Схемы подключения трансформаторов
От того, какая схема подключения трехфазного счетчика через трансформаторы тока используется в данном случае, зависит надёжность работы всей измерительной системы в целом. При выборе той или иной из них необходимо учитывать следующие требования:
- Запрещено включать счетчик через трансформаторы тока, если он предназначен для прямого подсоединения в измерительную сеть;
- При косвенном включении необходимо исследовать электрическую схему и определиться с подходящей для неё моделью трансформатора (по мощности и току);
Важно! Перед тем, как выбрать трансформатор для каждой конкретной ситуации, прежде всего, следует обратить внимание на его коэффициент преобразования, имеющий отличные значения для разных моделей. Прежде чем выбрать трансформатор тока для определённой измерительной схемы нужно внимательно изучить порядок расположения контактов, к которым подключается трехфазный счетчик
Прежде чем выбрать трансформатор тока для определённой измерительной схемы нужно внимательно изучить порядок расположения контактов, к которым подключается трехфазный счетчик
Прежде чем выбрать трансформатор тока для определённой измерительной схемы нужно внимательно изучить порядок расположения контактов, к которым подключается трехфазный счетчик.
Далее будет рассмотрена конкретная схема подключения счетчика в трёхфазную цепь (смотрите рисунок ниже).
Принципиальная схема включения
Поскольку общий принцип функционирования всех электросчетчиков одинаков, то назначение имеющихся на них клемм также схоже. Для фазы «А» оно выглядит следующим образом:
- Контакт К1 нужен для того, чтобы подключать к счётчику токовый провод и один конец катушки напряжения трансформатора;
- Клемма К2 предназначена для подключения нагрузки к данной фазной линии;
- Контакт К3 используется для подсоединения второго конца обмотки напряжения ТТ.
Таким же образом к счётчику подключается вторая фаза «В» (посредством клемм К4, К5 и К6), а также третья – «С» с контактами К7, К8, К9.
Обратите внимание! Клемма К10 – общая нулевая, относительно её на К1, К4 и К7 счётчика поступают фазные напряжения со следующими тремя обозначениями: «А», «В» и «С». К недостаткам совмещённой схемы следует отнести большую погрешность измерения потребляемой мощности, а также невозможность выявления пробоя в обмотках трансформатора. К недостаткам совмещённой схемы следует отнести большую погрешность измерения потребляемой мощности, а также невозможность выявления пробоя в обмотках трансформатора
К недостаткам совмещённой схемы следует отнести большую погрешность измерения потребляемой мощности, а также невозможность выявления пробоя в обмотках трансформатора.
На практике чаще всего применяется более простая схема подключения электросчетчика, согласно которой осуществляется совмещённое подсоединение вторичных токовых цепей. Она функционирует следующим образом:
- К токовому контакту счётчика от сетевого автомата подключаются фазные провода. Для упрощения схемы к нему же подсоединяется вторая клемма фазного напряжения;
- Фазный ввод катушки выбираем таким образом, чтобы он одновременно являлся выходом первичной обмотки ТТ. В дальнейшем он подсоединяется к нагрузке через распределительные цепи;
- Начало вторичной трансформаторной обмотки подсоединяется к первому контакту токовой катушки счетчика (по одной из фаз);
- Конец вторичной трансформаторной катушки соединён с концом токовой обмотки подключенного счётного механизма.
Аналогичным образом подключаются все оставшиеся фазы.
Соединение и заземление вторичных обмоток счётчика осуществляется в соответствии с требованиями ПУЭ (они выполняются по схеме «звезда»).
Образование полной звезды
Благодаря такой организации подключения контактов получается семипроводная схема (в отличие от 10-ти контактной). В заключение следует напомнить, что при подключении через ТТ важен грамотный выбор его типа.
Правильно выбрать трансформатор тока, значит, принять в расчет, что максимально допустимое токовое значение во вторичной обмотке не может превышать 40% от номинала, а минимальное – 5%. Все подключаемые к счётчику фазные напряжения должны следовать в определенном порядке, который контролируется посредством специального прибора (фазометра).
