Таблица расчета мощности и напряжения: определяем число ватт и ампер

Содержание

Формулы расчета силы тока

Электрический ток — это направленное упорядоченное движение заряженных частиц. Сила тока (I) — это, количество тока, прошедшего за единицу времени сквозь поперечное сечение проводника. Международная единица измерения — Ампер (А / A).

— Сила тока через мощность и напряжение (постоянный ток): I = P / U — Сила тока через мощность и напряжение (переменный ток однофазный): I = P / (U × cosφ) — Сила тока через мощность и напряжение (переменный ток трехфазный): I = P / (U × cosφ × √3) — Сила тока через мощность и сопротивление: I = √(P / R) — Сила тока через напряжение и сопротивление: I = U / R

  • P – мощность, Вт;
  • U – напряжение, В;
  • R – сопротивление, Ом;
  • cos φ – коэффициент мощности.

Коэффициент мощности cos φ – относительная скалярная величина, которая характеризует насколько эффективно расходуется электрическая энергия. У бытовых приборов данный коэффициент практически всегда находится в диапазоне от 0.90 до 1.00.

Источник

Виды мощностей

Мощностью называется измеряемая физическая величина, которая равна скорости изменения с преобразованием, передачей или потреблением системной энергии. Согласно более узкому понятию, это показатель, который равен отношению затраченного времени на работы к самому периоду, который тратится на работу. Обозначается в механике символом N. В электротехнической науке используется буква P. Нередко можно увидеть также символ W, от слова ватт.

Мощность переменного тока -это произведение силы тока с напряжением и косинусом сдвига фаз. При этом беспрепятственно можно посчитать только активную и реактивную разновидность. Узнать полное мощностное значение можно через векторную зависимость этих показателей и площади.

Основные мощностные разновидности

Активная мощность

Активной называется полезная сила, определяющая процесс прямого преобразования электроэнергии в необходимый вид силы. В каждом электроприборе преобразовывается она по-своему. К примеру, в лампочке получается свет с теплом, в утюге — тепло, а в электрическом двигателе — механическая энергия. Соответственно, показывает КПД устройства.

Активная разновидность

Реактивная мощность

Реактивной называется та, которая определяется при помощи электромагнитного поля. Образуется при работе электроприборов

Обратите внимание! Это вредная и паразитная мощностная характеристика, которая определяется тем, каков характер нагрузки. Для лампочки она равняется нулю, а для электродвигателя она может быть равна большим значением. Разница между величинами в том, что активно действующая мощностная характеристика показывает КПД устройств, а реактивная является передачей этого КПД

Разница также наблюдается в определении, символе, формуле и значимости

Разница между величинами в том, что активно действующая мощностная характеристика показывает КПД устройств, а реактивная является передачей этого КПД. Разница также наблюдается в определении, символе, формуле и значимости.

Обратите внимание! Что касается значения, то вторая нужна лишь для того, чтобы управлять создавшимся напряжением от первой величины и преодолевать мощностные колебания. Обе измеряются в ваттах и имеют большое значение в электромагнитном излучении, механической форме генератора или акустической волне. Активно применяются в промышленности

Активно применяются в промышленности.

Реактивная разновидность

Полная мощность

Полная — это сумма активной с реактивной мощностью. Равна сетевому мощностному показателю. Это произведение напряжения с током в момент игнорирования фазы угла между ними. Вся рассеиваемая с поглощаемой и возвращаемой энергией — это полная энергия.

Это произведение напряжения и тока, единица измерения которого это ватт, перемноженный на ампер. При активности цепи, полная равняется активной. Если речь идет об индуктивной или емкостной схеме, то полная больше, чем активная.

Полная разновидность

Комплексная мощность

Это сумма всех мощностных показателей фаз источника электроэнергии. Это комплексный показатель, модуль которого равняется полному мощностному показателю электроцепи. Аргументом является фазовый сдвиг между электротоком с сетевым напряжением. Может быть выражена уравнением, где суммарный мощностный показатель, который генерируют источники электроэнергии, равен суммарному мощностному показателю, который потребляется в электроцепи.

