Виды электростанций

Что такое электрический ток?

Электрические явления наблюдались давно, но объяснить их природу человек смог относительно недавно. Удар молнии казался чем-то неестественным, необъяснимым. Странным казалось потрескивание некоторых предметов при их трении. Искрящаяся в темноте расчёска, после расчёсывания шерсти животных (например, кошки) вызвала недоумение, но подогревала интерес к этому явлению.

Как всё начиналось

Ещё древним грекам было известно свойство янтаря, потёртого о шерсть, притягивать некоторые мелкие предметы. Кстати, от греческого названия янтаря –«электрон» пошло название «электричество».

Когда физики вплотную занялись исследованием электризации тел, они начали понимать природу подобных явлений. А первый кратковременный электрический ток, созданный человеком, появился при соединении проводником двух наэлектризованных предметов (см. рис. 1). В 1729 году англичане Грей и Уиллер открыли проводимость зарядов некоторыми материалами. Но определения электрического тока они не смогли дать, хотя и понимали, что заряды перемещаются от одного тела к другому по проводнику.

Рис. 1. Опыт с заряженными телами

Об электрическом токе, как о физическом явлении заговорили лишь после того, как итальянец Вольта дал объяснение опытам Гальвани, а в 1794 году изобрёл первый в мире источник электричества – гальванический элемент (столб Вольта). Он обосновал упорядоченное перемещение заряженных частиц по замкнутой цепи.

Определение

В современной трактовке электрическим током называют направленное перемещение силами электрического поля заряженных частиц, Носителями зарядов металлических проводников являются электроны, а растворов кислот и солей — отрицательные и положительные ионы. Полупроводниковыми носителями зарядов являются электроны и «дырки».

Для того чтобы электрический ток существовал, необходимо всё время поддерживать электрическое поле. Должна существовать разница потенциалов, поддерживающая наличие первых двух условий. До тех пор, пока эти условия соблюдены, заряды будут упорядоченно перемещаться по участкам замкнутой электрической цепи. Эту задачу выполняют источники электричества.

Такие условия можно создать, например, с помощью электрофорной машины (рис. 2). Если два диска вращать в противоположных направлениях, то они будут заряжаться разноимёнными зарядами. На щётках, прилегающих к дискам, появится разница потенциалов. Соединив контакты проводником, мы заставим заряженные частицы двигаться упорядоченно. То есть электрофорная машина является источником электричества.

Рисунок 2. Электрофорная машина

Источники тока

Первыми источниками электрической энергии, нашедшими практическое применение, были упомянутые выше гальванические элементы. Усовершенствованные гальванические элементы (народное название – батарейки) широко применяются по сей день. Они используются для питания пультов управления, электронных часов, детских игрушек и многих других гаджетов.

С изобретением генераторов переменных токов электричество приобрело второе дыхание. Началась эра электрификации городов, а позже и всех населённых пунктов. Электрическая энергия стала доступной для всех граждан развитых стран.

Сегодня человечество ищет возобновляемые источники электроэнергии. Солнечные панели, ветряные электростанции уже занимают свои ниши в энергосистемах многих стран, включая Россию.

Постоянный ток

Вторым способом передачи электрического тока потребителю, является постоянный ток. Подобный ток является выпрямленным. Он встречается в аккумуляторах, батарейках, зарядных устройствах. Такой ток и сейчас подается потребителям некоторых стран, но в очень малых количествах. Его вырабатывают солнечные батареи. Постоянный ток можно подавать по действующим ЛЭП и подземным кабелям. Плюсы такой передачи, следующие:

  1. С расстоянием нет потери мощности. Не придется завышать напряжение на электростанции.
  2. Статическая устойчивость не оказывает влияния на передачу и распределение.
  3. Не требуется настраивать частотную синхронизацию.
  4. Напряжение можно передать всего по одной линии с одним контактным проводом.
  5. Нет влияния электромагнитного излучения.
  6. Минимальная реактивная мощность.

Постоянный ток для потребителя не подается только по причине огромной себестоимости оборудования для электростанций.

Проводимость электрического тока и процент завышения в начале передачи, во многом зависят от сопротивления самой ЛЭП. Снизить сопротивление, — а тем самым нагрузку — можно при помощи охлаждения до сверхнизкой температуры. Это помогло бы увеличить расстояние для передачи энергии и существенно снизить потери. Сегодня нет технологии занижения температуры линии электропередачи. Такая технология является крайне дорогой и требует больших изменений в конструкции. Но в регионах крайнего севера этот способ вполне работает и намного занижает процент передачи мощностей и потери от расстояния.

