерина Александровна,
2 августа, 2017 г.
Физика
космос
Подпишись на IQ.HSE
Интересные факты о звездах
- Наиболее распространенными звездами во вселенной являются красные карлики. По большей части это происходит из-за их низкой массы, что позволяет им жить в течение очень долгого времени, прежде чем превратиться в белых карликов.
- Почти все звезды во вселенной имеют одинаковый химический состав и реакция ядерного синтеза происходит в каждой звезде и является практически идентичной, определяясь лишь запасом топлива.
- Как мы знаем как и белый карлик, нейтронные звезды являются одним из конечных процессов эволюции звёзд, во многом возникая после взрыва сверхновой. Ранее зачастую тяжело было отличить белого карлика от нейтронной звезды, сейчас же ученые с помощью телескопов нашли различия в них. Нейтронная звезда собирает вокруг себя больше света и это легко увидеть с помощью инфракрасных телескопов. Восьмое место среди интересных фактов о звездах.
- Благодаря своей невероятной массе, согласно общей теории относительности Эйнштейна, черная дыра на самом деле, это изгиб пространства, таким образом, что все в пределах их гравитационного поля выталкивается к нему. Гравитационное поле черной дыры настолько сильно, что даже свет не может избежать ее.
- На сколько мы знаем когда у звезды заканчивается топливо, звезда может вырастать в размерах более чем в 1000 раз, далее она превращается в белого карлика, а из-за скорости реакции взрываются. Эта реакция более известна как сверхновая. Ученые предполагают, что в связи с этим долгим процессом и образуются, столь загадочные черные дыры.
- Многие звезды которые мы наблюдаем в ночном небе, могут казаться одним проблеском света. Однако это не всегда так. Большинство звезд, которые мы видим в небе на самом деле две звездные системы, или бинарные звездные системы. Они просто невообразимо далеко и нам кажется, что мы видим лишь одно пятнышко света.
- Звезды которые имеют самую короткую продолжительность жизни, являются наиболее массивными. Они представляют собой высокую массу химических веществ и как правило сжигают свое топливо гораздо быстрее.
- Не смотря на то что нам иногда кажется что Солнце и звезды мерцают, на самом деле это не так. Эффект мерцания является лишь светом от звезды, который в это время проходит через атмосферу Земли но еще не достиг наших глаз. Третье место среди самых интересных фактов о звездах.
- Расстояния, участвующие в оценке того, насколько далеко до звезды невообразимо огромны огромны. Рассмотрим пример: До ближайшая до земли звезда находится на расстоянии примерно 4.2 световых года, и что бы добраться до нее, даже на самом быстром нашем корабле, потребуется около 70 000 лет.
- Самая холодная известная звезда, это коричневый карлик «CFBDSIR 1458+10B» имеющий температуру всего около 100 °C. Самая горячая известная звезда, это голубой сверх гигант, находящийся в млечном пути под названием «Дзета Кормы» ее температура более 42 000 °C.
Источники
- http://kosmos-gid.ru/solar_system/solnce/http://www.examen.ru/add/manual/school-subjects/natural-sciences/astronomy/solncze-blizhajshaya-zvezda/izluchenie-solnczahttp://solarsoul.net/solnce-kak-istochnik-energhttp://www.examen.ru/add/manual/school-subjects/natural-sciences/astronomy/solncze-blizhajshaya-zvezda/evolyucziya-solnczahttp://100facts.ru/fakty-o-solnce.htmlhttps://ru.wikipedia.org/wiki/Солнце
Ядерные реакции в недрах звезд
Как известно, большую часть любой звезды составляет водород, а как известно из школьного курса химии, этот газ очень хорошо горит. Правда “звездное горение” водорода отличается от привычного нам, ведь кислорода там очень мало.
Горение — это химический процесс, то есть перетасовка атомов между молекулами. Но энергии химических реакций недостаточно для поддержания солнечного тепла. С другой стороны, при чудовищном жаре в недрах звезд существование молекул невозможно, они там распадаются. Там возможны только перетасовки тех составных частей, из которых образованы сложные системы, называемые ядрами атомов.
При температурах в миллионы градусов происходит распад не только атомов, но и их ядер и перетасовка продуктов распада, отчего образуются новые химические атомы с иными химическими свойствами. Такие перетасовки называются ядерными реакциями.
Физика ядерных реакций установила, что источником энергии в звездах, в том числе и в Солнце, является непрерывное образование атомов гелия за счет атомов водорода.