Обратите внимание! Вычисляется посредством использования соответствующей формулы. Так, необходимо комплексное напряжение перемножить на комплексны ток или же удвоенное значение комплексного тока перемножить на импеданс. Также можно удвоенное значение комплексного напряжения поделить на удвоенное значение импеданса

Также можно удвоенное значение комплексного напряжения поделить на удвоенное значение импеданса.

Комплексная разновидность

Определение

Сила тока в проводнике – это количество электричества, перемещаемое через поперечное сечение за единичный интервал времени. Чтобы увеличить данное значение, нужно изъять из схемы лампу либо повысить магнитное поле, создаваемое батарейкой.

Единицей измерения силы электрического тока по международной системе СИ (Systеme International) считается ампер (А), названный по фамилии выдающегося французского научного деятеля XIX века Андре-Мари Ампера.

Дополнительная информация. Ампер – достаточно внушительная электрическая мера. Для жизни человека представляет смертельную опасность токовая величина до 0,1A. Горящая бытовая лампочка на 100 Вт пропускает электричество примерно в 0,5 А. В комнатном обогревателе это значение доходит до 10 А, портативному калькулятору будет достаточной одна тысячная доля ампера.

В электротехнической практике замеры малых величин могут выражаться в микро,- и миллиамперах.

Силу тока находят измерительным приспособлением (ампер,- или гальванометром), последовательно включая его в нужный участок цепи. Малые величины измеряют микро,- или миллиамперметром. Основными методами нахождения количества электричества при помощи приборов являются:

  • Магнитоэлектрический – при неизменной токовой величине. Такой способ отличают повышенная точность и малое потребление энергии;
  • Электромагнитный – для стационарных и изменяющихся величин. При использовании этого метода сила тока в цепи находится в результате преобразования магнитного поля в выходной сигнал модуляционного датчика;
  • Косвенный – основан на замере напряжения при известном сопротивлении. Далее вычисляют искомую величину по закону Ома, показанному ниже.

Согласно определению, силу тока (I) можно найти по формуле:

  • q – заряд, идущий поперек проводника (Кл);
  • t – длительность времени, затраченного на перемещение частиц (с).

Формула силы тока читается следующим образом: необходимая величина I – это отношение прошедшего через проводник заряда к используемому отрезку времени.

Обратите внимание! Сила тока определяется не только через заряд, но и расчетными формулами на основе закона Ома, который гласит: сила электричества прямо пропорциональна напряжению проводника и обратно пропорциональна его сопротивлению. Формула закона Ома поможет найти силу тока, которая выглядит отношением:

Формула закона Ома поможет найти силу тока, которая выглядит отношением:

  • U – напряжение (В);
  • R – сопротивление (Ом).

Эта установленная связь физических величин используется для различных расчетов:

  • учитывающих характеристики источника питания;
  • для вычислений в цепях токов любого направления;
  • для многофазных цепей.

Обратите внимание! Если проводники соединяются последовательным способом, то электричество каждого из них равно. Параллельное соединение предусматривает количество амперов, которое складывается из суммы токовых значений каждого проводника

Как найти мощность (скорость передачи или преобразования энергии) с помощью токового значения? Для этого нужно воспользоваться формулой:

Р = U*I, где умножаемые значения упоминались выше.

При постоянном и переменном электричестве его сила бывает разного характера. Для цепи с движением частиц в постоянном направлении все параметры остаются неизменными. Переменный вид способен менять свою величину при одном и том же или меняющемся направлении. Количество электричества при этом бывает:

  • мгновенным, зависящим от амплитудной величины и частоты колебаний, связанной с угловой частотой;
  • амплитудным – максимальным значением мгновенной силы тока за определенный период;
  • эффективным – при превращении энергии количество теплоты от обоих видов тока одинаково.

