Как проверить микросхему uc3842

Содержание

Принцип работы микросхемы ШИМ контроллера КА3882

Принцип работы микросхемы ШИМ контроллера рассмотрим на примере схемы импульсного блока питания компьютерного монитора SyncMaster 500В.

На рис. 3 показана схема импульсного блока питания мониторов Samsung моделей SyncMaster 500В, Samtron 5В (шасси CGB5607) с размером экрана 15″. Параметры блока питания: напряжение питания 90…264 В, 50…60 Гц; мощность потребления 85 Вт.

В качестве ШИМ контроллера используется микросхема IC601 типа КА3882. Ее выход управляет мощным полевым транзистором Q601 (SSH6N80), сток которого соединен с обмоткой 5-2 импульсного трансформатора Т601. На выходах выпрямителей во вторичной цепи формируется ряд напряжения 75, 53, 14,5,12, -12, 7 В для питания схемы видеоусилителей, строчной развертки, кадровой развертки, накала кинескопа. Схема имеет защиту от превышения напряжения питания, перегрузки по току и короткого замыкания. Схема поддерживает режим сохранения энергии согласно стандарту VESA: потребление в режиме Stand-by составляет 55 Вт, в режиме Suspend 15 Вт, в режиме Off 5 Вт.

Микросхема КА3882 состоит из генератора, усилителя ошибки, компаратора напряжения, использующего сигнал с резистора ограничения тока, пороговой схемы с гистерезисом, которая гарантирует стабильную работу в диапазоне напряжения питания 10…16 В, и выходного каскада для подключения мощного полевого транзистора. Работа микросхемы КА3882 довольно проста. При появлении на входе блока питания выпрямленного сетевого напряжения 300 В на выв. 7 IC601 через элементы R608, R609 протекает стартовый ток и включаются узлы микросхемы. Внутренний генератор начинает вырабатывать импульсы с частотой, определяемой цепочкой R607, С605, подключенной к выв. 4 IC601. С выв. 6 IC601 импульсы через резистор R610 и BD601 поступают на затвор ключевого транзистора Q601, обеспечивая импульсный ток в первичной обмотке 5-2 силового трансформатора Т601. Это приводит к появлению напряжения в обмотке 7-8 трансформатора, которое после выпрямления диодом D610 и сглаживания на емкости С613 поступает на выв. 7 IC601, обеспечивая ее питание в рабочем режиме

Важное свойство микросхемы КА3882: она не включается, если на выв. 7 напряжение меньше 10 В, и выключается, когда напряжение выше 16В (аварийный режим)

Дополнительную защиту обеспечивает цепочка элементов D611, С614, R622, R620, ZD602 и триггерная схема Q602, Q603, которая останавливает работу микросхемы в случае перенапряжений. В случае коротких замыканий во вторичных цепях источника питания, например при выходе из строя одного из выпрямительных диодов, пробоя электролитических конденсаторов или при неисправности в одном из блоков монитора, напряжения обмотки 7-8 не хватает для работы микросхемы ШИМ контроллера, и она выключается до момента, пока конденсатор С613 не зарядится до напряжения ее включения (более 10 В). Далее микросхема ШИМ контроллер снова включается и немедленно выключается. Интервал между включениями составляет примерно 1…2 с, при этом слышны слабые щелчки из импульсного трансформатора блока питания. Такой режим импульсного блока питания обеспечивает надежную защиту ключевого транзистора от перегрузки по току напряжением, снимаемым с резистора R614. Выходные напряжения блока питания стабилизируются через оптопару IC602 (CQY80NG). Эта часть схемы включает в себя также прецизионный источник опорного напряжения IC603 (TL431) и переменный резистор VR601 для установки номинальных напряжений. Изменение нагрузки во вторичной цепи управляет засветкой фототранзистора оптопары IC603, в результате происходит управление длительностью открытого состояния ключа.

Система проверки шуб по чипу – что это?

До момента введения обязательного чипирования меховых изделий качество товара полностью оставалось на совести продавца. Покупатель мог сам оценить исключительно визуально качество предлагаемого товара, но никаких подтверждающих данных о подлинности меха не получал.

Подделать или существенно изменить штрих-код не получится. В нём присутствуют голографические метки, графические знаки и они устойчивы к сильному снижению температур. Чипированию подвергаются все изделия, которые изготовлены из натурального меха, в том числе дублёнки, жилетки, куртки и даже вещи, имеющие подкладку из натурального материала.

