Как правильно рассчитать сопротивление провода по сечению
Проектируя электрическую сеть, необходимо правильно подобрать сечение кабеля, чтобы его резистентность не была высокой. Большой импеданс вызовет падение напряжения выше допустимого значения. В результате подключенное к сети электрическое устройство может не заработать. Также, провода начнут перегреваться.
Для правильного расчета минимального сечения необходимо учесть следующие факторы:
- По стандартам ПУЭ падение напряжения не должно быть больше 5%.
- В бытовых условиях ток проходит по двум проводам. Поэтому, при расчете величину сопротивления нужно умножить на 2.
- Учитывать нужно мощность всех подключенных приборов на линии. Для развития предусмотреть запас по нагрузке.
Как вычислить сопротивление проводника по формуле? Для примера можно рассмотреть задачу. Требуется определить: достаточно ли будет медного кабеля сечением 2,5 мм2 и длиной 30 метров для подключения оборудования мощностью 9 кВт.
Формулы электрической цепи
Задача решается следующим образом:
Резистентность медного кабеля будет равна:
2 ∙ (ρ ∙ L) / S = 2 ∙ (0,0175 ∙ 30) / 2,5 = 0,42 Ом.
Для нахождения падения напряжения нужно определить силу тока, по формуле: I= P/U.
Вам это будет интересно Особенности SMD конденсаторов
Здесь P — суммарная мощность оборудования, U — напряжение в цепи. Тогда сила тока будет равна: I = 9000 / 220 = 40,91 А.
- Используя закон Ома, можно найти падение напряжения по кабелю: ΔU = I ∙ R = 40, 91 ∙ 0,42 = 17,18 В.
- От 220 В процент падения составит: U% = (ΔU / U) ∙ 100% = (17,18 / 220) ∙ 100% = 7, 81%>5%.
Падение напряжение выходит за пределы допустимого значения, значит необходимо использовать кабель большего сечения.
Расчет сопротивления
Сегодня все сделано для человека. И даже такой простой расчет можно сделать несколькими способами. Есть простые, есть сложные. Начнем с простых.
Первый вариант табличный. В чем его простота? К примеру, таблица на нижнем рисунке.
Здесь все четко показано и взаимосвязано. Зная определенные размеры медного провода, можно определить его сопротивление и силу тока, которую провод может выдержать. Или, наоборот, имея в наличие показатели сопротивления или силы (плотность) тока, которые, кстати, можно определить мультиметром, можно легко определить сечение или диаметр проводника. Данный вариант самый удобный, таблицы можно найти в свободном доступе в интернете.
Второй способ определения – с помощью калькулятора (онлайн). Таких интернетовских приспособлений великое множество, работать с ними удобно и легко. Можно в такой калькулятор вставлять физические величины медного проводника и получать размерные показатели, или, наоборот. Правда, основная масса таких калькуляторов в своей программе имеет одно стандартное значение – это удельное сопротивление меди, равное 0,0172 Ом·мм²/м.
И самый сложный вариант расчета – это провести его своими руками, используя формулу. Вот она: R=pl/S, где:
- р – это то самое удельное сопротивление меди;
- l – длина медного провода;
- S – его сечение.
Хотелось бы отметить, что медь обладает одним из самых низких удельных сопротивлений. Ниже него только серебро – 0,016.
Определить сечение проводника можно через формулу, где основным параметром является его диаметр. А вот определить диаметр можно разными способами, кстати, такая статья на нашем сайте есть, можете прочитать и получить полную и достоверную информацию.
Как правильно измерять
Для правильно измерения параметров сопротивляемости провода или кабеля нужно:
- Включить мультиметр и настроить его на соответствующие величины;
- Подсоединить любым способом один щуп к одному контакту провода или элемента, а другой — другому свободному;
- Если на дисплее загорелась единица, то максимальной мощности не хватает и нужно установить больший предел;
- Сравнить полученные значения с номинальными маркировками.