Электросети бытового назначения пропускают переменный ток, преобразующийся в постоянный при прохождении через блок питания электроприбора (компьютера, телевизора).

Величина силы тока – понятие, тесно связанное с электрической энергией, имеющей огромное значение для сферы быта, народного хозяйства, объектов стратегического назначения. Более того, электроэнергетика является экономической основой государства и определяющим вектором развития внутри страны и на международном уровне.

Категории элементов и устройств электрической цепи

Для условного изображения определенной цепи применяют специальную схему. Кроме отдельных физических компонентов, она содержит сведения о направлении (силе) токов, уровнях напряжения и другую информацию. Качественная модель показывает реальные процессы с высокой точностью.

Компоненты электрической цепи:

  • источник постоянного или переменного тока (Е) – аккумулятор или генератор, соответственно;
  • пассивные элементы (R) – резисторы;
  • компоненты с индуктивными (L) и емкостными (С) характеристиками;
  • соединительные провода.

Типовые названия

На рисунке обозначены:

  • ветви – участки цепи с одним током;
  • узлы – точки соединения нескольких ветвей;
  • контур – замкнутый путь прохождения тока.

При решении практических задач выясняют, как узнать силу тока в отдельных ветвях. Полученные значения используют для анализа электрических параметров. В частности, можно определять падение напряжения на резисторе, мощность потребления подключенной нагрузки. При расчете цепей переменного тока приходится учитывать переходные энергетические процессы, влияние частоты.

Использование плотности тока на практике

Очень часто возникает вопрос о возможности использования конкретного провода для тех или иных целей. То есть, способен ли он выдержать определенную нагрузку

В этих случаях, очень важно определить плотность электротока с допустимой величиной

Данный показатель очень важен, поскольку в каждом проводнике возникает сопротивление току, протекающему через него. Происходят потери тока, из-за чего проводник начинает нагреваться. При слишком больших потерях, наступает критическое нагревание, вызывающее расплавление проводника. Чтобы исключить подобные ситуации, каждому прибору или потребителю устанавливается наиболее оптимальная плотность тока, формула которой позволит рассчитать .

Когда возникает необходимость выбрать нужное сечение провода или кабеля, необходимо учитывать допустимое значение плотности электротока. Для практических расчетов во время проектирования используются специальные таблицы и формулы, позволяющие получить желаемый результат.

Для разных существуют различные значения плотности. В настоящее время используются только медные провода, в которых плотность электротока не должна превышать 6-10 А/мм2. Это особенно актуально для долговременной эксплуатации, когда проводке обеспечивается облегченный режим. Допускается эксплуатация и при повышенных нагрузках, только на очень короткое время.

Электрическим током называется направленное (упорядоченное) движение заряженных частиц.

Электрический ток в проводниках различного рода представляет собой либо направленное движение электронов в металлах (проводники первого рода), имеющих отрицательный заряд, либо направленное движение более крупных частиц вещества – ионов, имеющих как положительный, так и отрицательный заряд – в электролитах (проводники второго рода), либо направленное движение электронов и ионов обоих знаков в ионизированных газах (проводники третьего рода).

За направление электрического тока условно принято направление движения положительно заряженных частиц.

Для существования электрического тока в веществе необходимо:

  1. наличие заряженных частиц, способных свободно перемещаться по проводнику под действием сил электрического поля;
  2. наличие источника тока, создающего и поддерживающего в проводнике в течение длительного времени электрическое поле.

Количественными характеристиками электрического тока являются сила тока I и плотность тока j.

Сила тока – скалярная физическая величина, определяемая отношением заряда q, проходящего через поперечное сечение проводника за некоторый промежуток времени t, к этому промежутку времени.

Единицей силы тока в СИ является ампер (А).

Если сила тока и его направление со временем не изменяются, то ток называется постоянным.

Единица силы тока – основная единица в СИ 1 А – есть сила такого неизменяющегося тока, который, проходя по двум бесконечно длинным параллельным прямолинейным проводникам очень маленького сечения, расположенным на расстоянии 1 м друг от друга в вакууме, вызывает силу взаимодействия между ними 2·10 -7 Н на каждый метр длины проводников.