Общее описание схемы зарядчика

Изготовить на тиристорах сможет каждый, если имеются познания в электротехнике. Но чтобы сделать правильно все работы, нужно иметь под рукой хотя бы простейший измерительный прибор — мультиметр.

Он позволяет провести замеры напряжения, тока, сопротивления, проверить работоспособность транзисторов. А в имеются такие функциональные блоки:

  1. Понижающее устройство — в самом простом случае это обычный трансформатор.
  2. Блок выпрямителя состоит из одного, двух или четырех полупроводниковых диодов. Обычно используется мостовая схема, так как с ее помощью удается получить практически чистый постоянный ток без пульсаций.
  3. Блок фильтров — это один или несколько электролитических конденсатора. С их помощью отсекается вся переменная составляющая в выходном токе.
  4. Стабилизация напряжения производится с помощью специальных полупроводниковых элементов — стабилитронов.
  5. Амперметром и вольтметром происходит контроль тока и напряжения соответственно.
  6. Регулировка параметров выходного тока производится устройством, собранным на транзисторах, тиристоре и переменном сопротивлении.

Состав.

В его составе имеется:
   — источник опорного напряжения на 5В с внешним выводом 8;
   — схема защиты от снижения напряжения питания (UVLO).
   — генератор пилообразного напряжения (генератор);
   — компаратор тока, используется в основном по сигналу ограничения тока;
   — усилитель ошибки, используется в основном по напряжению;
   — схема управления работой выходного каскада;

Микросхемы UCx844 и UСx845 имеют встроенный счетный триггер (обозначенный пунктиром), который служит для получения максимального рабочего цикла (шим-заполнения), равного 50%. Поэтому для задающих генераторов этих микросхем, нужно установить частоту переключения вдвое выше необходимой. Генераторы микросхем UCх842 и UCх843 устанавливаются на необходимую частоту переключения.
Максимальная рабочая частота задающих генераторов контроллеров семейства UCх842/3/4/5, может достигать 500 кГц.
Чем ещё отличаются друг от друга эти микросхемы. Это разным напряжением питания для этих микросхем.
Смотрим таблицу ниже;

 НАПРЯЖЕНИЕ 
ВКЛЮЧЕНИЯ — 16 В, 
 ВЫКЛЮЧЕНИЯ — 10 В 
 НАПРЯЖЕНИЕ 
 ВКЛЮЧЕНИЯ — 8.4 В, 
 ВЫКЛЮЧЕНИЯ — 7.6 В 
ДИАПАЗОН
РАБОЧИХ
ТЕМПЕРАТУР
 КОЭФФИЦИЕНТ 
ЗАПОЛНЕНИЯ
РАБОЧИЙ ЦИКЛ
 
UC1842 UC1843 -55°С… +125°С до 100%
UC2842 UC2843 -40°С… +85°С
UC3842 UC3843 0°С… +70°С
 
UC1844 UC1845 -55°С… +125°С до 50%
UC2844 UC2845 -40°С… +85°С
UC3844 UC3845 0°С… +70°С
 

Ещё микросхемы с суффиксом «А», например UC3842A, имеют в два раза меньший ток запуска — 0,5 мА. Микросхемы без суффикса «А» имеют пусковой ток около 1,0 мА.
Да, ещё совсем забыл про корпуса микросхем. Мы здесь рассматриваем в основном микросхемы в восьми-выводном корпусе DIP-8 (может быть суффикс «N», так же может быть керамический CERDIP-8 корпус (суффикс «J»), или SOIC-8 корпус (суффикс «D8»). Цоколёвки восьми-выводных микросхем полностью совпадают.
Так же микросхемы могут выпускаться и в 14-ти выводном «SOIC-14» корпусе, с суффиксом «D», и могут быть и в корпусе «PLCC-20» (суффикс «Q»). Цоколёвки микросхем в этих корпусах отличаются.
Отечественные микросхемы серии 1114, выполнены в корпусе Н02.8-2В. Это десяти-выводной металлокерамический корпус (ниже на рисунке) по пять выводов с каждой стороны, средние выводы из которых, являются просто технологической перемычкой и не учитываются. То есть получаются те же восемь выводов.