Типы энергетических систем

Для захвата энергии, ее сохранения и дальнейшего использования доступны разнообразные технологии. Самыми распространенными считаются системы аккумулирования электрической и тепловой энергии. Такие системы бывают нескольких типов:

Электрооборудование

Наибольший темп роста хранения энергии за последнее десятилетие пришелся на электрические системы, такие как батареи и конденсаторы. Конденсаторы — это устройства, которые хранят электрическую энергию в виде заряда, накопленного на металлических пластинах. Когда конденсатор подключен к источнику питания, он накапливает энергию, а при отключении от источника высвобождает ее. Батарея же для хранения энергии использует электрохимические процессы. Конденсаторы могут высвобождать накопленную энергию с гораздо большей скоростью, чем батареи, поскольку для химических процессов требуется больше времени.

Механические

В системах хранения механической энергии используются базовые идеи физики, которые преобразуют электрическую энергию в кинетическую для хранения и затем преобразуют ее обратно в электрическую для потребления. Такие системы представляют собой большие гидроаккумулирующие плотины, механические маховики и накопители сжатого воздуха.

Плотина Братской ГЭС

(Фото: wikipedia.org)

Накопители сжатого воздуха

(Фото: electricalschool.info)

Тепловые

Накопление тепловой энергии позволяет хранить ее и использовать позже, чтобы сбалансировать потребность в энергии между дневным и ночным временем или при смене сезонов. Чаще всего это резервуары с горячей или холодной водой, либо расплавленными солями, ледяные хранилища и криогенная техника.

Проект накопителя тепловой энергии с водным хранилищем

(Фото: Affiliated Engineers)

Химические

Используются обычно при хранении водорода. В них электрическая энергия применяется для выделения водорода из воды посредством электролиза. Затем газ сжимается и хранится для будущего использования в генераторах, работающих на водороде, или в топливных элементах. Этот метод является достаточно энергозатратным. Для конечного использования сохраняется всего 25% энергии.

В разных сферах промышленности и технологий используются различные типы аккумуляторов с отличающимся химических составом. Литий-кобальтовые батареи, более легкие и с высоким напряжением для быстрой зарядки, применяются в смартфонах и прочей бытовой технике. Более выносливые и габаритные литий-титанатные батареи устанавливают в общественном транспорте, в частности, в электробусах. На электростанциях используют малоемкие, но пожаробезопасные литий-фосфатные ячейки.

Автономное электроснабжение дома: готовые решения

Организации, занимающиеся продажей независимых источников питания, предлагают готовые комплектации устройств, способные работать тотчас же после выполнения монтажа. Большей частью это всевозможные комплекты солнечных электростанций, ветрогенераторов, иных приспособлений, обладающие совершенно разными техническими параметрами.

На солнечных батареях

Один из готовых вариантов автономной системы электроснабжения дома – высокоэффективное оборудование, использующее энергию солнца и преобразующее ее в электроток с помощью солнечных панелей. Схематично такой процесс изображен на нижеприведенном рисунке.

Солнечными батареями генерируется постоянный электроток, который впоследствии преобразуется в переменный (используемый в быту) при помощи инвертораИсточник gws-energy.ru

На современном рынке достаточно востребованы электростанции «Белые ночи 1500 W-100x2P», произведенные российской фирмой «IKAR FIRM». В комплекте содержатся:

  • поликристаллические панели – 2 штуки;
  • инвертор;
  • контроллер заряда;
  • набор коннекторов, предназначенный для подсоединения панелей;
  • кабель;
  • крепеж.

Технические параметры:

  • рабочее напряжение – 12 В;
  • номинальная мощность каждой батареи – 100 Вт;
  • рекомендуемая температура воздуха – 0-40°C;
  • напряжение на выходе – 220 В, частота – 50 Гц;
  • номинальная мощность – 1,5 кВт.

Автономное электроснабжение, созданное при помощи единственного источника альтернативной энергии, как правило, не всегда надежное. Это связано с наличием недостатков у всех разновидностей устройств. Потому для разрешения подобной задачи нередко единовременно применяют несколько вариантов. Например:

  • солнечная электростанция, дизельный генератор либо ветряк;
  • работающий на дизеле электрогенератор, ветровая установка.

Применение всевозможных комплектаций позволяет обустроить безотказную автономную систему электроснабжения своего жилища.

Комплексное использование солнечных панелей и ветряка позволяет организовать бесперебойное автономное электроснабжение домаИсточник 5top100.ru

Солнечные электростанции.