Второй способ – фазовый сдвиг
Этот вариант получения трехфазного напряжения основан на свойствах индуктивности (ток отстает от напряжения сети на условные 90 градусов угла между векторами) и емкости (напряжение опережает ток в электрической цепи на условные 90 градусов угла между векторами). Комбинируя совместно с нагрузкой индуктивные и емкостные элементы, при их определенном сочетании получается фазовый сдвиг в 120 градусов по напряжению в специальной схеме, показанной далее. Каждому значению мощности потребуются соответствующие по величине элементы. Они приведены в таблице № 1.
Схема
Таблица № 1 для получения трехфазного напряжения на активной нагрузке
Для асинхронного движка, в котором эквивалент обмоток статора – это параллельно соединенные сопротивления и емкости, схема и величины элементов будут иными. Они приведены далее в таблице № 2 вместе со схемой.
Схема
Таблица № 2 для получения трехфазного напряжения на обмотках асинхронного двигателя с короткозамкнутым ротором
Для схемы нужны металлобумажные конденсаторы с номинальным напряжением от 250 В. Для индуктивностей рекомендуется использовать сердечник от трансформатора мощностью 200 ВА. Число витков подбирается по измеряемой силе тока в электрической цепи из дросселя и резистора с известным сопротивлением, соединенных последовательно. Эта цепь вместе с мультиметром присоединяется к генератору 100…300 Гц. Дополнительно величина индуктивности корректируется воздушным зазором в сердечнике. Его наличие обязательно.
Увеличение индуктивности приведет к уменьшению тока, и наоборот. Совпадение измеряемого значения с расчетным свидетельствует о получении индуктивности необходимой величины. Такой способ целесообразен только для статичной нагрузки на вале асинхронного двигателя. При отклонениях ее фазовые характеристики напряжения в обмотках изменятся вместе с крутящим моментом. То есть эффективность двигателя ухудшится.
Второй способ – фазовый сдвиг
Этот вариант получения трехфазного напряжения основан на свойствах индуктивности (ток отстает от напряжения сети на условные 90 градусов угла между векторами) и емкости (напряжение опережает ток в электрической цепи на условные 90 градусов угла между векторами). Комбинируя совместно с нагрузкой индуктивные и емкостные элементы, при их определенном сочетании получается фазовый сдвиг в 120 градусов по напряжению в специальной схеме, показанной далее. Каждому значению мощности потребуются соответствующие по величине элементы. Они приведены в таблице № 1.
Схема
Таблица № 1 для получения трехфазного напряжения на активной нагрузке
Для асинхронного движка, в котором эквивалент обмоток статора – это параллельно соединенные сопротивления и емкости, схема и величины элементов будут иными. Они приведены далее в таблице № 2 вместе со схемой.
Схема
Таблица № 2 для получения трехфазного напряжения на обмотках асинхронного двигателя с короткозамкнутым ротором
Для схемы нужны металлобумажные конденсаторы с номинальным напряжением от 250 В. Для индуктивностей рекомендуется использовать сердечник от трансформатора мощностью 200 ВА. Число витков подбирается по измеряемой силе тока в электрической цепи из дросселя и резистора с известным сопротивлением, соединенных последовательно. Эта цепь вместе с мультиметром присоединяется к генератору 100…300 Гц. Дополнительно величина индуктивности корректируется воздушным зазором в сердечнике. Его наличие обязательно.
Увеличение индуктивности приведет к уменьшению тока, и наоборот. Совпадение измеряемого значения с расчетным свидетельствует о получении индуктивности необходимой величины. Такой способ целесообразен только для статичной нагрузки на вале асинхронного двигателя. При отклонениях ее фазовые характеристики напряжения в обмотках изменятся вместе с крутящим моментом. То есть эффективность двигателя ухудшится.