Важно! В процессе замера следует придерживаться простых, но важных мер безопасности: не браться за оголенные части щупов руками и быть осторожным при замере параметров некоторых видов электроприборов. Таким образом, электросеть может определяться многими параметрами, одним из которых является сопротивление
Мультиметровый способ узнать сопротивляемость — один из самых распространенных и простых. Для этого не нужно никаких специальных знаний и умений. Достаточно наличия предмета анализа и аппарата, чтобы проверить и зафиксировать соответствующие данные
Таким образом, электросеть может определяться многими параметрами, одним из которых является сопротивление. Мультиметровый способ узнать сопротивляемость — один из самых распространенных и простых. Для этого не нужно никаких специальных знаний и умений. Достаточно наличия предмета анализа и аппарата, чтобы проверить и зафиксировать соответствующие данные.
СОПРОТИВЛЕНИЕ ИЗОЛЯЦИИ
СОПРОТИВЛЕНИЕ ИЗОЛЯЦИИ — характеристика, влияющая на степень безопасности эксплуатации электроустановок. Одним из основных средств, препятствующих возникновению опасных ситуаций, является электрическая изоляция элементов, находящихся под напряжением. С. и. в сетях с изолированной нейтралью определяет силу тока замыкания на землю, а следовательно, и силу тока, проходящего через человека. В сетях с заземленной нейтралью при плохом состоянии изоляции часто происходит ее повреждение, приводящее к замыканию на землю и к коротким замыканиям. При замыкании на корпус возникает опасность поражения людей электрическим током вследствие их контакта с нетоковедущими частями, оказавшимися под напряжением.
Для установления соответствия С. и. нормальным значениям, а также для своевременного выявления и устранения повреждений электроустановки проводят приемосдаточные испытания (по нормам ПУЭ) и испытания в процессе эксплуатации. Нормируются минимальные значения С. и. Rиз наиболее распространенных электроустановок при различных видах испытаний. Помимо соответствия С. и. нормам, установленным Правилами технической эксплуатации электроустановок потребителей, критерием состояния изоляции служит сравнение измеренных значений с данными, полученными при предыдущих испытаниях или при вводе в эксплуатацию. Резкое снижение С. и. по отношению к предыдущим измерениям на (30—40%) свидетельствует о неблагополучном состоянии изоляции.
Российская энциклопедия по охране труда. — М.: НЦ ЭНАС . Под ред. В. К. Варова, И. А. Воробьева, А. Ф. Зубкова, Н. Ф. Измерова . 2007 .
Смотреть что такое “СОПРОТИВЛЕНИЕ ИЗОЛЯЦИИ” в других словарях:
сопротивление изоляции — 3.101 сопротивление изоляции (insulation resistance) RF: Сопротивление в системе, подвергаемой мониторингу, включая сопротивление всех подключенных устройств, относительно земли. Источник … Словарь-справочник терминов нормативно-технической документации
сопротивление изоляции — электрическое сопротивление изоляции; сопротивление изоляции; сопротивление Величина, обратная электрической проводимости изоляции … Политехнический терминологический толковый словарь
сопротивление изоляции — izoliacijos varža statusas T sritis fizika atitikmenys: angl. insulance; insulation resistance vok. Isolationsw >Fizikos terminų žodynas
сопротивление изоляции — rus сопротивление (с) изоляции eng insulation resistance fra résistance (f) d isolement deu Isolationsw >Безопасность и гигиена труда. Перевод на английский, французский, немецкий, испанский языки
Сопротивление изоляции и электрическая прочность изоляции — 7.5 Сопротивление изоляции и электрическая прочность изоляции Сопротивление изоляции и электрическая прочность изоляции УЗО Д должны соответствовать нормируемым значениям. УЗО Д должны выдерживать испытания по 8.8. Источник … Словарь-справочник терминов нормативно-технической документации
{SOURCE}
Измерения мегаомметром
Сам процесс измерения несложен, но проводить его надо строго соблюдая правила и очередность действий. При поверке создается высокое напряжение, что при небрежном отношении может быть опасным. Потому внимательно читаем правила и строго их придерживаемся.