С целью обеспечения удаленных от электросети построек энергией, предупреждения возможных проблем из-за перебоев централизованного снабжения электричеством владельцы домов часто устанавливают автономные системы электроснабжения. На практике применяются несколько их разновидностей, каждая из них обладает своими преимуществами и недостатками. Выбор лучшего варианта может зависеть от будущего места монтажа, климата в конкретном регионе, иных важных факторов

Также стоит обратить внимание на стоимость оборудования, комплектующих, периодического обслуживания. Проанализировав собранную информацию, можно принять решение о целесообразности приобретения такой установки

В любом случае, автономное электроснабжение – это возможность избежать зависимости от центральной сети, сэкономить на оплате электричества.

Тепловые источники

К тепловым относят различные термоэлементы. Термоэлемент — это прибор в котором, тепловая энергия, получаемая от нагревателя, превращается сначала во внутреннюю энергию вещества, а затем — в электрическую энергию.

Один из таких элементов называют термопарой (рис. 5). Термопара состоит из двух различных металлических проволок, спаянных вместе. Если нагреть место их соприкосновения, то на свободных концах проволочек можно обнаружить электрическое напряжение (ссылка).


Рис. 5. Две проволоки из различных металлов могут создавать ток в цепи при нагревании

Если свободные концы термопары присоединить к потребителю тока, то под действием тепловой энергии по замкнутой цепи побегут электроны, то есть, возникнет электрический ток.

Таким образом, эта незамысловатая конструкция преобразовывает внутреннюю энергию нагреваемых металлов в электрическую энергию.

Ископаемые виды топлива

Уголь, нефть и газ — невозобновляемые источники энергии, которые сформировались из остатков древних растений и животных, обитавших на Земле миллионы лет назад (подробнее в статье «Древнейшие формы жизни«). Эти виды топлива добываются из недр и сжигаются для получения электроэнергии. Однако использование ископаемых источников топлива создает серьезные проблемы. При современных темпах потребления известные запасы нефти и газа будут исчерпаны уже в ближайшие 50 лет. Запасов угля хватит лет на 250. При сжигании этих видов топлива образуются газы, под воздействием которых возникает парниковый эффект и выпадают кислотные дожди.

«Постоянный электрический ток. Действие электрического тока»

Электрический ток — это упорядоченное движение заряженных частиц.  Для того чтобы в проводнике существовал электрический ток, необходимы два условия: 1) наличие свободных заряженных частиц, 2) электрическое поле, которое создаёт их направленное движение. Проходя по цепи, происходит действие электрического тока (тепловое, магнитное, химическое).

При существовании тока в разных средах: в металлах, жидкостях, газах — электрический заряд переносится разными частицами. В металлах этими частицами являются электроны, в жидкостях заряд переносится ионами, в газах — электронами, положительными и отрицательными ионами.

Дистиллированная вода не проводит электрический ток, поскольку она не содержит свободных зарядов. Если в воду добавить поваренную соль или медный купорос, то в ней появятся свободные заряды, и она станет проводником электрического тока.

Газы в обычных условиях тоже не проводят электрический ток, так как в них нет свободных зарядов. Однако если в воздушный промежуток между двумя металлическими пластинами, соединёнными с источником тока, внести зажжённую спичку или спиртовку, то газ станет проводником и гальванометр зафиксирует протекание тока по цепи.

Постоянный электрический ток

Постоянный электрический ток — это электрический ток, который с течением времени не изменяется по величине и направлению. Постоянный ток является разновидностью однонаправленного тока (англ. direct current), т.е. тока, не изменяющий своего направления. Часто можно встретить сокращения DC от первых букв англ. слов, или символом по ГОСТ 2.721-74.

На рисунке красным цветом изображён график постоянного тока. По горизонтальной оси отложен масштаб времени t, а по вертикальной — масштаб тока I или электрического напряжения U. Как видно, график постоянного тока представляет собой прямую линию, параллельную горизонтальной оси (оси времени).

При постоянном токе через каждое поперечное сечение проводника в единицу времени протекает одинаковое количество электричества (электрических зарядов). Постоянный электрический ток — это постоянное направленное движение заряженных частиц в электрическом поле.

Источник тока

Направленное движение зарядов обеспечивается электрическим полем. Электрическое поле в проводниках создаётся и поддерживается источником тока. В источнике тока совершается работа по разделению положительно и отрицательно заряженных частиц. Эти частицы накапливаются на полюсах источника тока. Один полюс источника заряжается положительно, другой — отрицательно. Между полюсами источника образуется электрическое поле, под действием которого заряженные частицы начинают двигаться упорядоченно.

В источнике тока совершается работа при разделении заряженных частиц. При этом различные виды энергии превращаются в электрическую энергию. В электрофорной машине в электрическую энергию превращается механическая энергия, в гальваническом элементе — химическая.