Рассмотрим, как зависит сила тока от скорости упорядоченного движения свободных зарядов.

Выделим участок проводника площадью сечения S и длиной l (рис. 1). Заряд каждой частицы q 0 . В объеме проводника, ограниченном сечениями 1 и 2, содержится nSl частиц, где n – концентрация частиц. Их общий заряд

Если средняя скорость упорядоченного движения свободных зарядов , то за промежуток времени

все частицы, заключенные в рассматриваемом объеме, пройдут через сечение 2. Поэтому сила тока:

Таким образом, сила тока в проводнике зависит от заряда, переносимого одной частицей, их концентрации, средней скорости направленного движения частиц и площади поперечного сечения проводника.

Заметим, что в металлах модуль вектора средней скорости упорядоченного движения электронов при максимально допустимых значениях силы тока ~ 10 -4 м/с, в то время как средняя скорость их теплового движения ~ 10 6 м/с.

J – это векторная физическая величина, модуль которой определяется отношением силы тока I в проводнике к площади S поперечного сечения проводника, т.е.

В СИ единицей плотности тока является ампер на квадратный метр (А/м 2).

Как следует из формулы (1),

направление вектора плотности тока совпадает с направлением вектора скорости упорядоченного движения положительно заряженных частиц. Плотность постоянного тока постоянна по всему поперечному сечению проводника.

Электрический ток

Электрический ток – это физический процесс направленного движения заряженных частиц под действием электромагнитного поля от одного полюса замкнутой электрической цепи к другому. В качестве частиц, переносящих заряд, могут выступать электроны, протоны, ионы и дырки. При отсутствии замкнутой цепи ток невозможен. Частицы способные переносить электрические заряды существуют не во всех веществах, те в которых они есть, называются проводниками и полупроводниками. А вещества, в которых таких частиц нет – диэлектриками.

Принято считать направление тока от плюса к минусу, при этом электроны движутся от минуса к плюсу!

Единица измерения силы тока – Ампер (А

). В формулах и расчетах сила тока обозначается буквойI . Ток в 1 Ампер образуется при прохождении через точку электрической цепи заряда в 1 Кулон (6,241·10 18 электронов) за 1 секунду.

Вновь обратимся к нашей аналогии вода – электричество. Только теперь возьмем два резервуара и наполним их равным количеством воды. Отличие между баками в диаметре выходной трубы.

Откроем краны и убедимся, что поток воды из левого бака больше (диаметр трубы больше), чем из правого. Такой опыт – явное доказательство зависимости скорости потока от диаметра трубы. Теперь попробуем уравнять два потока. Для этого добавим в правый бак воды (заряд). Это даст большее давление (напряжение) и увеличит скорость потока (ток). В электрической цепи в роли диаметра трубы выступает сопротивление.

Проведенные эксперименты наглядно демонстрируют взаимосвязь между напряжением, током и сопротивлением. Подробнее о сопротивлении поговорим чуть позже, а сейчас еще несколько слов о свойствах электрического тока.

Если напряжение не меняет свою полярность, плюс на минус, и ток течет в одном направлении, то – это постоянный ток и соответственно постоянное напряжение. Если источник напряжения меняет свою полярность и ток течет то в одном направлении, то в другом – это уже переменный ток и переменное напряжение. Максимальные и минимальные значения (на графике обозначены как Io

) – этоамплитудные или пиковые значения силы тока. В домашних розетках напряжение меняет свою полярность 50 раз в секунду, т.е. ток колеблется то туда, то сюда, получается, что частота этих колебаний составляет 50 Герц или сокращенно 50 Гц. В некоторых странах, например в США принята частота 60 Гц.

Последовательное и параллельное соединение

При последовательном подключении потребителей электроэнергии, например ламп накаливания или резисторов, сила тока в каждом потребителе одинаковая, а напряжение будет будет падать (снижаться) на каждом из потребителей. При последовательном соединении сопротивления всех потребителей складываются.