Известно, что атом гелия весит приблизительно в четыре раза больше, чем атом водорода. Однако мы не получим атом гелия, сложив попросту четыре атома водорода. Прежде чем материал четырех водородных атомов создаст атом гелия, должен произойти целый ряд чудесных превращений, напоминающих сказочные превращения оборотней, и непременными помощниками и толкачами в этих превращениях оказываются атомы углерода.
Но такие превращения не проходят безнаказанно: при этом выделяется и теряется энергия, а она имеет массу. Оттого-то масса атома гелия получается несколько меньше массы четырех атомов водорода. Так работает фабрика гелия в недрах гигантских звезд.
Как бы не были велики запасы солнечного водорода, они все-таки не бесконечны. Тревожиться на этот счет не стоит – при современной мощности излучения Солнцу хватит “топливо” ещё минимум на 10 миллиардов лет (при том, что само Солнце появилось примерно 5 миллиардов лет назад).
Что же происходит когда звезда начинает “стареть” и “выгорать”? Водород превращается в гелий, а гелий, вероятно, превращается в более тяжелые элементы; следовательно, химический состав Вселенной подвержен непрерывному изменению. Отсюда напрашивается и вывод – на заре зарождения нашей Вселенной, большая её часть состояла из водорода.
С течением времени доля тяжелых элементов по отношению к водороду увеличивается. Часть звездного вещества, обогащенная тяжелыми элементами, возвращается обратно в межзвездную газовую среду, может быть, в форме протуберанцев или более грандиозных взрывов, и поэтому сам межзвездный газ обогащается тяжелыми элементами. Однако даже в настоящее время атомов водорода в 2000 раз больше, чем атомов тяжелых элементов.
Это, как минимум, свидетельствует о том, что наша Вселенная ещё сравнительно молода и до её “старости” осталось не так уж мало времени.
Вариант 2
1. Как нас в темноте находят комары?
2. В какой цвет следует окрашивать холодильники и морозильники?
3. Два одинаковых термометра выставлены на солнце. Шарик одного из них закопчён. Какой термометр и почему покажет более высокую температуру?
4. Наверняка каждый из вас видел у красивых кастрюль и сковородок чёрные ручки. С какой целью их покрасили в чёрный цвет?
5. Наблюдения показывают, что в высокогорных районах живут насекомые с тёмными крыльями. Почему?
Ответы на самостоятельную работа по физике Излучение для 8 классаВариант 1
1. Энергия поступает из-за излучения. Перенос энергии в вакууме другими способами теплопередачи не осуществим.
2. Белый цвет плохо поглощает энергию излучения, хаты не нагреваются.
3. Потому что в Москве много людей и машин, которые превращают снег из белого в черный. Черный лучше поглощает тепло и поэтому снег быстрее тает.
4. Налить молоко когда вернетесь. Так как пока он без молока, он лучше поглощает тепло. Если кружку поставить на окно, где светит солнце, то кофе совсем не остынет.
5. Свернувшись в клубок животные сохраняют накопленное ранее тепло, уменьшив теплоотдачу. При этом уменьшается поверхность, контактирующая с воздухом.Вариант 2
1. По тепловому излучению, исходящему от тела. Во время сна человек быстрее теряет накопленное им тепло.
2. В белый, так как белый цвет плохо поглощает энергию излучения, не происходит нагрева.
3. Большую температуру покажет термометр с закопченным шариком, так как темные тела быстрее поглощают излучение от солнца.
4. Черные ручки быстрее поглощают тепло, и взявшись за них можно не обжечься.
5. Темные окрас крыльев помогает лучше поглощать тепловые лучи, температура в солнечный день у насекомых выше, чем у окружающей среды. В темное время суток они используют запасённую энергию.
Что заставляет Солнце излучать свет?
Древние мыслители думали, что поверхность солнца постоянно горит, и поэтому излучает свет и тепло. Однако это не так. Во-первых, причина излучения тепла и света находится намного глубже поверхности звезды, а именно в ядре . Ну и во-вторых, процессы происходящие в недрах звезд вовсе не похожи на горение.
Солнце содержит огромное количество атомов водорода.
Суть термоядерной реакции
Как правило, нейтральный атом водорода содержит положительно заряженный протон и отрицательно заряженный электрон, который вращается вокруг него. Когда этот атом встречается с другим атомом водорода, их соответствующие внешние электроны магнитно отталкивают друг друга, что предотвращает встречу одного из протонов друг с другом.
