Как измерить индуктивность мультиметром

Содержание

Содержание / Contents

  • 1 Схема измерителя индуктивности
  • 2 Калибровка измерителя индуктивности
  • 3 Плата и сборка
  • 4 Корпус
  • 5 Примеры измерений 5.1 Результаты измерений индуктивности 100 мкГ
  • 5.2 Результаты измерений индуктивности 470 мкГ

6 Заключение
7 Источники
8 Файлы

Обычно, измерять индуктивность приходится нечасто. В отношении себя я бы даже сказал — очень редко. Выпаял, например, с какой-нибудь платы катушку, а она без маркировки. Интересно же узнать, какая у неё индуктивность, чтобы потом где-нибудь применить.

Или сам намотал катушку, а проверить нечем. Для таких эпизодических измерений я посчитал нерациональным приобретение отдельного прибора. И вот я начал искать какую-нибудь очень простую схему измерителя индуктивности

Особых требований по точности я не предъявлял, — для любительских самоделок это не столь важно

Цифровой мультиметр

В отличие от аналоговых, этот мультиметр позволяет с легкостью определять интересуемые величины, при этом его точность измерений гораздо выше по сравнению со стрелочными аппаратами.

Также наличие переключателя между различными характеристиками электричества исключает возможность перепутать то или иное значение, поскольку пользователю не нужно разбираться в градации шкалы показаний.

Результаты измерений отображаются на дисплее (в более ранних моделях – светодиодных, а в современных – жидкокристаллических). За счет этого цифровой мультиметр комфортен для профессионалов и прост и понятен в использовании для новичков.

2.32. Измерение индуктивностей низкочастотных катушек

2) устанавливают с помощью автотрансформатора АТ напряжение на уровне 10 В и замечают показание U1 вольтметра, то есть падение напряжения на исследуемой катушке;

3) переводят ползунок переключателя из положения 1—3 в положение 1—2, присоединяя таким образом вольтметр параллельно резистору, и подбирают такое значение сопротивления R = R2, при котором падение напряжения на резисторе также равно U1.

4) вычисляют индуктивность катушки по формуле:

L’x = 0,00318 √RR2 Гн, (32)

где R1 и R2 — сопротивления резистора (Ом) при нахождении ползунка переключателя в положениях 1—3 и 1—2.

При отсутствии переменного резистора индуктивность катушки измеряют с помощью постоянного резистора. Схема и процесс измерения остаются прежними, формула же для подсчета Lх — дополняется множителем U1/U2, то есть приобретает вид:

L»x = 0,00318 R(U1/U2) Гн, (33)

где R — сопротивление резистора, Ом,

U1 и U2 — показания вольтметра в положениях 1—3 и 1—2 ползунка переключателя.

В большинстве случаев индуктивные сопротивления обмоток намного превышают их активные сопротивления, поэтому приведенные выше формулы дают достаточно точные значения индуктивности.

Однако если число витков катушки мало, а сопротивление постоянному (или переменному) току велико (несколько десятков или сотен Ом), то L’x и L»x вычисляют по другим, более точным формулам, а именно:

(34)

где R — сопротивление резистора при нахождении ползунка переключателя в положении 1—2; U — напряжение на последовательно соединенных R иLx; U2 — напряжение на резисторе равное напряжению U1 на катушке Lх;

Lx» = 0,00318 R0 / tg α,

где R — активное сопротивление обмотки;

α — угол, образованный стороной ВС треугольника ABC (рис. 2.40) и перпендикуляром, опущенным из точки В на продолжение стороны ЛС.

Конструкция

Главное назначение катушек индуктивности ГОСТ 20718-75 – это накопление электрической энергии в пределах магнитного поля для акустики, трансформаторов и т. д. Их используют для разработки и конструирования различных селективных схем и электрических устройств. От конструкции (материала, количества витков), наличия каркаса зависит их функциональность, размеры и область использования. Изготовление устройств производится на заводах, но можно сделать их самостоятельно. Самодельные элементы несколько уступают по надежности профессиональным, но обходятся в разы дешевле.


Фото — схема

Каркас катушки индуктивности выполняется из диэлектрического материала. На него наматывается изолированный проводник, который может быть как одножильным, так и многожильным. В зависимости от типа намотки, они бывают:

  1. Спиральными (на ферритовом кольце);
  2. Винтовыми;
  3. Винтоспиральными или комбинированными.