Подключение трехфазного счетчика прямого включения
13 Июл 2018г | Раздел: Электрика
Здравствуйте, уважаемые читатели сайта sesaga.ru. Для учета потребляемой электрической энергии в трехфазных четырехпроводных цепях переменного тока применяют трехфазные электрические счетчики, разделяющиеся по типу подключения на счетчики непосредственного включения, полукосвенного и косвенного включения.
Счетчики полукосвенного и косвенного включения предназначены для работы в мощных электрических сетях и применяются для учета энергии на крупных строительных объектах, промышленных предприятиях, заводах и т.п.
Счетчик измеряет потребляемую энергию с помощью разделительных трансформаторов тока, которые устанавливают на каждую фазу. Трансформаторы преобразуют входной сигнал тока до определенной величины, который затем поступает в измерительную часть счетчика.
Отсюда и происходит название способа включения, потому что в процессе измерения ток сначала проходит через трансформаторы и понижается до рабочего диапазона счетчика, и только потом попадает в его измерительную часть. Поэтому за счет применения трансформаторов счетчики косвенного и полукосвенного включения могут работать с нагрузкой в несколько раз превышающей их рабочий ток.
Счетчики непосредственного включения применяются для учета потребляемой энергии в электрической сети маломощного потребителя. Измерение электроэнергии осуществляется внутренней схемой самого счетчика, которая подключается непосредственно к трехфазной четырехпроводной сети переменного тока. И хотя такое включение ограничено максимальным током, который способен пропустить счетчик и ограничено величиной 100 Ампер, однако этого тока вполне достаточно для домашней электрической сети.
На примере трехфазного счетчика непосредственного включения «Энергомера» я расскажу Вам, как его включить в трехфазную сеть. В принципе, схема подключения дается в руководстве по эксплуатации и дополнительно изображена на корпусе счетчика, поэтому проблем с подключением возникнуть не должно. Однако эти схемы имеют один минус – на них не показано включение коммутационной аппаратуры.
Сейчас мы этот минус устраним. Итак. Для подключения нам понадобится счетчик, два автоматических выключателя и нулевая шинка. Автомат, который будет стоять на вводе (перед счетчиком), желательно установить четырехполюсный, чтобы при необходимости или возникновении аварийной ситуации можно было полностью отключить себя от линии.
Чтобы добраться до клеммной колодки необходимо открутить винт и снять нижнюю крышку. На рисунке винт обозначен кружком.
Сначала подключим вводной автомат. С выходных клемм автомата фазы А, В, С (белый провод) подключают на входные клеммы счетчика 1-3-5, а ноль N (синий провод) на клемму 7.
В процессе монтажа провод от изоляции очищают следующим образом: конец провода, подключаемый к выходной клемме автоматического выключателя, очищают от изоляции на длину 8 – 10 мм, а конец, подключаемый к клемме счетчика, очищают на длину 27 – 30 мм.
При подключении провода к счетчику откручивают оба винта контактного зажима. Провод вставляют до упора и первым закручивают верхний винт. Легким подергиванием провода убеждаются, что он плотно зажат и если зажат, то затягивают нижний винт.
Совет. Если счетчик предполагается использовать в частном доме или квартире, то монтаж внутренних соединений выполняется медным проводом сечением 4мм². Использовать провод сечением свыше 4мм² нет смысла, так как для домашнего потребителя Россеть более 15 кВт не дает и по техническим условиям вводной автомат разрешает устанавливать на нагрузку не более 25 Ампер. А рабочий ток медной жилы сечением 4мм² составляет приблизительно 32 Ампера, чего вполне достаточно.
Продолжаем. С выходных клемм счетчика 2-4-6 провода фаз А, В, С подключаются на входные клеммы автоматического выключателя, с выхода которого трехфазное напряжение поступает в домашнюю электрическую сеть. С клеммы 8 нулевой провод N подключается к нулевой шинке.
А вот как выглядит полная монтажная схема включения трехфазного счетчика.
Теперь если подать напряжение на счетчик, то на его лицевой панели должен зажечься световой индикатор «Сеть». А при подключении нагрузки световой индикатор «600 imp/kW•h» (или «400 imp/kW•h» — в зависимости от исполнения) должен мигать.
