ЛЭП 220 кВ
По внешним признакам напоминают 110 кВ, но больше, выше, и имеют более длинные гирлянды изоляторов — около 10-20 штук, считать заколебаешься. Есть мнение, что расщепления фаз на таких ЛЭП не бывает, по прежнему 1 фаза, это 1 провод, но мнение это неточное. Опоры всё также из металлоконструкций, значительно реже — бетона.
Встречаются линии 220 кВ значительно реже чем 110 кВ. Связывают, как правило, разные населенные пункты, районы, округи, могут иметь значительную протяженность до нескольких десятков, а то и сотен километров. Как и линии 110 кВ, обычно идут двумя цепями, но одноцепные варианты также имеют место быть. Находясь возле таких линий уже можно услышать отчётливый треск — коронные разряды берут своё.
Охранная зона КВЛ 220 кВ составляет 25 метров.
Опора ЛЭП 220 кВ — ПС «Дагомыс»
Двухцепная опора 220 кВ
ВЧ заградители 220 кВ
Табличка на опоре
Опоры двухъярусной конструкции
Классификация высоковольтные изоляторов
Электрические изоляторы классифицируются по назначению, конструктивному исполнению, материалу изготовления, техническим характеристикам и условиям эксплуатации.
- Опорный.
- Для работы в помещениях — с гладкой поверхностью и ребристые.
Для работы на открытом воздухе — штыревые, стержневые.
Проходной.
- Для работы в помещениях — с токоведущими шинами (токопроводами), без токоведущих шин.
Для работы на открытом воздухе — с нормальной и усиленной изоляцией.
Высоковольтные вводы для работы на открытом воздухе — в герметичном и негерметичном исполнении.
Линейный для работы на открытом воздухе — штыревой, тарельчатый, стержневой, орешковый, анкерный.
Защитный — полый изолятор, предназначенный для использования в качестве изолирующей защитной оболочки электротехнического оборудования.
Такелажный изолятор для установки между работающими на растяжение тросами оттяжек антенных мачт, подвесками контактной сети, проводами антенн.
Электрические изоляторы могут изготавливаться из стекла, фарфора и полимерных материалов. Фарфоровые покрываются глазурью для улучшения изолирующих свойств.
Материал изготовления изоляторов
По материалу изготовления они подразделяются на фарфоровые, стеклянные и полимерные:
- Фарфоровые изготавливают из электротехнического фарфора, покрывают слоем глазури и обжигают в печах.
- Стеклянные изготавливают из специального закалённого стекла. Они имеют большую механическую прочность, меньшие размеры и массу, медленнее подвергаются старению по сравнению с фарфоровыми, но имеют меньшее электрическое сопротивление.
- Полимерные изготавливают из специальных пластических масс.
Способы крепления на опоре
По способу крепления на опоре изоляторы подразделяются на штыревые и подвесные:
- Штыревые изоляторы (крепятся на крюках или штырях) применяются на воздушных линиях до 35 кВ.
- Подвесные изоляторы (собираются в гирлянду и крепятся специальной арматурой) применяются на ВЛ 35 кВ и выше.
- Опорные изоляторы (крепятся к траверсам ВЛ с помощью болтов ) применяются на ВЛ 35 кВ и выше.
Обозначения изоляторов
Изолятор ШФ 20Г
В обозначение изоляторов входят:
- буквы, которые указывают на их конструкцию: Ш — штыревой, П — подвесной материал: Ф — фарфор, С — стекло, П — полимер;
- назначение: Т — телеграфный, Н — низковольтный, Г — грязестойкий (для подвесных), Д — двухъюбочный;
- типоразмер: А, Б, В, Г (для штыревых).
цифры, которые у штыревых изоляторов указывают на номинальное напряжение (10, 20, 35) или диаметр внутренней резьбы (для низковольтных), а у подвесных — на гарантированную механическую прочность в килоньютонах.
В старых обозначениях у подвесных изоляторов (например: П-8.5) цифры обозначают электромеханическую одночасовую, кроме того существовали следующие обозначения:
- НС и НЗ — грязестойкий фарфоровый изолятор для натяжных гирлянд.