Примечательной особенностью катушки индуктивности для электрических схем является то, что её можно намотать как в несколько слоев, так и нированно, т. е., с обрывками Если используется толстый проводник, то элемент может обматываться без каркаса, если тонкий – то только на рамку. Эти каркасы катушек индуктивности бывают различного сечения: квадратные, круглые, прямоугольные. Полученная намотка может вставляться в специальный корпус какого-либо электрического устройства или использоваться в открытом виде.


Фото — конструкция самодельного элемента

Для увеличения индуктивности используются сердечники. В зависимости от назначения элемента, варьируется используемый материал стержня:

  1. С ферромагнитным и воздушным сердечником применяются при высоких частотах тока;
  2. Стальные используются в условиях низкого напряжения.

Вместе с этим, в электротехнике активно используются индуктивные классические катушки без сердечника, которые можно сделать своими руками при помощи намотки на немагнитный контур.Такие устройства имеют некоторые преимущества перед «сердечными». У них большая линейность импеданса. Но, у тороидальной модели намотка на немагнитный каркас способствует появлению паразитной емкости.

Исходя из принципа работы, бывают такие типы:

  1. Контурные. Преимущественно используются в радиотехнике для создания колебательных контуров платы, работают вместе с конденсаторами. Для соединения используется последовательное подключение. Это современный вариант плоской контурной катушки Тесла;
  2. Вариометры. Это высокочастотные перестраиваемые катушки, индуктивностью которыми можно при необходимости управлять при помощи дополнительных устройств. Они представляют собой соединение двух отдельных катушек, при этом, одна подвижна, а вторая нет;
  3. Сдвоенные и подстроечные дроссели. Основные характеристики этих катушек: малое сопротивление постоянному току и высокое переменному. Дроссели изготавливаются из нескольких катушек, соединенных обмотками между собой. Их часто используют в виде фильтра для различных радиотехнических приборов, устанавливают для контроля помех в антенны и т. д.;
  4. Трансформаторы связи. Их конструктивной особенностью является то, что на одном стержне установлено от двух и более катушек. Они используются в трансформаторах для обеспечения определенной связи между отдельными компонентами устройства.

Маркировка катушек индуктивности определяется по количеству витков и цвету корпуса.

Фото — маркировка

Стартер

При подаче напряжения в стартере возникает тлеющий разряд. Нагреваясь биметаллические пластины, из которых сделаны электроды стартера, замыкаются, в результате чего ток в цепи значительно увеличивается. Увеличившийся ток разогревает электроды люминесцентной лампы, и они начинают испускать электроны. Одновременно с этим электроды стартера остывают, биметаллическая пластина изгибается и цепь разрывается. Таким образом, стартер нужен только в момент запуска, в дальнейшей работе он не участвует и его электроды остаются разомкнутыми.

Будет интересно Как подключить комнатную антенну к телевизору: практические советы

При этом на дросселе, благодаря самоиндукции, возникает кратковременный высоковольтный импульс, который приводит к газовому разряду и зажиганию лампы. Когда лампа горит, напряжение на её электродах ниже напряжения сети на величину эдс самоиндукции, возникающей в дросселе при зажигании лампы. Таким образом дроссель препятствует возрастанию тока в рабочем режиме лампы. Недостатками данной схемы являются продолжительное время включения светильника, по мере износа дроссель начинает издавать гул, низкая эффективность при отрицательных температурах.


Стартеры.

Какое строение имеют источники светового потока

Дневное освещение является самым экономичным вариантом в плане освещения. При этом оно лучше всего подходит для глаз, благодаря чему служит отличной альтернативой всем существующим на сегодняшний день вариантам подсветки помещений. Для создания дневного света сегодня используются различие виды люминесцентных ламп. Такие лампы могут классифицироваться по оттенку и яркости излучаемого света:

  • теплый белый;
  • холодный белый;
  • желтоватый тон.

Схема дросселя.

Дроссель

Но для повышения их безопасности во время работы принято использовать специальный прибор – дроссель. Им оснащены все лампы дневного света. Покупая светильник дневного света, обязательно поинтересуйтесь у продавца гарантией и другой сопроводительной документацией на приобретаемое изделие. Так вы точно купите качественный прибор для своих нужд. Что же представляет собой дроссель? Внешне дроссель имеет вид катушки индуктивности, у которой имеется специальный ферримагнитный сердечник. Это такая деталь, которая необходима для стабильной работы любой лампы при создании дневного света. По сути, дроссель входит в состав энергосберегающего источника света, установленного в светильнике. Частые поломки и способы их проверки мультимером указаны в таблице ниже:

Таблица основных поломок дросселя и способы их проверки мультимером.