Также рекомендую посмотреть ролик о включении трехфазного счетчика прямого включения в трехфазную электрическую сеть.
Электродвигатель в качестве генератора
Кроме разного способа преобразований есть ещё один метод, как из 220 Вольт сделать 380. Это получение такого питания по системе двигатель-генератор.
При этом в качестве двигателя используется однофазная машина, например, от стиральной машины или пылесоса, а в качестве генератора необходимо установить синхронный генератор или двигатель. Вместо синхронной машины можно использовать асинхронную, но для этого в роторе необходимо разместить постоянные магниты большой мощности.
Такой способ реализовать достаточно сложно из-за трудности согласования скорости вращения электромашин и невозможности регулировки выходного напряжения.
На практике намного проще взять готовый дизельный или бензиновый генератор, предназначенный для резервного питания при отключении электроэнергии, а при наличии такого аппарата с неисправным двигателем его просто заменить новым или отремонтировать.
Как подобрать конденсаторы для трехфазного двигателя, используя его в сети 220в.
Первое, что нужно знать ― конденсаторы должны быть неполярными, то есть не электролитическими. Лучше всего использовать емкости марки ― МБГО. Их с успехом использовали в СССР и в наше время. Они прекрасно выдерживают напряжение, скачки тока и разрушающее воздействие окружающей среды.
Также они имеют проушины для крепления, помогающие без проблем расположить их в любой точке корпуса аппарата. К сожалению, достать их сейчас проблематично, но существует множество других современных конденсаторов ничем не хуже первых. Главное, чтобы, как уже говорилось выше, рабочее напряжение их не было меньше 400в.
Расчет конденсаторов. Емкость рабочего конденсатора.
Чтобы не обращаться к длинным формулам и мучить свой мозг, есть простой способ расчета конденсатора для двигателя на 380в. На каждые 100 Вт (0,1 кВт) берется — 7 мкФ. Например, если двигатель 1 кВт, то рассчитываем так: 7 * 10 = 70 мкФ. Такую емкость в одной банке найти крайне трудно, да и дорого. Поэтому чаще всего емкости соединяют в параллель, набирая нужную емкость.
Емкость пускового конденсатора.
Это значение берется из расчета в 2-3 раза больше, чем емкость рабочего конденсатора. Следует учитывать, что эта емкость берется в сумме с рабочей, то есть для двигателя 1 кВт рабочая равна 70 мкФ, умножаем ее на 2 или 3, и получаем необходимое значение. Это 70-140 мкФ дополнительной емкости — пусковой. В момент включения она соединяется с рабочей и в сумме получается — 140-210 мкФ.
Особенности подбора конденсаторов.
Конденсаторы как рабочие, так и пусковые можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.
Кроме указанного выше типа конденсатора — МБГО, можно использовать тип — МБГЧ, МБГП, КГБ и тому подобные.
Самодельный преобразователь однофазной сети 220в в три фазы
Самодельный расщепитель фаз из асинхронного двигателя, или попросту говоря преобразователь однофазного тока в трёхфазный. Очередная самоделка, которую я с успехом использую много лет. Не знаю как точно, по научному его назвать, но думаю «преобразователь однофазного тока в трёх фазный» подойдёт.
Думаю многие самодельщики знают, какие мучения доставляют асинхронные эл. двигатели, при работе в однофазной сети, особенно при максимальной нагрузке.
Однажды от папы услышал, что электрики как то делают такие генераторы, но тогда ещё интернета не было, спросить было не у кого. Вот тут то и начались эксперименты, а то, что из них вышло ниже на фото:
Для изготовления расщепителя фаз, использовал асинхронный двигатель 3000 об/мин, 3кВт (такой был), два конденсатора по 350 мкФ (для пуска этого движка самое то ! ), кнопка для запуска двигателя и трёх полюсный автомат.
Схема преобразователя из асинхронного электродвигателя.