Подготовка к работе
Перед тем как пользоваться мегаомметром необходимо провести подготовительные работы. Для начала тестируемые цепи отключаются от нагрузки. Если измеряется сопротивление изоляции в домашней проводке, отключаем питание при помощи рубильника или выкручиваем пробки. При измерении кабелей розеточных групп, из розеток вынуть все вилки. При измерении проводки для освещения, из всех осветительных приборов (люстр, бра, точечных светильников) выкрутить лампочки. Только в таком виде — без нагрузки — кабели и провода можно проверять.
Еще один этап подготовки к работе с мегаомметром — подсоединение переносного заземления. Оно необходимо для снятия остаточного напряжения в измеряемых цепях. К шине заземления в щитке крепится медный многожильный провод сечением не менее 1,5 квадрата. Второй его конец зачищается от изоляции, крепится к сухой палке. Провод надо прикрепить так, чтобы медью было удобно прикасаться к проводникам.
Требования по безопасности
На предприятиях измерения мегаомметром могут проводить работники с группой электробезопасности 3 и выше. Даже если измерения проводиться будут дома, надо действовать придерживаясь правил безопасности. Для этого перед тем как пользоваться мегаомметром надо выучить инструкцию. По инструкции надо:
Особое внимание уделите остаточному напряжению. При большой протяженности тестируемой линии накапливается значительный заряд, способный нанести даже летальные повреждения
Подключение мегаомметра к тестируемой линии
В стандартную комплектацию входит три щупа. Один из низ имеет с одной стороны два наконечника. Он используется при измерениях экранированных кабелей для устранения токов утечки (щуп с буквой «Э» цепляется к кабельному экрану).
В верхней части прибора есть три гнезда, в которые подключаются щупы. Они промаркированы буквами:
При подготовке к работе в гнездо «Л» и «З» вставляются одинарные щупы. Так проводится большинство измерений. Только если надо исключить токи утечки берут двойной щуп. Один его наконечник с буквой «Э» вставляют в гнездо с аналогичной надписью, второй — в гнездо «Л».
- Если надо измерить сопротивление изоляции между жилами кабеля, оба щупа цепляем на оголенную часть проводов.
- Если проверяется «пробой на землю», один щуп крепим к проводу, второй — к клемме «земля».
Других вариантов нет. Разве что с описанным выше случаем с экранированным кабелем. Но их в частных домах и квартирах практически не используют. Если все-таки есть кабель с экраном и надо исключить токи утечки, используем щуп с раздвоенным концом, провода экранирующей оплетки скручиваем в жгут и добавляем в общий пучок измеряемых проводов.
Проводим измерения
Теперь конкретно о том, как пользоваться мегаомметром. После того, как установили щупы на мегаомметре, надо выбрать тестовое напряжение. Для этого есть специальные таблицы в которых указывается, каким напряжением необходимо проверять сопротивление изоляции для самых разных приборов и устройств, а также какое сопротивление можно считать «нормальным».
Измеряемый объект | Тестовое напряжение | Минимально допустимое значение сопротивления изоляции | Условия, примечания |
---|---|---|---|
Электропроводка и осветительная сеть | 1000 В | 0,5 МОм и выше | Для помещений с нормальными условиями эксплуатации проверять 1 раз в 3 года, с повышенной опасностью – 1 раз в год |
Стационарные электроплиты | 1000 В | 1 МОм и выше | Плиту разогреть и отключить, проверять не реже 1 раза в год |
Электрощиты, распределительные устройства, токопроводы (магистральные кабели) | 1000-2500 В | Не менее 1 МОм | Проверку проводить с каждой линией отдельно |
Устройства с напряжением до 50 В | 100 В | При измерениях полупроводниковые изделия шунтировать | |
Устройства с напряжением от 50 В до 100 В | 250 В | Смотреть по паспорту изделия, но не менее 0,5 МОм | |
Устройства с напряжением от 100 В до 380 В | 500-1000 В | Смотреть по паспорту изделия, но не менее 0,5 МОм | Электромоторы и другие изделия |
Устройства с напряжением от 380 В до 1000 В | 1000-2500 В | Смотреть по паспорту изделия, но не менее 0,5 МОм |
При проверке сопротивления изоляции кабелей домашней проводки подают напряжение 500 В или 1000 В. Порядок действий такой:
Если измеренное сопротивление изоляции больше либо равно паспортному значению (или тому, что указано в таблице), с устройством/кабелем все нормально. Если изоляция ниже требуемой есть два пути. Первый — искать причину, устранять, измерять по-новой. Второй — заменять.