При его неисправности или падении работоспособности на концах лампы появляются почернения. В задачи данной детали входит контроль напряжения, создаваемого на выходных контактах энергосберегающего источника света. Очень часто дроссель входит в состав люминесцентных ламп. Для того чтобы источник дневного света не погас, создается балласт. Он способен поддерживать в контактах осветительного прибора ток на требуемом уровне.

По существующим на сегодняшний день стандартам, такой балласт нужно подключать последовательно. Затем к нему параллельно подсоединяют стартер. Он ответственен за зажигание лампы.

Такое строение и способ подключения играет важную роль в работоспособности лампы, используемой для создания дневного света в помещении. Поэтому если имеются неисправности, то в первую очередь нужно проверить дроссель. О том, как это сделать мы расскажем несколько ниже. Чтобы понять, почему лампы дневного света перестали работать, необходимо быть знакомым с их конструкцией, а также принципом работы. Это нужно для того, чтобы по косвенным признакам проверить их работоспособность и определиться с вариантами починки. На данный момент в продаже существует несколько типов люминесцентных ламп. Но все они имеют одинаковое строение.

Тороидальный дроссель.

Описание

Принцип действия машин основан на измерении нагрузки, приложенной к испытываемому образцу, при помощи датчика силы в электрический сигнал, изменяющийся пропорционально этой нагрузке. Приложенная нагрузка, создаваемая машинами, деформирует испытуемый образец, при этом производиться измерение значения величины этой нагрузки и соответствующей ей величины деформации образца.

Конструктивно машины состоят из устойчивого основания, на котором установлена подвижная консоль с закреплённым датчиком силы. Модификации машин -xt оснащены пультом управления с сенсорным экраном.

В свою очередь, подвижная консоль перемещается при помощи ходового винта, который получает движение от регулируемого электропривода. В процессе проведения измерений, испытываемый образец закрепляют между двух захватов (приспособлений) в режиме растяжения или устанавливают между приспособлениями в зависимости от вида испытания в режиме сжатия. При этом неподвижный захват крепится на основании, а подвижный захват крепится на измерительной ячейке. Перемещение подвижной консоли вызывает воздействие на образец, а, следовательно, его деформацию вплоть до разрушения.

Внешний вид испытательных машин представлен на рисунках 1, 2 и 3.

Рис 3. Внешний вид машин Multitest 2,5-xt

Рис 2. Внешний вид машин Multitest 2,5-i

Измерительные ячейки и пульт управления представляют собой микропроцессорные устройства, которые осуществляют прием и обработку информации от датчиков. На задней панели стойки расположен разъём интерфейса RS232 для подключения измерительной ячейки и пульта управления к персональному компьютеру.

Машины выпускаются в 7 модификациях, отличающихся наибольшим пределом измерения. При этом машины с наибольшими нагрузками до 5,0 кН включительно — 4 модификации, выпускаются в одноколонном исполнении, а машины с наибольшими нагрузками 10, 25 и 50 кН выпускаются в двухколонном исполнении. Технические характеристики модификаций машин представлены в таблице 2.

Что зовется индуктивным сопротивлением

Когда на катушку подают переменное напряжение, ток, проходящий по ней, меняется согласно поданному напряжению. Это служит причиной изменения магнитного поля, создающего электродвижущую силу, препятствующую происходящему.


Схема для измерения

В такой цепи имеется зависимость электрических параметров от двух видов: обычного и индуктивного. Они обозначаются, соответственно, как R и XL.

На обычном происходит выделение мощности. Однако на реактивных элементах она является нулевой. Это связано с постоянным изменением направления переменного тока.

В течение одного периода колебаний энергия дважды закачивается в катушку и столько же раз возвращается в источник.


Определение индуктивности

Измеритель индуктивности для мультиметра

Несмотря на то, что определять индуктивность при работе с электроникой приходится редко, это все же иногда необходимо, а мультиметры с измерением индуктивности найти достаточно трудно. В данной ситуации поможет специальная приставка к мультиметру, позволяющая измерить индуктивность.

Зачастую для подобной приставки используется цифровой мультиметр установленный на измерение напряжения с порогом точности измерения в 200 мВ, который можно приобрести в любом магазине электро и радиоаппаратуры в готовом виде. Это позволит сделать простую приставку к цифровому мультиметру.

Сборка платы приставки.

Собрать приставку-тестер к мультиметру для измерения индуктивности можно без особых проблем в домашних условиях, обладая базовыми знаниями и навыками в области радиотехники и пайки микросхем.