При последовательном соединении сопротивления складываются

Последовательное соединение резисторов используют в делителе напряжения. При параллельном подключении потребителей электроэнергии, к каждому потребителю прикладывается одинаковое напряжение, а сила тока в каждом из потребителей будет отличаться. Каждый потребляет ток в соответствии с собственным сопротивлением.


Общее сопротивление цепи, состоящей из двух потребителей

Подавляющее количество электроэнергии сегодня производится на электростанциях (атомные, тепловые, гидроэлектростанции), вырабатывающих электроэнергию с помощью генераторов и передают ее по линиям электропередач на большие расстояния. В качестве альтернативных источников энергии все больше используют возобновляемые источники — энергию солнца, ветра, приливов и отливов и т.д.

Приборы для измерения силы тока и напряжения

Вот какие измерительные инструменты помогут электрику в данном вопросе:

Амперметр

Существует несколько разновидностей данного прибора, которые различаются принципом действия:

  1. Электромагнитный: внутри имеется катушка, протекаю по которой ток создает электромагнитное поле. Это поле втягивает в катушку железный сердечник, связанный со стрелкой. Чем большей будет сила тока, тем сильнее будет втягиваться сердечник и тем более будет отклоняться стрелка.
  2. Тепловой: в приборе установлена натянутая металлическая нить, связанная со стрелкой. Протекающий ток вызывает нагрев нити, степень которого зависит от силы тока. А чем сильнее нагреется нить, тем сильнее она удлинится и провиснет, соответственно, тем сильнее отклонится стрелка.
  3. Магнитоэлектрический: в приборе имеется постоянный магнит, в поле которого находится связанная со стрелкой алюминиевая рамка с намотанной на нее проволокой. При протекании через проволоку электрического тока рамка в магнитном поле стремится повернуться на некоторый угол, который зависит от силы протекающего тока. А от угла поворота зависит положение стрелки, отмечающей на шкале значение силы тока.
  4. Электродинамический: внутри прибора имеются две последовательно соединенные катушки, одна из которых является подвижной. При протекании по катушкам тока в результате взаимодействия возникающих при этом электромагнитных полей подвижная катушка стремится повернуться относительно неподвижной и при этом тянет за собой стрелку. Угол поворота будет зависеть от силы протекающего тока.
  5. Индукционный: ток пропускается через обмотки неподвижных катушек, соединенных магнитной системой. В результате образуется вращающееся или бегущее электромагнитное поле, воздействующее с некоторой силой (зависит от силы тока) на подвижный металлический цилиндр или диск. Тот связан со стрелкой.
  6. Электронный: такие приборы еще называют цифровыми. Внутри имеется электрическая схема, информация выводится на жидкокристаллический дисплей.

Мультиметр для измерения силы тока

Так принято называть универсальный электронный измеритель параметров тока. Он может переключаться как в режим амперметра, так и в режим вольтметра, омметра и мегомметра (измеряются сопротивления большой величины, обычно изоляции).

Измерение силы тока мультиметром

Результаты измерений отображаются на жидко-кристаллическом дисплее. Для работы прибору необходимо питание от батареек.

Тестер

По функциональности это тот же мультиметр, но аналоговый. Результаты измерений обозначаются на шкале при помощи стрелки, батарейки требуются только при наличии омметра.

Измерительные клещи

Измерительные клещи более практичны. Ими нужно просто зажать участок тестируемого провода, после чего прибор покажет силу протекающего в нем тока.

При этом нужно учитывать, что в клещах должен оказаться только проверяемый проводник. Если зажать несколько проводников, прибор покажет геометрическую сумму токов в них.

Измерительные клещи

Таким образом, при помещении в токоизмерительные клещи 1-фазного провода целиком прибор покажет «нуль», так как в фазном и нулевом проводниках протекают разнонаправленные токи одинаковой величины.