ПР — грязестойкий фарфоровый изолятор для поддерживающих гирлянд с развитой боковой поверхностью.
ПС — грязестойкий фарфоровый изолятор для поддерживающих гирлянд с увеличенным вылетом ребра.
Сети железных дорог
Около 7% электроэнергии, вырабатываемой на электростанциях России, передаётся по трассам ВЛ на объекты ЖД. В целом, длина железнодорожного полотна составляет 43 тысячи километров. Из них 18 тысяч км питаются постоянным током напряжением в 3 000 Вольт, а остальные 25 тысяч км работают на переменном токе напряжением в 25 000 Вольт.
Энергия электрифицированных дорог используется не только для движения поездов. Ею питают промышленные предприятия, населенные пункты, другие объекты недвижимости, расположенные вдоль железных дорог или в непосредственной близости к магистралям. По статистике, более половины электроэнергии контактной сети ЖД расходуется на электроснабжение объектов, не включенных в транспортную инфраструктуру.
Что это такое
Аббревиатура расшифруется как линии электропередач. Эта установка необходима для передачи электрической энергии по кабелям, находящимся на открытой местности (воздухе) и установленными при помощи изоляторов и арматуры к стойкам или опорам. За точку начала и конца линий электропередач принимают линейные входы или линейные выходы РУ, а для ветвления — специальная опора и линейный вход.
Как выглядит станция ЛЭП
Опоры можно разделить на:
- промежуточные которые находятся на прямых участках трассы установок, их используют только для удержания кабелей;
- анкерные в основном монтируются на прямых границах ВЛ;
- концевые стойки — это подвид анкерных, они ставятся в начале и конце ВЛ. При стандартных условиях функционирования установки, они принимают нагрузку от кабелей;
- специальные стойки используются для изменения положения кабелей на ЛЭП;
- декорированные стойки, помимо поддержки, они выполняют роль эстетичной красоты.
Линии электропередач можно условно разделить на воздушные и подземные. Последние все больше набирают популярность из-за удобства прокладки, высокой надежности и снижения потерь напряжения.
Обратите внимание! Эти линии различаются методом прокладки, особенностью конструкции. В каждой есть свои плюсы и минусы
При работе с ЛЭП необходимо соблюдать все правила безопасности, потому что во время монтажа можно получить не только травмы, но и погибнуть.
Типы используемых опор
Линейный изолятор
Линейные изоляторы применяются для крепления проводов воздушных линий электропередачи и шин на открытых распределительных устройствах. Эти изоляторы могут быть штыревые и подвесные. На открытых распределительных устройствах напряжением 35 кВ и выше применяют подвесные изоляторы, которые соединяются в гирлянды. Для крепления и изоляции токоведущих частей аппаратов применяют аппаратные изоляторы.
Линейные изоляторы испытывают механические нагрузки, которые создаются тяжением проводов и зависят от сечения проводов и длин пролетов между опорами, от температуры проводов, силы ветра и других факторов. Для штыревых линейных изоляторов эти нагрузки являются главным образом изгибающими.
Линейные изоляторы предназначены для крепления проводов воздушных линий и шин открытых распределительных устройств.
Линейные изоляторы предназначаются для крепления проводов воздушных линий ( см. гл. XI); аппаратные — для крепления и-вывода токоведущих частей аппаратов, станционные — для крепления шин в распределительных устройствах.
Линейные изоляторы, служащие для крепления проводов воздушных линий электропередачи и шин открытых распределительных устройств, подразделяются на штыревые и подвесные.
Линейные изоляторы предназначены для крепления проводов линий электропередачи.
Проходной изолятор для наружной установки ПНБ-35 / 600.| Маслонаполненный ввод МН-110. |
Линейные изоляторы подразделяются на штыревые и подвесные.
Линейные изоляторы предназначаются для крепления проводов воздушных линий ( см. гл.
Линейные изоляторы относятся к изоляторам наружной установки и по конструктивному выполнению разделяются на штыревые и подвесные.