В схеме платы можно применять транзисторы КТ361Б, КТ361Г и КТ3701 с любыми буквенными маркерами, но для получения более точных измерений лучше использовать транзисторы с маркировкой КТ362Б и КТ363. Эти транзисторы устанавливаются на плате в позициях VT1 и VT2. На позиции VT3 необходимо установить кремневый транзистор со структурой p-n-p, например, КТ209В с любой буквенной маркировкой. Позиции VT4 и VT5 предназначены для буферных усилителей. Подойдет большинство высокочастотных транзисторов, с параметрами h21Э для одного не меньше 150, а для другого более 50.

Для позиций VD и VD2 подойдут любые высокочастотные кремневые диоды.

Резистор можно выбрать МЛТ 0,125 или аналогичный ему. Конденсатор С1 берется с номинальной емкостью 25330 пФ, поскольку он отвечает за точность измерений и ее значение стоит подбирать с отклонением не более 1%. Такой конденсатор можно сделать объединив термостабильные конденсаторы разной емкости (например, 2 на 10000 пФ, 1 на 5100 пФ и 1 на 220 пФ). Для остальных позиций подойдут любые малогабаритные электролитические и керамические конденсаторы с допустимым разбросом в 1,5-2 раза.

Проводу к «бананам» и «крокодилам» лучше взять короче, что бы уменьшить влияние их собственной индуктивности на показания замеров. В месте припаивания проводов к плате, соединение стоит дополнительно зафиксировать каплей термоклея.

При необходимости регулирования диапазона измерений на плату можно добавить разъем для переключателя (например, на три диапазона).

Что зовется индуктивным сопротивлением

Когда на катушку подают переменное напряжение, ток, проходящий по ней, меняется согласно поданному напряжению. Это служит причиной изменения магнитного поля, создающего электродвижущую силу, препятствующую происходящему.


Схема для измерения

В такой цепи имеется зависимость электрических параметров от двух видов: обычного и индуктивного. Они обозначаются, соответственно, как R и XL.

На обычном происходит выделение мощности. Однако на реактивных элементах она является нулевой. Это связано с постоянным изменением направления переменного тока.

В течение одного периода колебаний энергия дважды закачивается в катушку и столько же раз возвращается в источник.


Определение индуктивности

Конструкция

Главное назначение катушек индуктивности ГОСТ 20718-75 – это накопление электрической энергии в пределах магнитного поля для акустики, трансформаторов и т. д. Их используют для разработки и конструирования различных селективных схем и электрических устройств. От конструкции (материала, количества витков), наличия каркаса зависит их функциональность, размеры и область использования. Изготовление устройств производится на заводах, но можно сделать их самостоятельно. Самодельные элементы несколько уступают по надежности профессиональным, но обходятся в разы дешевле.


Фото — схема

Каркас катушки индуктивности выполняется из диэлектрического материала. На него наматывается изолированный проводник, который может быть как одножильным, так и многожильным. В зависимости от типа намотки, они бывают:

  1. Спиральными (на ферритовом кольце);
  2. Винтовыми;
  3. Винтоспиральными или комбинированными.

Примечательной особенностью катушки индуктивности для электрических схем является то, что её можно намотать как в несколько слоев, так и нированно, т. е., с обрывками Если используется толстый проводник, то элемент может обматываться без каркаса, если тонкий – то только на рамку. Эти каркасы катушек индуктивности бывают различного сечения: квадратные, круглые, прямоугольные. Полученная намотка может вставляться в специальный корпус какого-либо электрического устройства или использоваться в открытом виде.


Фото — конструкция самодельного элемента

Для увеличения индуктивности используются сердечники. В зависимости от назначения элемента, варьируется используемый материал стержня:

  1. С ферромагнитным и воздушным сердечником применяются при высоких частотах тока;
  2. Стальные используются в условиях низкого напряжения.

Вместе с этим, в электротехнике активно используются индуктивные классические катушки без сердечника, которые можно сделать своими руками при помощи намотки на немагнитный контур.Такие устройства имеют некоторые преимущества перед «сердечными». У них большая линейность импеданса. Но, у тороидальной модели намотка на немагнитный каркас способствует появлению паразитной емкости.