Методы измерения

Первые три прибора для проведения измерений должны быть включены в цепь нагрузки последовательно с ней, то есть в разрыв провода. Для 1-фазной сети это может быть как фазный, так и нулевой провод. Для 3-фазной — только фазный, так как в нулевом протекает геометрическая сумма токов во всех фазах (при одинаковой нагрузке равна нулю).

  1. В отличие от вольтметра (измеритель напряжения), амперметр нельзя использовать без нагрузки, иначе получится короткое замыкание.
  2. Щупами прибора можно касаться проводов или контактов только при отсутствии напряжения, то есть тестируемая линия должна быть обесточена. В противном случае между близко расположенными щупом и проводом может возникнуть дуга с выделением тепла, достаточного для расплавления металла.

Все измерительные приборы имеют переключатель диапазона, которым регулируется чувствительность.

Заметим, что ток, потребляемый некоторыми приборами, такими как телевизионная и компьютерная техника, энергосберегающие и светодиодные лампы, не является синусоидальным.

Поэтому некоторые измерительные приборы, принцип действия которых ориентирован на переменное напряжение, могут определять значение силы такого тока с ошибкой.

Что такое единица измерения силы тока

Ниже отмечены основные параметры типичной электрической цепи (в скобках приведены стандартные обозначения для формул и сокращенные наименования):

  • единицы измерения силы тока (I) – Амперы (А);
  • напряжения (U) – Вольты (В);
  • сопротивления (R) – Омы (Ом).

Для полноты изучения необходимо вспомнить о количественном показателе, мощности (W). Ее измеряют в Ваттах (Вт).

Если продолжить аналог с водой, можно сделать несколько важных промежуточных выводов. Чтобы пропустить больше жидкости (электронов) увеличивают диаметр трубы (проводника). Это решение сопровождается увеличением тока. Напряжение измеряют разницей потенциалов между двумя точками цепи. Для его увеличения изменяют нужным образом соотношение зарядов.

Сопротивление препятствует прохождению электронов. Этот процесс сопровождается преобразованием электрической энергии в тепловую. В некоторых устройствах данная особенность выполняет полезные функции.

Потребляемую мощность можно сравнить с количеством воды, которая поступает через определенное сечение транспортной системы за единицу времени.

Сила тока – что это

Рассматривая количество электроэнергии, которое протекает через определенный проводник за различные временные интервалы, станет ясно, что за малый промежуток ток протечет более интенсивно, поэтому нужно ввести еще одно определение. Оно означает силу тока, протекающую в проводнике за секунду времени.

Если сформулировать определение на основе всего вышеперечисленного, то сила электротока – это количество электроэнергии, проходящее через поперечное сечение проводника за секунду. Маркируется величина латинской буквой «I».

Важно! Специалисты определяют силу электротока, равную одному амперу, когда через поперечное сечение проводника проходит один кулон электричества за одну секунду. Часто в электротехнике можно увидеть другие единицы измерения силы электротока: миллиамперы, микроамперы и так далее

Связано это с тем, что для питания современных схем таких величин будет вполне достаточно. 1 ампер – это очень большое значение, так как человека может убить ток в 100 миллиампер, и потому электророзетка для человека ничуть не менее опасна, чем, к примеру, несущийся на скорости автомобиль

Часто в электротехнике можно увидеть другие единицы измерения силы электротока: миллиамперы, микроамперы и так далее. Связано это с тем, что для питания современных схем таких величин будет вполне достаточно. 1 ампер – это очень большое значение, так как человека может убить ток в 100 миллиампер, и потому электророзетка для человека ничуть не менее опасна, чем, к примеру, несущийся на скорости автомобиль.

Если известно количество электроэнергии, которое прошло через проводник за конкретный промежуток времени, то силу (не мощность) можно вычислить по формуле, изображенной на картинке.