Устройство, принцип действия
Работу электрических приспособлений рассмотрим на примере базовых устройств, таких как:
- амперметры;
- вольтметры;
- омметры.
Амперметры
Такие устройства измеряют величину электрического тока. Поскольку показания напрямую зависят от поступаемого электросигнала, сопротивление амперметра должно быть меньше, чем резистивность нагрузки. Это необходимо для неизменной силы заряда при подключении нагрузки. По своим конструктивным особенностям такие электроизмерительные приборы подразделяются на:
- амперметр переменного тока;
- амперметр постоянного тока;
- магнитоэлектрические;
- электромагнитные.
Как амперметр работает? Идеальный амперметр, является прибором для измерения электрозаряда. Представляет собой проводящий контур, закрепленный на оси между полюсами постоянного магнита.
При отсутствии сигнала контура, благодаря давлению пружины, стрелка находится в нулевом положении. При включении устройства, на подвижный элемент поступает токовый импульс – происходит отклонение стрелки на угол, соответствующей величине тока. Таким образом индикаторная шкала показывает значение, измеренное устройством.
Различают модификации: с аналоговой шкалой, с цифровой шкалой. Кроме того, устройства отличаются ценой деления и пределами измерений.
Аналоговый вольтметр переменного тока и цифровые вольтметры.
- постоянное;
- переменное.
Идеальный вольтметр электроизмерительный, как правило, подключается в цепь параллельно. Сопротивление вольтметра пропорционально поданному на него сигнала. Для того чтобы на показания не влияли искажения электроимпульсов, его резистивность рекомендуется делать как можно больше.
Существуют также цифровые вольтметры, имеющие цифровые индикаторные показания. Принцип работы измерителя напряжения аналогичен токовому измерителю, отличие только в градуировках шкал, пределах измерений и модификациях.
Омметр
Устройство, позволяющее измерить как сопротивление амперметра, так и сопротивление вольтметра. Диапазон измерения:
- единицы, десятки (Ом);
- сотни, тысячи (Ом).
Подключается такой показывающий элемент в цепь последовательно. Измеряет косвенно величину сопротивления, учитывая значение входящего электрического тока и постоянную величину напряжения. Приборная шкала каждого электроустрйоства имеет нанесенные условные знаки, обозначающие характеристики прибора, класс точности (например, амперметра), виды рабочих токов, номинальное напряжение и т.п.
Пример современного измерителя сопротивления – омметр Виток, имеющий комбинированное питание.
Основные типы и марки приборов мегаомметров из моей практики (устройство и принцип работы)
Мегаомметр ЭСО-210
4. Начнем с простеньких. Итак, первые участники сегодняшнего парада – украинские приборы ЭСО 210/3 и ЭСО 210/3Г. Буква «Г» говорит о том, что прибор работает от внутреннего генератора и имеет ручку. Модель без ручки работает от сети 220В и от кнопки. Они невелики по размеру и удобны в пользовании. Это верные помощники энергетиков. Ими удобно мегерить любое электрооборудование. А еще можно взять после испытания один из концов и разземлять им, ибо концы с обеих сторон имеют металлические наконечники. В моделях с ручкой в качестве источника напряжения выступает генератор переменного тока, в моделях с кнопкой — трансформатор, преобразующий переменное напряжение в постоянное.
Значит, пройдемся по настройкам прибора. Прибором можно испытывать, подавая постоянное напряжение величиной 500, 1000 или 2500 Вольт. Показания появляются на стрелочной шкале, которая имеет несколько пределов, которые переключаются выключателем. Это шкала «I», «II» и «IIx10».
Шкала «I» — нижние цифры верхней шкалы. Отсчет идет справа налево. Значения от 0 до 50 МОм.