Теперь по маркировке можно определить, что это за микросхема, например UC3843AD;
— это шим-контроллер с пониженным током запуска (500 мкА), с включением в работу при достижении напряжения питания 8,4 вольта и выключением при достижении порога напряжения питания 7,6 вольта, с рабочим циклом до 100% и выполнена в корпусе «SOIC-14».

uc3843 — описание, принцип работы, схема включения

Микросхема uc3843 — интегральная схема (ИС), которая предназначена для построения стабилизированных импульсных источников питания с широтно-импульсной модуляцией. В промышленном производстве выпускается в корпусах типа SOIC-8(14), DIP-8.

Основным принципом работы можно назвать применение вместе с uc3843 МОП транзистора. Это объясняется тем фактом, что мощность выходного каскада uc3843 незначительная. Поскольку амплитуда выходного сигнала может достигать напряжения питания МС, в качестве ключа используют МОП-транзистор.

Схема включения uc3843 приведена на рисунке.

Рисунок 1. Схема включения uc3843

Как работает микросхема

А теперь нужно рассмотреть кратко работу элемента. При появлении на восьмой ножке постоянного напряжения +5 В происходит запуск генератора OSC. На входы триггера RS и S поступает положительный импульс небольшой длины. Далее, после подачи импульса, происходит переключение триггера и на выходе появляется ноль. Как только импульс OSC начнет спадать, на прямых входах элемента напряжение окажется равным нулю. А вот на инвертирующем выходе появится логическая единица.

Эта логическая единица позволяет открыть транзистор, поэтому электрический ток начнет протекать от источника питания через цепочку коллектор-эмиттер к шестому выводу микросхемы. Отсюда видно, что на выходе будет находиться открытый импульс. И он прекратится только тогда, когда на третий вывод будет подано напряжение 1 В или выше.

uc3844 — описание, принцип работы, схема включения

Микросхема uc3844 широко распространена в импульсных блоках питания компьютерной и различной бытовой техники. uc3844 используется для управления полевым ключевым транзистором в схемах ИБП.

Микрочипы uc3844 разработаны специально для DC-DC преобразователей, поскольку преобразовывают постоянное напряжение одной величины в постоянное напряжение другой величины.

Если напряжение питания в норме, на выводе 8 появляется напряжение +5В, которое приводит в запуск генератор OSC.

Производством чипов uc3844 занимаются фирмы UNITRODE, ST и TEXAS INSTRUMENTS.

Схема включения отображена на рисунке 6.

Рисунок 6. Схема включения микрочипа uc3844

Особенности работы микросхемы (adsbygoogle = window.adsbygoogle || []).push({});

Если имеется короткое замыкание в цепи вторичной обмотки, то при пробое диодов или конденсаторов начинает возрастать потеря электроэнергии в импульсном трансформаторе. Может получиться и так, что для нормального функционирования микросхемы не хватает напряжения. При работе слышно характерное «цыканье», которое исходит от импульсного трансформатора.

Рассматривая описание, принцип работы и схему включения UC3842, сложно обойти стороной особенности ремонта. Вполне возможно, что причиной поведения трансформатора является не пробой в его обмотке, а неисправность конденсатора. Происходит это в результате выхода из строя одного или нескольких диодов, которые включаются в цепь питания. Но если произошел пробой полевого транзистора, необходимо полностью менять микросхему.

Зарядка для АКБ из блока питания компьютера

Для зарядки любого аккумулятора хватит 5-6 ампер-часов, это является около 10% от емкости всей батареи. Произвести его, может, любой блок питания емкостью от 150 Вт.

Итак, рассмотрим 2 способа самостоятельного изготовления зарядного устройства из компьютерного блока питания.

Способ первый

Для изготовления нужны следующие детали:

  • блок питания, мощностью от 150 Вт;
  • резистор 27 кОм;
  • регулятор тока R10 или блок резисторов;
  • провода длиной от 1 метра с клеммами;

Ход выполнения работ:

  1. Для начала нам потребуется разобрать блок питания.
  2. Извлекаем неиспользуемые нами провода, а именно -5в, +5в, -12в и +12в.
  3. Совершаем замену резистора R1 на заранее заготовленный резистор 27 кОм.
  4. Удаляем провода 14 и 15, а 16 просто отключаем.
  5. Из блока выводим сетевой шнур и провода к аккумуляторной батарее.
  6. Устанавливаем регулятор тока R10. В отсутствие такого регулятора, можно изготовить самодельный блок резисторов. Состоять будет он из двух резисторов 5 Вт, которые будут соединены параллельно.
  7. Для настройки зарядного устройства, в плату устанавливаем переменный резистор.
  8. К выходам 1,14,15,16 припаиваем провода, а резистором устанавливаем напряжение 13,8-14,5в.
  9. На окончание проводов присоединяем клеммы.
  10. Остальные ненужные дорожки удаляем.