Когда электросеть замкнута и не имеет никаких ответвлений, через каждое поперечное сечение за секунду протекает одно и то же количество электричества. Теоретически это обосновывается так: заряд не может накапливаться в определенном месте, и сила электротока везде одинакова.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. На рисунке изображёна схема участка электрической цепи АВ. В эту цепь параллельно включены два резистора сопротивлением ​ \( R_1 \) ​ и ​ \( R_2 \) ​. Напряжения на резисторах соответственно ​ \( U_1 \) ​ и ​ \( U_2 \) ​.

По какой из формул можно определить напряжение U на участке АВ?

2. На рисунке изображёна схема электрической цепи, содержащая два параллельно включённых резистора сопротивлением ​ \( R_1 \) ​ и ​ \( R_2 \) ​. Какое из приведённых ниже соотношений справедливо для такого соединения резисторов?

1) ​ \( I=I_1=I_2 \) ​ 2) \( I=I_1+I_2 \) 3) \( U=U_1+U_2 \) 4) \( R=R_1+R_2 \)

3. На рисунке изображена схема электрической цепи. В эту цепь последовательно включены два резистора сопротивлением R> и R2. Какое из приведённых ниже соотношений справедливо для такого соединения резисторов?

4. На рисунке изображена схема электрической цепи. В эту цепь последовательно включены два резистора сопротивлением ​ \( R_1 \) ​ и ​ \( R_2 \) ​. Какое из приведённых ниже соотношений справедливо для такого соединения резисторов?

5. На рисунке изображена схема электрической цепи. В эту цепь параллельно включены два одинаковых резистора сопротивлением ​ \( R_1 \) ​. По какой из формул можно определить общее сопротивление цепи ​ \( R \) ​?

6. Общее сопротивление участка цепи, изображённого на рисунке, равно 9 Ом. Сопротивления резисторов ​ \( R_1 \) ​ и ​ \( R_2 \) ​ равны. Чему равно сопротивление каждого резистора?

1) 81 Ом 2) 18 Ом 3) 9 Ом 4) 4,5 Ом

7. Чему равно сопротивление участка цепи, содержащего три последовательно соединенных резистора сопротивлением по 9 Ом каждый?

1) 1/3 Ом 2) 3 Ом 3) 9 Ом 4) 27 Ом

8. Чему равно общее сопротивление участка цепи, изображённого на рисунке, если ​ \( R_1 \) ​ = 1 Ом, ​ \( R_2 \) ​ = 10 Ом, ​ \( R_3 \) ​ = 10 Ом, ​ \( R_4 \) ​ = 5 Ом?

1) 9 Ом 2) 11 Ом 3) 16 Ом 4) 26 Ом

9. Чему равно общее сопротивление участка цепи, изображённого на рисунке, если \( R_1 \) = 1 Ом, \( R_2 \) = 3 Ом, \( R_3 \) = 10 Ом, \( R_4 \) = 10 Ом?

1) 9 Ом 2) 10 Ом 3) 14 Ом 4) 24 Ом

10. Если ползунок реостата (см. схему) переместить влево, то сила тока

1) в резисторе ​ \( R_1 \) ​ уменьшится, а в резисторе ​ \( R_2 \) ​ увеличится 2) увеличится в обоих резисторах 3) в резисторе ​ \( R_1 \) ​ увеличится, а в резисторе ​ \( R_2 \) ​ уменьшится 4) уменьшится в обоих резисторах

11. На рисунке изображена электрическая цепь, состоящая из источника тока, резистора и реостата. Как изменяются при передвижении ползунка реостата вправо его сопротивление, сила тока в цепи и напряжение на резисторе 1?