Линейные изоляторы применяются для крепления и изоляции проводов воздушных линий электропередачи. Эта группа изоляторов подразделяется на опорные и проходные. Опорные изоляторы используются для создания неподвижных изолирующих опор для токоведущих частей, а проходные — для пропуска голых токоведущих частей сквозь стены, потолки и крыши зданий.
Линейные изоляторы, изготовленные из специального стекла, отожженные и закаленные в определенном режиме, обладают лучшими диэлектрическими и механическими характеристиками, чем фарфоровые. Используя высокие физико-механические свойства специального стекла, можно изготовлять линейные Изоляторы значительно меньших размеров, чем фарфоровые на те же электрические характеристики и механические нагрузки.
Соединение проводов в пролете. |
Линейные изоляторы служат для изоляции проводов и тросов и крепления их к опорам линий электропередачи. В условиях эксплуатации изоляторы находятся под электрическим напряжением и одновременно воспринимают механическую нагрузку от массы проводов, гололедных отложений, напора ветра, вибрации, пляски, а также тяжения проводов.
Линейные изоляторы служат для изоляции проводов и тросов и крепления их к опорам линий электропередачи. В условиях эксплуатации изоляторы находятся под электрическим напряжением и одновременно воспринимают механическую нагрузку от массы проводов, гололедных отложений, ветровой нагрузки, вибрации, пляски, а также тяжения проводов. Прочность изоляторов характеризуется механической разрушающей нагрузкой.
Количество изоляторов в гирлянде ВЛ
Казалось бы вопрос простой и широко распространённый, но “погуглив” я немного удивился, что информация по количеству изоляторов есть, но она разрознена и либо слишком уж детально описана в виде нормативных актов, либо наоборот слишком поверхностно.
Постараюсь кратко но ёмко раскрыть этот вопрос.
Изоляторы изготавливают в зависимости от назначения и эксплуатационных условий, а различают по нескольким конструктивным типам и материалам: – Штыревые (фарфор \ стекло ) – Подвесные (фарфор \ стекло \ полимеры) – Натяжные (дельта-древесина \ керамика \ эбонит \ полимеры … ) – Проходные (фарфор \ полимеры) – Опорные (фарфор \ стекло \ твёрдые пластмассы \ текстолит \ полимеры … ) – А также специфические для различной аппаратуры (из различных изоляционных материалов)
Для относительно низких напряжений до нескольких кВ в электросетях широко применяют в основном штыревые изоляторы (реже подвесные),а на оборудовании подстанций: проходные и опорные изоляторы. Напряжение таких сетей нужно “знать в лицо” (изолятор на глаз не вольтметр) Классов напряжений не так уж и много: от бытовых (~127 устарело)\~220\~380 вольт и распределительных сетей (~2 устарело)\~6\~10 кВ (кабельные ~2\~6\~10\~20 кВ) Для нужд троллейбусных и трамвайных контактных сетей напряжением =600 В используются натяжные изоляторы, в метрополитене контактный рельс =825 В удерживают специфические опорные изоляционные крепления. В контактных сетях железнодорожного транспорта =3 кВ и ~25 кВ применяются уже подвесные, натяжные и опорные изоляторы. А для линий электропередач высокого напряжения применяются только подвесные изоляторы в составе гирлянд, чем выше напряжение тем больше будет длина этой самой гирлянды пример: ~35 кВ (от 2-х до 5 в зависимости от опоры) ~110 кВ (от 7 до 10 в зависимости от опоры) ~154 кВ (от 9 до 12) ~220 кВ (от 14) фаза – толстый одиночный провод ~330 кВ (от 16) фаза – двойной провод ~500 кВ (от 17) фаза – тройной провод расположенный треугольником ~750 кВ (от 20) фаза – 4 или 5 проводов расположенные квадратом или кольцом На сегодняшний день доминируют стеклянные подвесные изоляторы ПС-70Е, также полимерные изоляторы изготовляемые для своего класса высоких напряжений.
Есть ещё и такая табличка(нажмите чтобы увеличить):
Количество подвесных изоляторов в гирляндах.
Если хочется более тщательно изучить этот вопрос, Вам поможет ПУЭ пункт 1.9 и РД 34.51.101-90-Инструкция по выбору изоляции электроустановок.