Как сделать зарядное устройство для автомобильного аккумулятора своими руками?

Автоматические устройства представляют простую конструкцию, но очень надежную в работе. Создана их конструкция при использовании простого трансформатора без лишних электронных дополнений. Они рассчитаны на простую зарядку аккумуляторов любых транспортных средств.

Плюсы:

  1. Зарядка прослужит долгие годы при правильном использовании и должном ее обслуживании.

Минусы:

  1. Отсутствие какой-либо защиты.
  2. Исключение режима разрядки и возможности проведения восстановления аккумуляторной батареи.
  3. Тяжелый вес.
  4. Достаточно высокая стоимость.

Состоит классический зарядный прибор из следующих ключевых элементов:

  1. Трансформатор.
  2. Выпрямитель.
  3. Блок регулировки.

Такой прибор вырабатывает постоянный ток под напряжением 14,4в, а не 12в. Поэтому согласно законам физики, невозможно зарядить одно устройство другим, если напряжение у них одинаковое. Руководствуясь вышесказанным, оптимальным значением для такого устройства является 14.4 Вольта.

Ключевыми компонентами любого зарядного устройства считаются:

  • трансформатор;
  • сетевая вилка;
  • предохранитель (осуществляет защиту от короткого замыкания);
  • проволочный реостат (осуществляет регулировку силы зарядного тока);
  • амперметр (показывает силу электрического тока);
  • выпрямитель (преобразовывает переменный в постоянный ток);
  • реостат (регулирует силу тока, напряжение в электрической цепи);
  • лампочка;
  • включатель;
  • корпус;

Как работает система проверки шуб по чипу и стоит ли ей доверять

Фактическая маркировка меховых изделий началась еще 3 года назад. За это время система прошла свою “обкатку” среди участников оборота и фактически перешла под управление ЦРПТ только в июне этого года. При этом изменениям поверглись лишь организационные моменты.

Данные о продукции, которые были ранее у старого оператора, перенесли в новый личный кабинет. Перемаркировки уже выпущенной продукции при этом не планируется.

Для того, чтобы понимать основные принципы работы честного знака и то как происходит фиксация прослеживаемости шуб, необходимо ознакомится со следующими моментами:

  1. При маркировании изделия используется так называемые – контрольно идентификационные знаки или КИЗ.
  2. Они производятся и контролируются ГОЗНАКом и наносятся на шубу 3мя возможными способами: Вшиванием.
  3. Наклеиванием.
  4. Используя навесные бирки.

При производстве КИЗ, используется специальная радио-метка RFID.
Маркировка и выдача знаков, осуществляется только через систему “Честный знак” и контролируется ей же. При этом заказать выпуск КИЗ можно только в 3х случаях:

  1. Когда Вы являетесь импортером и ввозите продукцию на территорию ЕАЭС.

Когда Вы являетесь производителем шуб.
Когда идентификационный знак потеряет свою работоспособность, например в случае механического повреждения.
Другие участники оборота, лишь отмечают факты прибытия и выбытия идентификаторов на своем этапе реализации.

Как должен выглядеть правильный КИЗ

Те, что произведены на территории ЕАЭС

Те, что ввезены на территорию ЕАЭС

У ГОЗНАК на этот счет имеется четкие требования и правила внешнего вида КИЗ, которые должны наноситься на шубы. Всего их имеется 2 вида: (красные) ввозимые на территорию ЕАЭС, (зеленые) произведенные на территории ЕАЭС.

Расшифровываются они следующим образом:

  1. Указывается идентификатор страны.
  2. Отмечаются сведения о наличии чипа RFID в штрих-коде изделия.
  3. Наносится Data Matrix код информации о продукции.
  4. Указывается краткое название продукции, согласно интерпретации в классификаторе ТН ВЭД.
  5. Заносятся данные штрих-кода EAN-128 из организации ГС1 РУС ЮНИСКАН.
  6. В случае с красными КИЗ, отмечается факт ввоза на территорию таможенного союза. Для этого на идентификации страны, печатается стрелка.