Шкала «II» — верхние цифры верхней шкалы. Отсчет идет слева направо. Значения от 50МОм до 10 ГОм.
Шкала «IIx10» — аналогична шкале «II», однако, значения от 500МОм до 100 ГОм.
В приборе также имеется нижняя шкала от 0 до 600 В. Эта шкала имеется в приборе ЭСО-210/3 и при не нажатом положении кнопки подачи напряжения показывает напряжение на концах. В общем, поднесли концы мегаомметра к розетке, и стрелка поднялась до 220В. Но только правильно подключить их надо на измерение напряжения, а не сопротивления изоляции. Один на молнию, а второй на Ux.
При подаче напряжения загорается красная лампочка на шкале, что сигнализирует о наличии напряжения на концах прибора.
Как подсоединить щупы прибора? У нас имеется три отверстия для присоединения щупов – экран, высокое напряжение и третий измерительный (rx, u). Вообще два щупа спарены и один из них подписан. Ошибиться внимательному человеку непросто.
Мегаомметр sonel mic-2510
Шагнем далее и остановим свой взор на мощном польском приборе под названием Sonel – мегаомметр mic-2510. Этот мегаомметр является цифровым. Внешне он очень симпатичный, в комплект входит сумка, в которую складываются щупы типа крокодилы (достаточно мощные и надежные) и втычные. Кроме того, в комплект входит зарядное устройство. Сам же прибор работает на батарейке, что достаточно удобно. Не требуется подключение к сети и не требуется вращение ручки, как у старых моделей отечественных мегаомметров. Также имеется лента, для удобного расположения на шее. Вначале это казалось мне не очень удобно, но в итоге к этому привыкаешь и осознаешь все достоинства. Кроме надежной батарейки к плюсам можно отнести возможность подачи напряжения без поддержания кнопки. Для этого вначале нажимаешь старт, потом «энтер» и всё – следи за показаниями и не подпускай никого под напряжение.
Этим прибором можно измерять следующие величины двухпроводным способом и трехпроводным. Трехпроводный способ используется для измерений, где необходимо исключить влияние поверхностных токов – трансформаторы, кабели с экраном.
Также прибором можно измерять температуру с помощью термодатчиков, напряжение до 600 вольт, низкоомное сопротивление контактов.
Шкала прибора имеет значения 100, 250, 500, 1000, 2500 Вольт. Это достаточно широкий диапазон, который может удовлетворить нужды инженеров при проведении самых различных испытаний. От коэффициента абсорбции, до коэффициента поляризации. Максимально измеряемое сопротивление изоляции, которое способен измерить прибор составляет 2000 ГОм — впечатляющая величина.
Коэффициент поляризации характеризует степень старения изоляции. Чем он меньше, тем более изоляция изношена. Коэффициент поляризации на 2500В и замеряем сопротивление изоляции через 60 и 600с или через 1 и 10минут. Если он больше двух, то всё хорошо, если от 1 до 2 – то изоляция сомнительна, если же коэффициент поляризации меньше 1 – время бить тревогу. Западные шеф-инженеры не приветствуют высоковольтные испытания, тем же АИДом, а рады провести мегер-тест на 5кВ или 2,5кВ с измерением данного коэффициента.
Коэффициент абсорбции это отношения сопротивления изоляции через 60 и 15 секунд. Этот коэффициент характеризует увлажненность изоляции. Если он стремится к единице, то необходимо поднимать вопрос о сушке изоляции. Более подробно о его величине для разного типа оборудования описано в нормах испытания электрооборудования вашей страны.
В процессе работы я встречался и с другими приборами, но именно эти два показывают, как далеко шагнул прогресс в процессе производства мегаомметров. У каждого из увиденных мною приборов есть свои плюсы и минусы.
Формула расчета реактивного сопротивления
В общем случае для деталей катушечного типа применяются выражения:
X = L*w = 2* π*f*L.
Для конденсаторов применяют формулы:
X = 1/(w*C)= 1/(2* π*f*C).