Но ядро Солнца сильно разогрето и находится под таким давлением, что атомы перемещаются с большой кинетической энергией, которая позволяет им преодолевать силу, связывающую их структуру, и электроны начинают отделяться от своих протонов.
То есть с научной точки зрения, — это реакция, при которой более легкие атомные ядра — обычно изотопы водорода (дейтерий и тритий) сливаются в более тяжелые ядра — гелия .
Данный процесс, происходящий в недрах звезд, называется термоядерный синтез.
Термоядерная реакция
Это процесс перехода материи в энергию, причем из минимального количества материи высвобождается невероятное количество энергии — каждую секунду Солнце излучает 3,9 × 10 в степени 26 Вт мощности.
Чтобы произошла термоядерная реакция необходима невероятно высокая температура — несколько миллионов градусов.
Как можно было догадаться солнце не вечно , оно со временем «спалит само себя». Ученые считают, что в нем еще хватит материи приблизительно на 4-6 миллиардов лет, т.е. где-то на столько же, сколько оно уже просуществовало.
Почему Солнце не взрывается?
Звезда живет за счет притяжения — вот почему они большие, огромные. Чтобы сжать звезду, нужна огромная сила притяжения, для того чтобы выделить невероятное количество энергии, достаточного для термоядерного синтеза. Вот в чем секрет звезд, вот почему они светятся.
Почему тогда ей просто не разлететься на куски?
Дело в том, что силы тяжести сжимают внешние слои звезды. Сила тяжести и синтез ведут грандиозную войну, притяжение которых хочет смять звезду и энергия синтеза, которая стремится разнести звезду изнутри, этот конфликт и это равновесие создают звезду.
Этот процесс происходит всю жизнь звезды. В результате создается свет и каждый луч совершает невероятное путешествие, проходя 1080 миллионов километров в час. За одну секунду, луч света может семь раз обогнуть землю, ни что во вселенной не движется так быстро.
Почему замедлилась скорость вращения Земли
Земля 3,5 млрд лет назад вращалась с невероятно высокой скоростью, но ситуация изменилась с появлением Луны. На Землю стала действовать ее гравитация. Кроме того, возникли приливы и отливы, которые также внесли свой вклад в замедление скорости вращения планеты.
Появлению современной жизни на планете мы обязаны Луне
Первое сильное замедление Земли произошло 2,5 млрд лет назад, и оно как раз совпадает с тем периодом, когда сильно увеличилось содержание кислорода в атмосфере. В результате произошла так называемая “кислородная катастрофа”. Затем замедление вращения прекратилось примерно на один миллиард лет. Это совпало с периодом, когда ускорение роста уровня кислорода в атмосфере отсутствовало. Около 600 миллионов лет назад вновь произошло замедление скорости вращения планеты, и в этот период времени также отмечается скачок уровня кислорода. К слову, скорость вращения нашей планеты нестабильна и по сей день. К примеру, в 2020 году было отмечено ее ускорение.
Сопоставив картину замедления вращения земли и насыщения атмосферы кислородом, ученые пришли к выводу, что между этими процессами есть взаимосвязь. Ключом к разгадке стали упомянутые выше исследования на Мидл-Айленде, которые описаны в журнале Nature Geoscience.
Из всего вышесказанного можно сделать вывод, что именно Луна стала толчком к зарождению жизни на Земле в том виде, в котором она существует сейчас. Правда, Луна повлияло лишь косвенно, непосредственное участие в синтезе кислорода принимало лишь Солнце и цианобактерии. Но парадокс в том, что Солнце может в будущем и лишить Землю кислорода, уничтожив растения и цианобактерии.
Рентгеновское излучение
- излучаются: энергия в виде фотонов
- проникающая способность:высокая
- облучение от источника: до сотен метров
- скорость излучения: 300 000 км/с
- ионизация: от 3 до 5 пар ионов на 1 см пробега
- биологическое действие радиации: низкое
Рентгеновское излучение — это энергетическое электромагнитное излучение в виде фотонов, возникающие при переходе электрона внутри атома с одной орбиты на другую.
Рентгеновское излучение сходно по действию с гамма излучением, но обладает меньшей проникающей способностью, потому что имеет большую длину волны.
Рассмотрев различные виды радиоактивного излучения, видно, что понятие радиация включает в себя совершенно различные виды излучения, которые оказывают разное воздействие на вещество и живые ткани, от прямой бомбардировки элементарными частицами (альфа, бета и нейтронное излучение) до энергетического воздействия в виде гамма и рентгеновского излечения.