Микросхема UC3842 (ШИМ) или изготавливаем Зарядное устройство для автомобильных аккумуляторов

Продолжая серию статей о самодельных лабораторных блоках питания, нельзя пройти мимо компьютерных блоков в основе которых лежит ШИМ контроллер серии UC38хх. В большинстве современных фирменных блоков ПК используется именно эта микросхема, что в перспективе позволяет своими руками создавать надежные и мощные источники питания. Переделка такого компьютерного блока питания в лабораторный будет происходить в несколько этапов:. Супервизор WT N производит мониторинг напряжения на шинах блока, отслеживает перегрузку, отвечает за пуск и аварийную остановку. Для его отключения необходимо произвести два простых действия. Выходное напряжение в блоке будет меняться в широком диапазоне, а питание 12 В штатного вентилятора должно быть неизменным. Существует несколько вариантов решения данной проблемы:. Последние два варианта не нуждаются в описании из-за своей простоты включения.

Как работает микросхема (adsbygoogle = window.adsbygoogle || []).push({});

А теперь нужно рассмотреть кратко работу элемента. При появлении на восьмой ножке постоянного напряжения +5 В происходит запуск генератора OSC. На входы триггера RS и S поступает положительный импульс небольшой длины. Далее, после подачи импульса, происходит переключение триггера и на выходе появляется ноль. Как только импульс OSC начнет спадать, на прямых входах элемента напряжение окажется равным нулю. А вот на инвертирующем выходе появится логическая единица.

Эта логическая единица позволяет открыть транзистор, поэтому электрический ток начнет протекать от источника питания через цепочку коллектор-эмиттер к шестому выводу микросхемы. Отсюда видно, что на выходе будет находиться открытый импульс. И он прекратится только тогда, когда на третий вывод будет подано напряжение 1 В или выше.

Почему Ваш телефон нуждается в защищенном процессоре

Без защищенного процессора и изолированной области памяти Ваше устройство гораздо более открыто для атаки. Защищенный чип изолирует критические данные, такие как ключи шифрования и платежные данные. Даже если Ваше устройство взломано, вредоносное ПО не может получить доступ к этой информации.

Защищенная область также контролирует доступ к Вашему устройству. Даже если у кого-то есть Ваше устройство и заменят его операционную систему взломанной, защищенный чип не позволит им подбирать миллион PIN-кодов или паролей в секунду. Это замедлит их работу и заблокирует их.

Когда Вы используете мобильный кошелек, такой как Apple Pay, Samsung Pay или Google Pay, Ваши платежные реквизиты можно безопасно хранить, чтобы гарантировать, что никакое вредоносное программное обеспечение, работающее на Вашем устройстве, не сможет получить к ним доступ.

Google также делает некоторые интересные вещи с микросхемой Titan M, например, аутентификацию Вашего загрузчика и обеспечение того, чтобы злоумышленник не мог понизить версию операционной системы или заменить прошивку Titan M.

Даже атака в стиле Spectre, которая позволяет приложению читать память, которая ему не принадлежит, не сможет взломать эти чипы, поскольку чипы используют память, которая полностью отделена от основной системной памяти.

uc3843 — описание, принцип работы, схема включения

Микросхема uc3843 — интегральная схема (ИС), которая предназначена для построения стабилизированных импульсных источников питания с широтно-импульсной модуляцией. В промышленном производстве выпускается в корпусах типа SOIC-8(14), DIP-8.

Основным принципом работы можно назвать применение вместе с uc3843 МОП транзистора. Это объясняется тем фактом, что мощность выходного каскада uc3843 незначительная. Поскольку амплитуда выходного сигнала может достигать напряжения питания МС, в качестве ключа используют МОП-транзистор.

Схема включения uc3843 приведена на рисунке.

Рисунок 1. Схема включения uc3843

Что представляет собой чип, и как его устанавливают?

Подкожные чипы безвредны для организма, не нуждаются в подзарядке и могут работать годами. По размеру они обычно чуть больше рисового зерна. Состоят из специальной стеклянной оболочки и микросхемы, которая является небольшой RFID-меткой. Чаще всего чип устанавливают между большим и указательным пальцами руки.

Имплантацию делают под местной анестезией, чип вводят под кожу при помощи специальной толстой иглы. Самостоятельно, без определенных знаний анатомии, этого лучше не делать. Установившие чип говорят, что процедура не особо болезненная и по ощущениям схожа с пирсингом. Также по их словам, чип не мешает и почти не чувствуется, только у некоторых он иногда перемещается под кожей. В случае поломки его можно удалить и заменить.