Какой вред несут высоковольтные провода для человека
Инфо
К основным элементам, которые включает высоковольтная линия можно отнести:
- Опоры ЛЭП.
- Кабельная продукция.
- Трансформаторы.
- Линейная арматура.
Это основные элементы, из которых состоит каждая высоковольтная линия. Если вам необходимы эти элементы, тогда для их покупки следует перейти на elektropostavka.ru. Здесь представлено огромное количество материалов, которые имеют высокое качество.
Внимание
Чем вредны высоковольтные линии? Основной вред происходит из-за излучения. Во время осуществления работы они будут создавать статистическое поле. Многие люди могут подумать, что в этом нет ничего страшного, так как бытовые приборы также могут создавать это поле.
Единственной особенностью считается то, что поле от бытовых приборов не такое мощное. Именно поэтому оно не несет никакого влияния на организм.
Этот материал подготовлен специалистами компании «ЭлектроАС».Нужен электромонтаж или электроизмерения? Звоните нам! О вреде линий высоковольтных электропередач говорят много и чаще всего попусту. Какие только теории не выдвигались по поводу того как ЛЭП влияет на человека, тут и статистика заболеваемости раком людей проживающих в районе с близь расположенной высоковольтной линией, и влияние ЛЭП на клетки головного мозга, и даже повсеместное выпадение волос связывают с близко расположенными высоковольтными линиями. Давайте попробуем разобраться в данном вопросе и обосновать то, что говорят, но никогда не доказывают.
Итак, от линий электропередач могут исходить только два вида излучения, в виде статического поля и переменных волн. Помимо высоковольтных линий такое же излучение дает и электропроводка, и любой из электроприборов в наших домах и квартирах.
Важно
Для сравнения возьмем одну розетку переменного тока с напряжением в 220-240 вольт, находящуюся в метре от человека, и линию электропередач с напряжением около 200 киловольт, находящуюся на расстоянии 30 метров. Сила статического поля становиться меньше пропорционально квадрату расстояния, таким образом, оба источника излучения, и розетка, и ЛЭП оказывают приблизительно одинаковое влияние. В случае же с переменными волнами затухание происходит значительно слабее, так как их сила обратно пропорциональна расстоянию от источника излучения, и если брать те же расстояния, что и в предыдущем случае, то эквивалентом розетки расположенной в метре от нас станет ЛЭП с напряжением в 6,5 киловольт.
Если всю жизнь провести под опорой ЛЭП в 330 киловольт, то естественно будет очень значительное влиянии ее излучения на ваш организм, если же вы постоянно находитесь на удалении от линий электропередач и только периодически контактируете с испускаемыми ими излучениями, то никаких изменений в своем организме вы не заметите. Именно поэтому если есть возможность, постарайтесь выбираться из города, хотя бы изредка, ведь наши города уже давно стали своего рода энергетическими клоаками, где переплетаются электромагнитные, статические и много других видов энергетических полей. Где-то воздействуя друг на друга, они ослабевают, где-то накладываясь, многократно усиливаются и уже совсем не соответствуют санитарным нормам.
Защититься от них фактически невозможно, но дать своему организму передышку от их воздействия доступно практически каждому.
Влияние на здоровье высоковольтной линии. petlyura Многие уловистые места на рыбалке находятся под высоковольтной линией, напряжение которой доходит до 110 кВольт. Как влияет высоковольтная линия на организм человека, и какое безопасное время можно под ними находится, если вероятность, что упадет столб или оборвется провод, практически равен нулю. # 1 | 2012-06-07, 19:42 lviv1313 Конечно влияет. Мощное электромагнитное поле даже такой низкой частоты достаточно опасно для здоровья.
Читал, что оно вызывает бессонницу, раздражительность, головные боли и увеличивает вероятность онкологических заболеваний.
Это интересно: Аккумуляторы из сахара — будущее уже близко
Реакция организма на излучения от ЛЭП
В некоторых странах люди, весьма чуткие к излучениям высоковольтных линий обладают правом переселиться подальше от проходящих ЛЭП, при этом затраты и поиск жилья оплачивается правительством. У нас деньги тратятся на разработку норм по установке высоковольтных линий.