Каждое из рассмотренных излучений опасно!
Эволюция Солнца
Предполагается, что Солнце родилось в сжавшейся газопылевой туманности. Есть, по крайней мере, две теории относительно того, что дало толчок первоначальному сжатию туманности. Согласно одной из них предполагается, что один из спиральных рукавов нашей галактики проходил через нашу область пространства примерно 5 млрд. лет назад. Это могло вызвать легкое сжатие и привести к формированию центров тяготения в газо-пылевом облаке. Действительно, сейчас вдоль спиральных рукавов мы видим довольно большое количество молодых звезд и светящихся газовых облаков. Другая теория предполагает, что где-то недалеко (по масштабам Вселенной, конечно) взорвалась древняя массивная сверхновая звезда. Возникшая ударная волна могла быть достаточно сильной, чтобы инициировать звездообразование в «нашей» газо-пылевой туманности. В пользу этой теории говорит то, что ученые, изучая метеориты, обнаружили довольно много элементов, которые могли образоваться при взрыве сверхновой.
Далее, когда столь грандиозная масса (2*1030кг) сжималась под действием сил гравитации, она сама себя сильно разогрела внутренним давлением до температур, при которых в ее центре смогли начаться термоядерные реакции. В центральной части температура на Солнце равна 15000000K, а давление достигает сотни миллиардов атмосфер. Так зажглась новорожденная звезда (не путайте с новыми звездами).
В основном Солнце в начале своей жизни состояло из водорода. Именно водород в ходе термоядерных реакций превращается в гелий, при этом выделяется энергия, излучаемая Солнцем. Солнце принадлежит к типу звезд, называемых желтыми карликами. Оно – звезда главной последовательности и относится к спектральному классу G2. Масса одинокой звезды довольно однозначно определяет ее судьбу. За время жизни (~5 миллиардов лет), в центре нашего светила, где температура достаточно высока, сгорело около половины всего имеющегося там водорода. Примерно столько же, 5 миллиардов лет, Солнцу осталось жить в таком виде, к которому мы с вами привыкли.
После того, как в центре светила водород будет на исходе, Солнце увеличится в размерах, станет красным гигантом. Это сильнейшим образом скажется на Земле: повысится температура, океаны выкипят, жизнь станет невозможной. Затем, исчерпав «топливо» совсем и не имея более сил держать внешние слои красного гиганта, наша звезда закончит свою жизнь как белый карлик, порадовав неведомых нам внеземных астрономов будущего новой планетарной туманностью, форма которой может оказаться весьма причудливой благодаря влиянию планет.
Смерть Солнца по времени
- Уже через 1,1 млрд. лет, светило увеличит свою яркость на 10 %, что повлечет сильное нагревание Земли.
- Через 3,5 млрд. лет, яркость увеличиться на 40%. Начнут испаряться океаны и наступит конец всему живому на Земле.
- По прошествии 5,4 млрд. лет, в ядре звезды закончится топливо – водород. Солнце начнет увеличиваться в размерах, за счет разрежения внешней оболочки и нагрева ядра.
- Через 7,7 млрд. лет, наша звезда превратиться в красного гиганта, т.к. увеличиться в 200 раз из-за этого будет поглощена планета Меркурий.
- В конце, через 7,9 млрд. лет, внешние слои звезды настолько разредятся, что распадаться на туманность, а в центре бывшего Солнца будет маленький объект – белый карлик. Так закончит существование наша Солнечная система. Все строительные элементы, оставшиеся после распада, не пропадут, они станут основой для зарождения новых звезд и планет.
Как продолжительность суток повлияла на кислород в атмосфере
Джудит Клатт с группой исследователей из Мичиганского университета изучали воду в воронке на Мидл-Айленде (острове на озере Гурон). В нее со дна просачиваются грунтовые воды, при этом уровень содержания кислорода крайне низкий. Другими словами, условия напоминают те, которые были на нашей планете в течение миллиардов лет до появления в атмосфере кислорода.
В воде живут в основном два вида микробов — пурпурные цианобактерии, которые производят кислород, а также белые сероокисляющие бактерии. Первые генерируют энергию с помощью солнечного света, вторые — с помощью серы. Чтобы выжить, эти бактерии каждый день исполняют своего рода «танец».