Подключены два конденсатора по 350мкф каждый.
Выход на потребители.
Напряжение в сети.
Напряжение на выходе.
Как показала практика, КПД асинхронных двигателей выросло (в сравнении с однофазной сетью) на много. Но не в коем случае, нельзя нагружать гену потребителями выше его мощности, сгорит. Мой токарный станок ТВ-4 «школьник» (1,5 кВт) и бетономес (1,5кВт) работают отлично! Вот собственно и всё, появятся вопросы, задавайте.
Источник
Как делается преобразователь из 220в в 380 самостоятельно с помощью трансформатора
Преобразователь энергии – одно из самых распространенных устройств, которое может применяться как новичками, так и опытными мастерами. При помощи трансформаторов можно добиться любого напряжения в пределах допустимого ресурса устройства, в том числе и 380 Вольт. Что касается использования конденсатора для накопления энергии, то его необходимость всегда остаётся на усмотрение самого потребителя.
Вам это будет интересно Особенности изоляционной ленты
Для того, чтобы обеспечить стабильное электропитание на трёх фазах, следует использовать специальный трёхфазный трансформатор. Основная функция агрегата, помимо изменения напряжения, – это преобразование однофазного тока в трехфазный. Подобные приборы в ассортименте представлены в большинстве магазинах электротехники.
Катушки преобразователя напряжения скреплены треугольным зажимом. Напряжение будет подаваться на обе первичные катушки напрямую, а на последнюю с помощью накопительного устройства. Конденсатор должен выбираться исходя из 7 мкФ, которые приходятся на каждые 100 Ватт мощности.
Процесс работы без конденсатора
Внимание! Важно, чтобы минимальная заводская мощность прибора была не менее 400 Ватт. Кроме того, следует учесть, что подобные устройства запрещено переводить в рабочий режим без нагрузки
Если подобное случается, то требуемое напряжение будет достигнуто, но мощность электромотора при этом будет понижена, а коэффициент полезного действия, в свою очередь, начнёт резко стремиться к нулю.
Как подключить электроплиту к розетке на 220 Вольт
Электроплиту, использующую сеть на 220 Вольт можно без проблем подключить почти в любой квартир и частных домов. Так же, учитывая очень высокое потребление электричества, у всех современных электроплит и варочных поверхностей есть возможность подключения не только к сети на 220 Вольт, но и на 360. И чаще всего используется однофазное подключение. Вот такая, стандартная схема обычно идет в комплекте, уже в собранном виде.
Схема распределения проводов в вилке электроплиты
Три первых контакта (L1 L2 L3) соединяются вместе (перемычкой например), и к ним подключается фаза. Ноль подключаем к контактам 4 и 5, соответственно. На последний 6 контакт, как вы уже наверно догадались, подключается заземление.
Обычно контакты и провода всегда окрашены одинаково. Стандартная расцветка – фаза (+) красного, черного или коричневого цвета, ноль синего цвета, а земля желто-зеленого, но лучше, на всякий случай посмотреть в инструкции и убедиться в правильности подключения.
Бывает что проводов не 3, а 5. В этом случае попарные это ноль и фаза, а которые один – это земля.
При подключении электроплиты к однофазной сети можно не бояться перепутать местами подключение фазы и ноля, ничего страшного не произойдет и все будет работать. Однако НЕ ПЕРЕПУТАЙТЕ фазу с заземлением – будет постоянно выбивать «пробки», а в худшем случае можно спалить автомат или щиток.
Именно для этого, что бы не перепутать, заземляющий провод и контакт находятся отдельно, да и конструкция розетки с заземлением позволяет воткнуть вилку только в одном положении.
Давайте рассмотрим поближе самые распространённые розетки, используемые для подключения электрических плит.
- Розетка РС 32, обычно Российского или Украинского производства. Заземляющий контакт находится сверху и перевернут относительно фазы и ноля на 90 градусов, что бы не воткнуть подругому. Как на фото – фазу (коричневые провод) к правому контакту, ноль (с голубой полосой) к левому, хотя как я уже говорил, если перепутать местами – ничего страшного.