Замечено, что два человека одного возраста могут ощущать различное воздействие от расположенной рядом высоковольтной линии электропередачи. На одного она может воздействовать угнетающе, а другой в это время будет испытывать прилив сил энергии.
Единственное, что доподлинно известно на настоящий момент, это то, что нет доказательств вредоносного воздействия ЛЭП на организм человека, равно как и доказательств их безвредности. То есть известно их определенное влияние на человека, а в чем оно заключается, это до сих пор загадка.
Жизнь рядом с ЛЭП: опасное соседство
Главная опасность, исходящая от линий электропередач, – это электромагнитные поля. Ученые причисляют их к одному из серьезных видов экологического загрязнения. “Электромагнитный смог” неотступно, а главное, невидимо преследует современного человека: электромагнитные поля во множестве окружают нас практически везде, где бы мы ни находились.
Влияние электромагнитного излучения, если речь идет о низких, не превышающих норму дозах, выражается прежде всего в нарушении работы центральной нервной системы. Это может проявляться как головная боль, нарушение сна, подавленность и усталость.
При высоких, далеких от санитарных норм дозах электромагнитного излучения человек может быть подвержен нарушениям иммунной, эндокринной и репродуктивной систем, а также развитию хронических, в том числе, как предполагают исследователи, и онкологических заболеваний.
Защититься от электромагнитных полей, исходящих от ЛЭП, довольно-таки трудно, тем более если живешь в непосредственной близости от них: С грустью надо признать, что и сегодня еще у нас где-нибудь в пригородной области можно встретить “стихийные поселения” совсем рядом с ними или даже под этими линиями! Многие ухитряются (прежде всего в силу дешевизны такого жилья) строить там дачные участки с небольшими огородиками, видимо, не подозревая об опасности подобного соседства. Да и в городской зоне нередко встречаются дома, построенные рядом с этими линиями: некоторые сегодняшние застройщики недалеко ушли в плане экологической и социальной сознательности от иных советских чиновников. Поэтому наилучший способ защиты в данном случае – просто не жить в непосредственной близости от ЛЭП. Так, если ваш дом по каким-либо причинам расположен в небезопасной близости от этих линий (санитарные нормы безопасного расположения см. ниже), лучшим из возможных решений стал бы переезд в более безопасную зону.
Но все-таки защита возможна. Для этих целей применяются специальные защитные экраны, выполненные из материалов, препятствующих распространению электромагнитных полей. Конечно, экранирование стоит недешево, и компаний, занимающихся их установкой, очень мало на нашем рынке, но они все же существуют, стоит только поискать. Например, установкой таких экранов занимаются некоторые компании, предоставляющие услуги экологической экспертизы.
При типовой городской застройке такие экраны, конечно, не предусмотрены, поэтому даже и не стоит спрашивать о возможности их наличия в местном ДЭЗе. Их нужно устанавливать самостоятельно.
“Предупрежден – значит защищен”, посему лучшее, что можно посоветовать в данном случае, – это, как всегда, предупредительные меры.
А это прежде всего соблюдение санитарно-защитных норм при постройке жилья, которые предлагают оптимальное для относительной безопасности расстояние жилых объектов от линий электропередач, в зависимости от мощности каждой из ЛЭП.
Так, по СанПиН N 2971-84, если напряжение ЛЭП составляет 330 кВ, то это расстояние (протяженность санитарно-защитной зоны) должно быть равным 20, при напряжении 500 кВ безопасное расстояние равняется 30, при 750 кВ – 40 м, а при 1150 – 55 м.
Для плотно застроенных городов, где распространены также линии меньшей мощности, существуют свои нормы удаленности жилых построек от ЛЭП.
Как же определить мощность каждой конкретной ЛЭП? Ее можно вычислить по количеству проводов или по числу изоляторов в гирлянде, в зависимости от мощности напряжения линии.