Исходя из принципа работы, бывают такие типы:

  1. Контурные. Преимущественно используются в радиотехнике для создания колебательных контуров платы, работают вместе с конденсаторами. Для соединения используется последовательное подключение. Это современный вариант плоской контурной катушки Тесла;
  2. Вариометры. Это высокочастотные перестраиваемые катушки, индуктивностью которыми можно при необходимости управлять при помощи дополнительных устройств. Они представляют собой соединение двух отдельных катушек, при этом, одна подвижна, а вторая нет;
  3. Сдвоенные и подстроечные дроссели. Основные характеристики этих катушек: малое сопротивление постоянному току и высокое переменному. Дроссели изготавливаются из нескольких катушек, соединенных обмотками между собой. Их часто используют в виде фильтра для различных радиотехнических приборов, устанавливают для контроля помех в антенны и т. д.;
  4. Трансформаторы связи. Их конструктивной особенностью является то, что на одном стержне установлено от двух и более катушек. Они используются в трансформаторах для обеспечения определенной связи между отдельными компонентами устройства.

Маркировка катушек индуктивности определяется по количеству витков и цвету корпуса.

Фото — маркировка

Рис. 2.41. К вопросу нахождения тангенса угла α

При переходе к частоте, не равной 50 Гц, в формулы (32) ~ (35) вводят вместо коэффициента
0,00318
множитель
1/2π
f
источника
питания схемы, где f

частота источника питания схемы.

Практически каждый, кто увлекается электроникой, будь то начинающий, или опытный радиолюбитель, просто обязан иметь в своём арсенале приборы для измерений. Наиболее часто приходится измерять, конечно же, напряжение, ток и сопротивление. Чуть реже, в зависимости от специфики работы, — параметры транзисторов, частоту, температуру, ёмкость, индуктивность.

Сейчас в продаже имеется множество недорогих универсальных цифровых измерительных приборов, так называемых мультиметров. С их помощью можно измерять практически все вышеназванные величины. За исключением, пожалуй, индуктивности, которая очень редко встречается в составе комбинированных приборов. В основном, измеритель индуктивности — это отдельный прибор, также его можно встретить совместно с измерителем ёмкости (LC — метр).

Обычно, измерять индуктивность приходится нечасто. В отношении себя я бы даже сказал — очень редко. Выпаял, например, с какой-нибудь платы катушку, а она без маркировки. Интересно же узнать, какая у неё индуктивность, чтобы потом где-нибудь применить.

Или сам намотал катушку, а проверить нечем. Для таких эпизодических измерений я посчитал нерациональным приобретение отдельного прибора. И вот я начал искать какую-нибудь очень простую схему измерителя индуктивности

Особых требований по точности я не предъявлял, — для любительских самоделок это не столь важно

В качестве средства измерения и индикации в схеме, описанной в статье, применяется цифровой вольтметр с чувствительностью 200 мВ
, который продаётся в виде готового модуля. Я же решил использовать для этой цели обычный цифровой мультиметр UNI-T M838
на пределе измерения 200 мВ
постоянного напряжения. Соответственно, схема упрощается, и в итоге приобретает вид приставки к мультиметру.

Исключён фрагмент. Наш журнал существует на пожертвования читателей. Полный вариант этой статьи доступен только

Я не буду повторять описание работы схемы, всё вы можете прочитать в оригинальной статье (архив внизу). Скажу только немного о калибровке.

Изготовление переходника

Для калибровки воспользовался пленочным конденсатором. Далее захотел сделать переходник для подключения выводных деталей. Выпаял три пина с материнской платы, как на фото ниже:

У меня был в наличии набор цветных проводков с крокодилами с обоих концов, заказанный ранее на Али экспресс. Взял и обрезал крокодилы с одного конца, зачистил и подпаял проводки к пинам. Аккуратно упаковал в термоусадку во избежание замыкания, и залил получившийся разъем термоклеем для придания прочности. Так выглядел разъем после изготовления:

Длина проводков позволяет удобно подключаться к выводам проверяемой детали. Так выглядел готовый переходник:

Также в интернете существуют модификации прибора с частотомером, генератором частоты, проверкой энкодера, тестированием стабилитронов, и другими расширенными возможностями. В выложенной в архиве прошивке (у меня залита такая-же) эти возможности предусмотрены, но только после апгрейда прибора. Их можно не задействовать. Для использования расширенных функций, придется перерезать дорожки и паять детали навесом. Я решил, что мне пока будет достаточно функционала прибора в настоящем виде. На всякий случай, приведу одну из скачанных мной схем, расширения функционала прибора с поддержкой энкодера:

В данном приборе используется подключение дисплея strip grid, на случай если кто-либо захочет продолжить поиск информации в интернете, по апгрейду прибора. Фьюзы при перепрошивании изменять не нужно. Так выглядит меню после перепрошивания:

В заключение можно посмотреть видео работы прибора.