Для конкретного элемента, нужные параметры которого известны, величина может быть вычислена с использованием онлайн калькулятора. В форму потребуется ввести нужные данные и нажать на кнопку, инициирующую расчеты.
Умение рассчитывать данную составляющую сопротивляемости поможет узнать величину тепловых потерь на используемых нагрузках. При параллельном подсоединении конденсатора с подходящей емкостью можно решить проблему энергетических потерь на индуктивных нагрузках.
Треугольник сопротивлений
Цепи переменного тока обладают полным сопротивлением. Полное сопротивление цепи определяется как сумма квадратов активного и реактивного сопротивлений
Графическим изображением этого выражения служит треугольник сопротивлений, который можно получить в результате расчёта последовательной RLC-цепи. Выглядит он следующим образом:На треугольнике видно, что катетами являются активное и реактивное сопротивление, а полной сопротивление гипотенуза.Величина и начальная фаза переменного тока, создаваемого переменным напряжением, зависят не только от величины сопротивлений, образующих электрическую цепь, но и от индуктивности и емкости этой цепи.Активное сопротивление в цепи переменного тока.Строго говоря, любая электрическая цепь обладает, кроме сопротивления, также индуктивностью и емкостью. Если по проводнику проходит ток, то вокруг него возбуждается магнитное поле, т.
е. имеют место явления индуктивности. Ток возникает под действием электрического поля на заряды, следовательно, проводник должен обладать емкостью, так как в диэлектрической среде вокруг него возникает поток смещения.Однако в ряде случаев относительная роль двух из трех параметров R, L, С в электрической цепи практически незначительна.
Это позволяет рассматривать подобную цепь как обладающую только сопротивлением, или только индуктивностью, или только емкостью.Мы рассмотрим поочередно условия в трех таких простейших цепях переменного тока.В цепи, содержащей только сопротивление г, синусоидальное напряжени u = Um sin ?t источника электроэнергии создает ток:i = u : r = (Um: r ) sin ?tТак как сопротивление r от времени не зависит, то в этой цепи ток совпадает по фазе с напряжением (рис. 1) и изменяется также синусоидально:i = Imsin ?tздесь:Im= Um: rРисунок 1 Кривые мгновенных значений напряжения и тока в цепи,содержащей только сопротивление r.Разделив последнее выражение на , получим формулу закона Омадля действующих значений напряжения и тока:I = U : rКак видно из формулы, этот закон для цепей переменного тока, содержащих только сопротивление r, имеет такой же вид, как и закон Ома для цепи постоянного тока.В цепи переменного тока сопротивление r называется активным сопротивлением. Это сопротивление, в котором электроэнергия преобразуется в другую форму (в теплоту и др.).Оно может существенно отличаться от сопротивления rпри постоянном токе.
Сопротивление для постоянного тока называют омическим, чтобы отличить его от активного сопротивления для переменного тока.Различие между активным и омическим сопротивлениями обуславливается рядом причин. Одна из них – поверхностный эффект, частичное вытеснение переменного тока в поверхностные слои проводника.Чем больше частота переменного тока, тем это вытеснение значительнее. Из-за поверхностного эффекта сопротивлениеrоказывается уже существенно большим, чем вычисленное по формуле:r = ?
(l : S)Поверхностный эффект создается тем, что переменное магнитное поле индуктирует во внешних слоях проводника меньшую ЭДС самоиндукции, чем во внутренней его части.Особенно сильно поверхностный эффект увеличивает активное сопротивление стальных проводов. На активное сопротивление медных и алюминиевых проводов при промышленной частоте поверхностный эффект существенно влияет только при больших сечениях проводов (свыше 25 кв. мм).Кроме поверхностного эффекта, большое увеличение активного сопротивления электрической цепи могут вызывать потери энергии в переменном электромагнитном поле цепи от гистерезиса и вихревых токов.Поделитесь полезной статьей:
https://youtube.com/watch?v=NSxgxMNG2fwrel%3D0%26amp%3Bcontrols%3D0%26amp%3Bshowinfo%3D0
- electrosam.ru
- electrono.ru
- electroandi.ru
- fazaa.ru