Так, если ЛЭП состоит всего из одного провода, то мощность ее равна менее 330 кВ. Если проводов два, то мощность такой линии равна 330 кВ, три – 500 кВ, четыре – 750 кВ. Линия, содержащая от 6 до 8 проводов, имеет мощность 1150 кВ.
Напряжение маломощных ЛЭП можно определить по числу изоляторов в гирлянде: 15 шт. – 220 кВ, 6-8 шт. – 110 кВ, 3-5 шт. – 35 кВ, 1 шт. – 10 кВ.
Вред для здоровья от линии ЛЭП
Линии электропередач излучают статическое поле и переменные волны. Однако такое же излучение поступает и электропроводки, и от любых электроприборов, которые находятся в наших домах и квартирах. При сравнении розетки переменного тока с напряжением в 220 В, находящейся в метре от человека, и ЛЭП, передающей ток напряжением примерно 200 кВ, расположенной в тридцати метрах, и учитывая, что сила статического поля уменьшается пропорционально квадрату расстояния, оба этих источника излучения, влияют приблизительно одинаково.
Расчет показывает, что эквивалентом розетки находящейся от нас в метре будет ЛЭП, передающая ток с напряжением в 6,5 кВ. Кроме того, следует иметь в виду, что в нашем доме имеется несколько розеток, до плюс десятки метров электропроводки, телевизор, холодильник, компьютер, другие электроприборы, чье излучение может быть намного сильнее.
Из этого следует, что не стоит утверждать, что высоковольтные ЛЭП так уж пагубно воздействуют на организм человека. С другой стороны, до конца этот вопрос еще не изучен. Теоретически, ЛЭП, которая располагается недалеко от жилища, может вызывать в организме резонанс внутренних органов. Промышленная частота тока составляет 50 Гц, но органы, отзывающихся на подобные частоты в человеческом организме отсутствуют и негативно воздействуют на организм колебания более низкой частоты. Хотя у людей, имеющих дело с высоковольтными ЛЭП нередко наблюдается:
- раздражительность,
- синдром хронической усталости,
- снижение иммунитета.
Напряжение в 10 кВ считается безопасным для человека. Оно создает фон, не превышающий по плотности 10 мкТл – микротесла. Для сравнения, магнитное поле Земли составляет 30–50 мкТл.
Чертеж стандартной опоры
От создаваемого ВЛ излучения оно отличается постоянным или плавно изменяющимся значением. По ЛЭП проходит ток с частотой 50 Гц – это означает, что за секунду ток 50 раз меняет свое направление, происходит полное колебание – волна переменного тока. С такой частотой изменяется и значение излучаемого магнитного поля.
Наибольшее значение природных колебаний достигает 40 Гц. При постоянном нахождении в зоне магнитных волн с большими значениями в организме человека происходят сбои. Это возможно не только при длительном стоянии под ЛЭП, но и рядом с домашними электроприборами, особенно тепловыми. Ущерб от близкого расположения ВЛ соизмерим с вредом для здоровья, наносимым утюгом, холодильником, стиральной машиной, компьютером.
Виды опор
В Евросоюзе принято считать, что если напряжение в проводах линии электропередачи выше 35 кВ и квартира располагается ближе, чем нормативный интервал охранной зоны плюс 20 м, то, согласно нормам здравоохранения Объединенной Европы, такое соседство может вызвать ряд заболеваний нервной, сердечно-сосудистой и иммунной систем.
Таблица европейских нормативов.
Участок под ИЖС или дачу частично может находиться ближе к высоковольтной линии, чем минимальное расстояние до жилого дома. В техническом паспорте эта полоса указывается как зона обременения. На этой земле можно сажать огород, сад и ставить забор. Нельзя строить дом и сооружать подсобные помещения. Место для отдыха во дворе следует оборудовать подальше от ЛЭП.
Схема установки столбов в СНТ и ИЖС согласно нормам
Как определить напряжение ЛЭП
Более высокое значение можно определить по количеству проводов в пучке кабеля:
- 1 шт. — до 330 кВ;
- 2 шт. — 330 кВ;
- 3 шт. — 500 кВ;
- 4 шт. — 750 кВ;
- 6-8 шт. — от 1000 кВ и более.