- Розетка для электрической плиты, производства Белоруссия. Контакты расположены под углом, что так же исключает возможность неправильного подключения. Земля, как водится у отечественных производителей, верхний контакт.
- Розетка фирмы Legrand2P+E, 32А. Красивая, надежная розетка, самое то для хорошего ремонта (хотя кто на нее смотрит то, за плитой). Отличается от наших и СНГ-шных тем, что заземляющий контакт внизу розетки и имеет прямоугольную форму, тогда как фаза и ноль круглые.
Куда подключать заземление
Кроме нейтрали и фазы в современной электропроводке используется ещё один проводник — защитное заземление. К нему присоединяются корпуса электроприборов и светильников.
При нарушении изоляции между этими деталями и элементами, находящимися под напряжением, возникает короткое замыкание или появляется ток утечки. В результате этого явления происходит отключение автоматического выключателя или дифференциальной защиты, соответственно.
В современной системе электроснабжения жилых домов используются три схемы заземления:
- TN-C. Старая система заземления, при которой заземление линий электропередач осуществляется только в подстанции, на нейтрали вторичной обмотки трансформатора, после чего к потребителю подводится совмещённый проводник PEN, выполняющий одновременно функцию заземления и нейтрали. В этом случае вместо защитного заземления имеет место защитное зануление и подключать к нему корпуса электроприборов запрещено ПУЭ 1.7.132. Для защиты людей от поражения электрическим током в такой системе необходимо использовать УЗО или дифавтомат.
- TN-C-S. Это более современная система, при которой во вводном щитке совмещённый провод PEN разделяется на нейтраль N и заземление РЕ. Место разделения при этом подключается к контуру заземления здания. Согласно ПУЭ п.1.7.135 после разделения соединение этих проводников запрещено. Заземляющий провод в квартирной электропроводке в данной системе необходимо присоединять именно к проводнику РЕ.
- TN-S. Самая современная схема, при которой электроснабжение осуществляется при помощи пяти проводов — три фазных L1, L2 и L3 , нейтраль N и заземление РЕ. В этом случае заземление присоединяется только к заземляющему проводнику.
В крайнем случае, допускается подключать защитное заземление к отдельному контуру, изготовленному согласно нормам ПУЭ п.п.1.7.100-118. В этом случае получится система заземления ТТ.
Важно! Использовать в качестве заземлителя водопроводные, канализационные или отопительные трубы запрещено
Второй способ – фазовый сдвиг
Этот вариант получения трехфазного напряжения основан на свойствах индуктивности (ток отстает от напряжения сети на условные 90 градусов угла между векторами) и емкости (напряжение опережает ток в электрической цепи на условные 90 градусов угла между векторами). Комбинируя совместно с нагрузкой индуктивные и емкостные элементы, при их определенном сочетании получается фазовый сдвиг в 120 градусов по напряжению в специальной схеме, показанной далее. Каждому значению мощности потребуются соответствующие по величине элементы. Они приведены в таблице № 1.
Схема
Таблица № 1 для получения трехфазного напряжения на активной нагрузке
Для асинхронного движка, в котором эквивалент обмоток статора – это параллельно соединенные сопротивления и емкости, схема и величины элементов будут иными. Они приведены далее в таблице № 2 вместе со схемой.
Схема
Таблица № 2 для получения трехфазного напряжения на обмотках асинхронного двигателя с короткозамкнутым ротором
Для схемы нужны металлобумажные конденсаторы с номинальным напряжением от 250 В. Для индуктивностей рекомендуется использовать сердечник от трансформатора мощностью 200 ВА. Число витков подбирается по измеряемой силе тока в электрической цепи из дросселя и резистора с известным сопротивлением, соединенных последовательно. Эта цепь вместе с мультиметром присоединяется к генератору 100…300 Гц. Дополнительно величина индуктивности корректируется воздушным зазором в сердечнике. Его наличие обязательно.