Почти весь кислород в атмосфере появился благодаря цианобактериям
От заката до рассвета бактерии, поедающие серу, находится на поверхности, то есть над цианобактериями, блокируя им доступ к солнечному свету. Когда утром выходит солнце, поедатели серы движутся вниз, а цианобактерии поднимаются на поверхность, чтобы начать фотосинтез и производить кислород. Однако с момента восхода солнца и до того, как начинается процесс фотосинтеза, проходит несколько часов. То есть оказалось, что цианобактерии любят “поздно вставать”. В таком случае продолжительность светового дня непосредственно влияет на количество вырабатываемого бактериями кислорода.
Изменение климата: заморозка или потепление?
Изменения активности Солнца влияют на климат Земли. Существуют научные теории, которые прослеживают связь между супервспышками и массовыми вымираниями видов.
«Самое известное вымирание — динозавров. Но до этого были еще вымирания ранее аналогичные, которым ищут причину: то ли в резкой смене климата, то в падении метеорита. Одной из возможных причин может быть супервспышка на Солнце, энергия и масштабы которой позволили солнечному излучению проникнуть до поверхности Земли и существенно повредить, уничтожить биосферу», — рассказывает Сергей Богачев.
Ученые отмечают, что ледниковые периоды совпадали с понижением солнечной активности. Есть мнение, что в будущем светило может попросту нас заморозить —его активность снизится, и наступит новый ледниковый период.
«Ледниковые периоды совпадали с понижениями солнечной активности. В частности, был последний такой период: Маундеровский минимум. Галилей открыл солнечные пятна больше чем 300 лет назад. Их несколько десятилетий наблюдали, а потом вдруг пятна исчезли», — поясняет Владимир Кузнецов, директор ИЗМИРАН.
Ученые считают, что подобное похолодание должно повториться в будущем. Правда, назвать точный год или хотя бы век, когда стартует новый малый ледниковый период, они пока не могут.
По одной из самых пессимистичных гипотез, Солнце в конечном итоге уничтожит жизнь на Земле, подогрев ее. Незаметно для нас огромный космический термоядерный реактор разогревается — этот процесс растянут на миллиарды лет.
«Разогрев Солнца постепенно будет приводить к тому, что за каждые примерно 100 млн лет температура на Земле будет повышаться примерно на 1 градус. То есть через миллиард лет уже условия будут некомфортные для жизни. Это и повышение средней температуры на 10 градусов, и испарение воды — испаряясь, она еще больше нагреет Землю», — отмечает Леонид Ледедцов, научный сотрудник отдела физики Солнца Государственного астрономического института им. П. К. Штернберга.
Некоторые ученые предсказывают нашей планете судьбу Венеры — не случайно ее называют сестрой Земли. Согласно гипотезам, на ней тоже были океаны. Но так как ее орбита лежит ближе к Солнцу, Венеру быстро захлестнул парниковый эффект: на месте океанов он оставил пустыню, покрытую облаками серной кислоты, и атмосферу, состоящую почти полностью из углекислого газа. В похожей ситуации в будущем, вероятно, окажется и Земля.
Перспектива апокалипсиса, хоть и отдаленного во времени, заставляет ученых разрабатывать план B и искать «запасную планету» — недаром США вкладывают огромные средства в марсианскую программу и всерьез говорят о колонизации космоса. Сейчас этот план спасения человечества кажется абсолютной фантастикой, но законам физики он не противоречит. Наука уже не раз доказывала, что нет ничего невозможного, а значит, есть и шанс не дать Солнцу уничтожить нашу цивилизацию.
Подробнее смотрите в передаче «Угрозы современного мира» на канале «Наука».
Кислород в атмосфере земли — что ускорило его появление?
Уровень кислорода на Земле повышался не равномерно, а ступенчато, то есть в какие-то моменты скорость насыщения им атмосферы увеличивалась. Отсюда и возникло предположение, что этому процессу что-то поспособствовало.
Группа ученых, которую возглавил Джудит Клатт из Института морской микробиологии Макса Планка, выдвинула интересное объяснение произошедшему на планете несколько миллиардов лет назад. По мнению ученых микроорганизмы смогли выделять больше кислорода в атмосферу в результате увеличения продолжительности светового дня. В те далекие времена Земля вращалась значительно быстрее, чем сейчас. Поэтому продолжительность суток была короче — около 6 часов. Соответственно световой день длился всего несколько часов.
Отсюда возникает вопрос, какая разница выделяющим кислород бактериям — длинный день на Земле и длинная ночи или короткий день и короткая ночь? Ведь количество поступающего солнечного света на землю не изменилось. Но, как выяснилось, разница все же есть.
Насыщение атмосферы кислородом ускорилось благодаря замедлению скорости вращения земли