Таблица дистанций и напряжений
Считать следует не количество кабелей, протянутых между опорами, а провода в одном пучке. Дополнительно ориентироваться можно по высоте, на которой они протянуты: чем выше они расположены, тем больше в них напряжение.
Для линий в один провод напряжение определяется по количеству изоляторов – керамических дисков в одной грозди, свисающей со столба. Нормативные цифры приведены в списке:
- 3-5 изоляторов — 35 кВ.
- 6-8 изоляторов — 110 кВ.
- 15 изоляторов — 220 кВ.
По улицам в пределах жилых кварталов линии электропередачи имеют напряжение 6–10 кВ, что не создает излучений, превышающих безопасное для человека значение. Эти провода подводятся в дома, проходя над ограждениями участков.
Дистанции от забора до построек на участке
Для них также разработаны нормы по безопасному использованию. По СНиП жилые дома и другие строения должны располагаться не ближе 5 м от красной линии. Это черта передней границы участка. По ней проходят все подземные и воздушные коммуникации, включая линии электропередачи. Нарушает безопасную дистанцию только провод, подведенный непосредственно к зданию.
Изолятор, на котором крепится провод снаружи, должен находиться на стене здания на высоте 2,75 м и выше. Ввод в дом не должен располагаться над и рядом со спальными, детскими комнатами и помещениями, где семья проводит много времени. Оптимальный вариант – стена кладовой, подсобного помещения, прихожей.
В частном секторе ЛЭП проходит по одной стороне улицы – красная линия на плане. Расстояние от ЛЭП до частного жилого дома на земле ИЖС должно четко соответствовать нормативам ПУЭ. Протягивать провода для подключения дома с противоположного бока надо только через дополнительные опоры. Высота до изоляторов превышает 6,2 м. Минимальная дистанция от ЛЭП напряжением 6 кВ до деревьев – 2 метра по горизонтали.
Схема монтажа столбов
- Чтобы понять, насколько опасно жить возле ЛЭП и каким является безопасное расстояние от ЛЭП, нужно внимательно рассмотреть ее. Минимальным является напряжение в 0,4 кВ, такие линии оснащены небольшими прозрачными изоляторами и пятью проводами.
- 10-киловольтные линии имеют изоляторы гораздо больших размеров (их всего 1-2) и три провода.
- У 35-киловольтной ЛЭП на каждом из трех изоляторов закреплено по проводу.
- 110-киловольтная линия имеет на каждом из проводов по 6 изоляторов.
- А 150-киловольтная – от 8 до 9. Далее следуют линии, по которым подается электричество на подстанции, их напряжение – 220 кВ, и здесь число изоляторов достигает 40.
- В наиболее мощных линиях (330-750 кВ) число проводов от двух до пяти, изоляторов – от 14 до 20.
Расстояние
Минимальное расстояние от ЛЭП и излучение
Во время движения по проводам заряженные частицы создают электромагнитное поле. Вид электрического тока определяет свойства излучения. Он может быть как постоянным, так и переменным. Частая смена электрического тока с плюса на минус и обратно способствует смене величины поля в несколько раз чаще.
Поздней ночью
Давно известно, что воздействие электромагнитного излучения негативно влияет на физическое состояние человека, как и облучение радиацией. Наблюдения по воздействию магнитных излучений на человека и живую окружающую среду начали проводить в начале 80 годов.
По результатам исследования в различных государствах ВОЗ – Всемирная организация здравоохранения установила максимально допустимые нормы излучений в герцах за единицу времени.
Люди, долгое время находящихся в зоне мощного поля, обнаруживали у себя болезни онкологического характера, сердечные заболевания. Женщины страдали от бесплодия. У мужчин развивались патологии мочеполовой системы. Зачастую появлялась хроническая усталость. Статистически уменьшалась продолжительность жизни в городах и селах.
Устройство ПС 70Е
Подвесные изоляторы используются для монтажа проводов на столбах линий электропередач. Главным отличием изделия является материал изготовления – закаленное стекло. Изделия из стекла имеют больший спрос и преимущества перед фарфором. Большим плюсом является то, что на стекле сразу видно малейшее повреждение, а на других материалах не всегда легко его заметить. Благодаря подобному свойству их своевременно заменяют на новые, до возникновения проблем с линиями.