Для каждой физической величины определите соответствующий характер изменения. Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА A) сопротивление реостата 2 Б) сила тока в цепи B) напряжение на резисторе 1

ХАРАКТЕР ИЗМЕНЕНИЯ 1) увеличивается 2) уменьшается 3) не изменяется

12. Установите соответствие между физическими величинами и правильной электрической схемой для измерения этих величин при последовательном соединении двух резисторов ​ \( R_1 \) ​ и \( R_2 \) . Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ A) сила тока в резисторе \( R_1 \) ​ и \( R_2 \) Б) напряжение на резисторе \( R_2 \) B) общее напряжение на резисторах \( R_1 \) ​ и \( R_2 \)

Преобразованные формулы Закона Ома и Джоуля-Ленца

Встретил в Интернете картинку в виде круглой таблички, в которой удачно размещены формулы Закона Ома и Джоуля-Ленца и варианты математического преобразования формул. Табличка представляет собой не связанные между собой четыре сектора и очень удобна для практического применения

По таблице легко выбрать формулу для расчета требуемого параметра электрической цепи по двум другим известным. Например, нужно определить ток потребления изделием по известной мощности и напряжению питающей сети. По таблице в секторе тока видим, что для расчета подойдет формула I=P/U.

А если понадобится определить напряжение питающей сети U по величине потребляемой мощности P и величине тока I, то можно воспользоваться формулой левого нижнего сектора, подойдет формула U=P/I.

Подставляемые в формулы величины должны быть выражены в амперах, вольтах, ваттах или Омах.

Периодический переменный ток

Тот, который, изменяясь, успевает вернуться к своему исходному значению через одинаковые временные интервалы и при этом проходит весь цикл своих преобразований, называется периодическим. Его можно проследить на синусоиде, изображённой на экране осциллографа.

Период и амплитуда синусоидального колебания

Резонансная частота: формула

Видно, что через одинаковые интервалы времени график повторяется без перемен. Эти интервалы обозначаются буквой Т и называются периодами. Частота, с которой в единицу времени укладывается определённое количество подобных периодов, – это частота тока переменного значения.

Её можно вычислить по формуле частоты переменного тока:

f = 1/T,

где:

  • f – частота, Гц;
  • T – период, с.

Частота равна количеству периодов в секунду и имеет единицу измерения 1 герц (Гц).

Внимание! Единица частоты в системе СИ носит имя Генриха Герца. 1 герц (Гц, Hz) = 1 с-1

К ней применимы кратные и дольные, выраженные стандартными приставками СИ, единицы.

Стандарты частоты

Для того чтобы обеспечить согласование работы источников переменного электричества, систем передач, приём и работу электропотребителей, применяются стандарты частоты. Используемая частота в электротехнике некоторых стран:

  • 50 Гц – страны бывшего СССР, Прибалтики, страны Европы, Австралия, КНДР и другие;
  • 60 Гц – стандарт, принятый в США, Канаде, Доминиканской республике, Тайвани, на Каймановых островах, Кубе, Коста-Рике, Южной Корее и ещё в некоторых странах.

В Японии используются обе частоты. Восточные регионы (Токио, Сендай, Кавасаки) используют частоту 50 Гц. Западные области (Киото, Хиросима, Нагоя, Окинава) применяют частоту 60 Гц.

К сведению. Железнодорожная инфраструктура Австрии, Норвегии, Германии, Швейцарии и Швеции по сей день применяет частоту 16,6 Гц.

Как рассчитать мощность, зная силу тока и напряжения?

Разобравшись с током и напряжением, уже будет легче посчитать мощность, используя все ту же формулу. Однако для переменного тока различают несколько мощностей:

  • мгновенная;
  • активная;
  • реактивная;
  • полная.

Мгновенная мощность рассчитывается в момент измерения и может сильно отличаться от полной мощности. Активной называют полезную мощность, которая определяется по формуле:

Косинус фи в синусоидальном токе является коэффициентом мощности, выражается в процентах от 0 до 100 или цифрах от 0 до 1. Показывает сдвиг фаз между током и напряжением. Для трехфазной сети общая активная мощность складывается из отдельных фазных мощностей.

Реактивная мощность учитывает расход энергии на реактивную нагрузку (индуктивность, конденсатор, обмотка электродвигателя), которая снова возвращается к источнику. Для этого используется формула:

Полная мощность состоит из активной и реактивной, причем реактивная может иметь отрицательный или положительный знак.