Как проверить микросхему UC3842

Широтно—импульсные преобразователи являются конструктивной частью импульсных блоков питания электронных устройств. Разберем, как проверить ШИМ контроллер с применением мультиметра, на примере материнской платы компьютера. Итак, при включении питания платы, срабатывает защита. В первую очередь, необходимо проверить мультиметром сопротивление плеч стабилизатора. Для этих целей также может быть использован тестер радиодеталей.

Very often, the UC series microcircuit can fail due to incorrect device operation or electric shock damage. How to check the health of the UC series microcircuit? Did the pulse-width controller of the UC series damaged? The device is a tester of a large number of similar microcircuits with the same pin layout and allows you to detect defective and fake UC microcircuits and the like.

uc3844 — описание, принцип работы, схема включения

Микросхема uc3844 широко распространена в импульсных блоках питания компьютерной и различной бытовой техники. uc3844 используется для управления полевым ключевым транзистором в схемах ИБП.

Микрочипы uc3844 разработаны специально для DC-DC преобразователей, поскольку преобразовывают постоянное напряжение одной величины в постоянное напряжение другой величины.

Если напряжение питания в норме, на выводе 8 появляется напряжение +5В, которое приводит в запуск генератор OSC.

Производством чипов uc3844 занимаются фирмы UNITRODE, ST и TEXAS INSTRUMENTS.

Схема включения отображена на рисунке 6.

Рисунок 6. Схема включения микрочипа uc3844

Проверка выходного сопротивления

Один из основных способов диагностики – замер величины сопротивления на выходе. Можно сказать, что это самый точный способ определения поломок

Обратите внимание на то, что в случае пробоя силового транзистора к выходному каскаду элемента будет приложен высоковольтный импульс. По этой причине происходит выход из строя микросхемы

На выходе сопротивление окажется бесконечно большим в случае, если элемент исправен.

Замер сопротивления производится между выводами 5 (масса) и 6 (выход). Измерительный прибор (омметр) подключается без особых требований – полярность значения не имеет. Рекомендуется перед началом проведения диагностики выпаять микросхему. При пробое сопротивление будет равно нескольким Ом. В том случае, если осуществлять измерение сопротивления без выпаивания микросхемы, то цепочка затвор-исток может звониться. И не стоит забывать о том, что в схеме блоков питания на UC3842 присутствует постоянный резистор, который включается между массой и выходом. При его наличии у элемента будет иметься выходное сопротивление. Следовательно, если на выходе сопротивление очень низкое или равно 0, то микросхема неисправна.

uc3844 — описание, принцип работы, схема включения

Микросхема uc3844 широко распространена в импульсных блоках питания компьютерной и различной бытовой техники. uc3844 используется для управления полевым ключевым транзистором в схемах ИБП.

Микрочипы uc3844 разработаны специально для DC-DC преобразователей, поскольку преобразовывают постоянное напряжение одной величины в постоянное напряжение другой величины.

Если напряжение питания в норме, на выводе 8 появляется напряжение +5В, которое приводит в запуск генератор OSC.

Производством чипов uc3844 занимаются фирмы UNITRODE, ST и TEXAS INSTRUMENTS.

Схема включения отображена на рисунке 6.

Рисунок 6. Схема включения микрочипа uc3844

Могут ли чипы представлять угрозу?

Сразу отбросим теории конспирологов в шапочках из фольги о порабощении человеческого сознания и тотальном контроле над людьми. В этой статье речь не о них.

В действительности опасность могли бы представлять хакеры

Однако сейчас чипы им не интересны: они передают сигнал на очень маленькое расстояние и не содержат важной информации в больших объемах. Для хакеров еще несколько лет куда выгоднее будет взламывать ваш компьютер или телефон

Однако если чипирование продолжит развиваться и выйдет на новый уровень, они могут в нем заинтересоваться, однако прогнозов на будущее мы дать не можем.

В любом случае не стоит бояться чипов. Научно-технический прогресс стремителен и то, что казалось нам странным раньше, теперь считается нормой. Могли ли мы несколько десятков лет назад представить, что будем просыпаться и ложиться в постель с девайсом, заменившим практически всю портативную технику? Так и в будущем вполне возможны подкожные чипы, которые постепенно придут на смену смартфонам!