Увеличение индуктивности приведет к уменьшению тока, и наоборот. Совпадение измеряемого значения с расчетным свидетельствует о получении индуктивности необходимой величины. Такой способ целесообразен только для статичной нагрузки на вале асинхронного двигателя. При отклонениях ее фазовые характеристики напряжения в обмотках изменятся вместе с крутящим моментом. То есть эффективность двигателя ухудшится.
Схема звезда треугольник
Во многих отечественных электрических двигателях уже собрана схема звезда, нужно только реализовать треугольник. По сути, Вам необходимо произвести подключение трех фаз и собрать звезду из оставшихся шести концов обмотки. Для лучшего понимания ниже просмотрите чертеж звезды и треугольника электродвигателя. Здесь концы нумеруются с левой стороны на правую, номера 6, 4 и 5 присоединяются три фазы, как на схеме:
Фото – Звезда и треугольник электродвигателя
В соединении звезда с тремя выводами или как его еще называют звезда треугольник, самым главным достоинством является то, что вырабатывается максимальная мощность электрического двигателя. Но вместе с тем, это соединение довольно редко используется на производстве, гораздо чаще его можно встретить у мастеров-любителей. Главным образом это потому, что схема очень сложная, и на мощных предприятиях просто нет смысла организовывать такое трудоемкое соединение.
Читать также: Как припаять латунь к нержавейке
Фото – подключение звезда
Для того чтобы схема работала, Вам понадобится три пускателя. Схема изображена на чертеже ниже.
Фото – схема подключения звезда треугольник
К первому пускателю, который обозначен К1, с одной стороны подключается электрический ток, а к другому присоединяется обмотка статора. Свободные концы статора присоединяются к пускателям К2 и К3. После этого обмотки с пускателя К2 также подсоединяются к остальным фазам, для образования треугольника. Когда в фазу включается пускатель К3, то остальные концы немного укорачиваются и у Вас получается схема звезда.
Заметьте, что третий и второй пускатели на магнитах нельзя включать одновременно. Это может привести к короткому замыканию и аварийному отключению автомата электродвигателя. Для того, чтобы этого избежать, реализовывается своеобразная электроблокировка. Принцип её работы прост – когда включается один пускатель, то выключается другой, т.е. блокировка размыкает цепь его контактов.
Принцип работы схемы относительно прост. Когда в сеть включается первый пускатель, обозначенный К1, реле времени электродвигателя включает также третий пускатель К3. После двигатель заводится по схеме звезда и начинает работу с большей мощностью, чем обычно. Спустя определенный временной отрезок, реле времени отключает контакты третьего пускателя и включает в сеть второй. Теперь двигатель работает по схеме треугольника, немного снижая мощность. Когда нужно отключить питание, включается цепь первый пускатель, во время очередного цикла схема повторяется.
Нужно отметить, что мы не рекомендуем реализовывать такое соединение без определенного опыта и навыков. В любом случае при самостоятельной работе лучше проконсультироваться с профессионалами.
Видео: двигатель 380 в 220
Чем трёхфазный счётчик электроэнергии отличается от однофазного
Прежде чем описывать эту схему подключения счетчика к сети 380 Вольт необходимо дать краткое описание отличий трехфазного напряжения от однофазного. В обоих видах используется один нулевой проводник N. Разность потенциалов между каждым фазовым проводом и нулем равна 220 В, а по отношению этих фаз друг к другу – 380 В. Такая разность получается из-за того, что колебания на каждом проводе сдвинуты на 120 градусов (рисунки 3 и 4).
Однофазное напряжение используется в частных домах, на даче, а также в гаражах. В таких местах потребляемая мощность редко превышает 10 кВт. Это также позволяет использовать на участке более дешевые провода с сечением 4 мм.кв., т. к. потребляемый ток ограничен 40 А.
https://www.youtube.com/video/MSTUZSSCg2g
В случае если потребляемая мощность в сети превышает 15 кВт, то использование 3-х фазовых проводов обязательно даже, если отсутствуют трехфазные потребители, в частности, электродвигатели. В этом случае происходит распределение нагрузки по фазам, что позволяет снизить нагрузку, если бы такая же мощность забиралась от одной фазы. Поэтому в офисных зданиях и магазинах, как правило, применяют именно трехфазное питание.