Изоляторы ПС 70Е применяют на линиях, которые имеют напряжение от 10 кВ. Длина всей гирлянды, а также количество изоляторов, установленных на ней, определяется за счет напряжения и материала опор.
Если говорить об установке натяжных подвесок, то их крепят на провода. Их основное предназначение это поддержание веса провода, который находится в пролете. В натяжных подвесках применяется такая арматура, как:
· промежуточное звено;
· натяжной клиновой и болтовой зажим;
· серьга;
· ушко.
Изоляторы маркируются соответствующим образом. Это позволяет расшифровать сведения, которые заключены в обозначениях: П – подвесной, С – материал изготовления стекло, 70 – минимальная техническая нагрузка, Е – индекс усовершенствования модели.
ПС 70Е используется для изоляции электропроводов и грозозащитных тросов, а также их крепления. Данная натяжная подвеска на базе ПС 70Е идеально подходит для монтажа траверсы, которые не снабжены встроенной серьгой.
Разница ПС 70Е и ЛК 70
ПС 70Е | ЛК 70 | Вывод | |
Материал | Стекло | Полимер | ЛК 70 прочнее, чем ПС, поэтому нет никаких потерь при транспортировке, более устойчивы к вандальным действиям |
Защита от влаги | Низкая | Высокая | Покрытие изолятора ЛК 70 имеет гидрофобную поверхность и отталкивает влагу |
Масса | 3,4 кг | 1 кг | ЛК 70 легче, что снижает затраты на транспортировку и упрощает монтаж, снижая тем самым расходы и на него |
Выдерживаемое импульсное напряжение | +-100 кВ | +-170 кВ | У изоляторов ЛК выше минимум на 50-70% в зависимости от условий окружающей среды |
Конструкция оконцевателя | Ушко | Гнездо | Гнездо значительно проще в монтаже |
Ниже более подробно рассмотрим устройство каждого из типов изоляторов
Устройство ЛК 70
Полимерные подвесные изделия являются заменой стеклянным и фарфоровым. Их технические характеристики не уступают другим альтернативным изоляторам. Они имеют маленькую массу, легко устанавливаются, такие изоляторы применяют на линиях с напряжением 10-110 кВ.
ЛК 70 обладают хорошими влагоразрядными свойствами. При растягивании изоляторы выдерживают более 25% разрушающей нагрузки. Что касается высоты монтажа, то она была снижена до 20%, а их особенностью является их надежность и качество, а также снижение размеров изделия. Служат подобные конструкции на протяжении сорока лет. Такие изоляторы можно использовать для поддержки и крепежа подвесок фазных проводов, при этом линии передач могут быть из разного материала, такого как дерево, металл или железобетон.
Активное применение ЛК 70 нашли на подстанциях, в распределительных устройствах на электростанциях, на железной дороге. Подобные натяжные изоляторы могут использоваться и эффективно работать при суровых климатических условиях. Данный изолятор выдерживает нагрузку в минус 60 градусов, а также больше 50 градусов жары. Его частота переменного тока достигает до 100 Гц.
Натяжные подвески на базе изоляторов ЛК 70 могут использоваться в опорах стоек, длина которых достигает от 13 до 16,5 метров. В их комплектацию входят скоба, зажим натяжной болтовой, промежуточное звено, изолятор, серьга и ушко.
Из преимуществ следует выделить высокую устойчивость к повреждениям механического характера, лёгкую транспортировку, защиту от влаги и грязи. Полимерный изолятор весит намного меньше, чем стеклянный или фарфоровый. Он легко устанавливается, имеет низкий уровень радиопомех, а по сравнению с изолятором ПС 70Е, ЛК 70 имеет более высокое разряженное напряжение на 15%.
Ценовая категория в случае с полимерными изоляторами является немного ниже за счет их легкого веса – так транспортировка получается значительно экономнее, тем более что она происходит без дополнительных установок, так как изделия не бьются.