Однофазные счетчики осуществляют учет электроэнергии в двухпроводных сетях переменного тока с напряжением 220В. А трехфазные — в сетях переменного трехфазного тока (3-х и 4-проводных) номинальной частотой 50 гц.
Однофазное питание чаще всего используют для электрификации частного сектора, спальных районов городов, офисных и административных помещений, в которых потребляемая мощность составляет около 10 кВт. Соответственно, в этом случае и учет электричества осуществляется с помощью однофазных счетчиков, большим преимуществом которых является простота их конструкции и монтажа, а также удобство пользования (снятия фазы и показаний).
Главное же преимущество заключается в возможности напрямую подключать трехфазные электроприборы, такие как обогреватели, электрокотлы, асинхронные двигатели, мощные электроплиты. Точнее — преимущества сразу два. Первое — при трехфазном электропитании данные приборы работают с более высокими качественными параметрами, а второе — не возникает «перекоса фаз» при одновременном использовании нескольких мощных электроприемников, поскольку всегда есть возможность подключить электроприборы к фазе, свободной от просадки через «перекос».
Наличие или отсутствие нулевого провода определяет, какой счетчик потребуется установить: трехпроводной при отсутствии «ноля», а при его наличии — четырехпроводной. Для этого есть соответствующие специальные обозначения в его маркировке — 3 или 4. Также выделяют счетчики прямого и трансформаторного включения (при токах, имеющих 100А и более на фазу).
Чтобы получить более четкое представление о преимуществах однофазного и трехфазного счетчиков друг перед другом, следует провести сравнение их плюсов и минусов.
Начнем с того, в чем проигрывает трехфазный однофазному:
- множество хлопот в связи с обязательным получением разрешения на установление счетчика и вероятность получения отказа
- Габариты. Если до этого использовалось однофазное питание с одноименным счетчиком, следует позаботиться о месте для установления вводного щита, как и самого трехфазного счетчика.
Для того, чтобы правильно подключить счётчик, необходимо знать схему его подключения. Следует отметить, что процесс подключения всех однофазных счётчиков абсолютно одинаков.
- Во-первых, счётчик подключается напрямую в силовую цепь, т.е. последовательно с подводимым питающим напряжением и электрической нагрузкой. Если рассматривать электрическую схему полностью, то она выглядит следующим образом: входное (питание) напряжение 220В – однофазный счётчик – выходное напряжение 220В – защитный автомат – переходная (соединительная) коробка – электрические потребители.
- Во-вторых, у каждого однофазного счётчика имеются четыре специальных силовых клеммы для подключения проводов. Если считать эти клеммы слева направо, то первая клемма – это приходящая фаза, вторая клемма – выходящая фаза. Третья клемма – приходящий ноль, ну а четвёртая – выходящий ноль. Т.е. у однофазного счётчика две входных и две выходных клеммы.
Определение схемы подключения
В независимости от того, какой у вас 3х фазный двигатель и на сколько он ватт, будет использоваться одна из двух схем подключения.
Первая называется «Звезда». При таком подключении, все выходные контакты обмоток сводятся в точку, а входные по фазам. Визуально соединение напоминает звездочку, а символически изображается игреком — «Y».
Вторая называется «Треугольник». В этом случае вход каждой обмотки соединяется с выходом предыдущей, поэтому схема напоминает треугольник. Пульсации в этом случае растут, но зато мощность будет повыше. А любые скачки на старте можно убрать, если подключить двигатель через конденсатор.
А как же определить схему подключения? До того, как подключить трехфазный двигатель на 220, стоит изучить инструкцию, если она есть. Также данные могут находиться под крышкой электроблока или на корпусе в виде таблицы.