Действие электрического тока

Электрический ток, проходя по цепи, производит различные действия. Тепловое действие электрического тока заключается в том, что при его прохождении по проводнику в нём выделяется некоторое количество теплоты. Пример применения теплового действия тока — электронагревательные элементы чайников, электроплит, утюгов и пр. В ряде случаев температура проводника нагревается настолько сильно, что можно наблюдать его свечение. Это происходит в электрических лампочках накаливания.

Магнитное действие электрического тока проявляется в том, что вокруг проводника с током возникает магнитное поле, которое, действуя на магнитную стрелку, расположенную рядом с проводником, заставляет её поворачиваться. Благодаря магнитному действию тока можно превратить железный гвоздь в электромагнит, намотав на него провод, соединённый с источником тока. При пропускании по проводу электрического тока гвоздь будет притягивать железные предметы.

Химическое действие электрического тока проявляется в том, что при его прохождении в жидкости на электроде выделяется вещество. Если в стакан с раствором медного купороса поместить угольные электроды и присоединить их к источнику тока, то, вынув через некоторое время эти электроды из раствора, можно обнаружить на электроде, присоединённом к отрицательному полюсу источника (на катоде), слой чистой меди.

Некоторые источники утверждают, что существует также механическое действие (например, рамка, по которой течет ток, поворачивается, если её поместить между полюсами магнитов) и световое (светодиоды).

Конспект по по физике в 8 классе: «Постоянный электрический ток. Действие электрического тока».

Следующая тема: «Сила тока. Напряжение»

Энергия из морских волн

В апреле 2021 года британская компания Mocean Energy представила Blue X — прототип установки, которая будет преобразовывать кинетическую энергию морских волн в электричество.

Установка Blue X

(Фото: Mocean Energy)

Принцип работы такой: установку помещают на поверхность воды, она качается на волнах и приводит в движение шарнир посередине. Тот в свою очередь запускает генератор, который вырабатывает электроэнергию и по кабелям перенаправляет ее на сушу.

Как это применять: по оценкам Mocean Energy, если использовать хотя бы 1% всей доступной энергии волн в мире, можно обеспечить электричеством 50 млн зданий. Для сравнения: в России насчитывается около 14 млн жилых домов.

Чем отличается переменный ток от постоянного

Электродвигатели постоянного тока используют графитовые щетки и коллекторный узел для смены направления тока и, соответственно, полярности магнитного поля во вращающемся роторе. Именно это взаимодействие между вращающимся ротором и неподвижным постоянным магнитным полем статора и приводит машину в движение. Таким образом получается, что ротор как – бы пытается «догнать статор» . Еще одним видом машин переменного напряжения являются синхронные электродвигатели.

Для преобразования переменного тока в постоянный в зоне розетки применяются трансформаторы напряжения с наличием выпрямителей или специализированные блоки питания. В качестве широко распространенного примера потребления постоянного тока можно привести практически все электроинструменты, которые эксплуатируются с батареями. Аккумуляторное устройство остается в любом случае источником питания постоянного типа. Преобразование в переменный достигается в случае необходимости при помощи инверторов – специальных элементов. Ниже приведен рисунок с главными характеристиками данного вида тока – номинальными показателями частоты и действующего напряжения. Очевидно, что в случае с током постоянного вида параметры направления и напряжения остаются неизменными, а вот для переменного наблюдается трансформация данных величин. Инвертор – стандартный прием в бытовых условиях, представляет собой генератор напряжения периодического вида, получаемого из приближенного к синусоиде постоянного.

То есть током называется движение носителей заряда в силу каких-либо причин. Объединим полюса, и потечёт электрический ток. Движение носителей будет продолжаться до тех пор, пока потенциал не уравняется. Но постоянный у нас в этом случае ток или переменный? Нет. В более широком смысле постоянным (выпрямленным) током называется именно движения носителей заряда в одном направлении. Приблизительно постоянным можно считать ток разряда автомобильного аккумулятора. Строго говоря, напряжение здесь со временем падает, а потому даже при одной и той же нагрузке эффект разнится хронометрически. Как бы то ни было, источником постоянного тока можно считать адаптеры. В общем и целом нужно понимать, что устройство постоянного тока может функционировать только от того номинала, для которого сконструировано.

В постоянном же количество данных частиц за одинаковые интервалы времени всегда равнозначно. Переменный ток постоянно изменяет свою силу, величину или направление. Его легче преобразовать в переменный ток другого напряжения, изменить напряжение в электрических сетях в зависимости от необходимых потребностей.

На планете Земля на сегодняшний день 98% всей электроэнергии вырабатывается генераторами переменного тока. Такой ток достаточно легко производить и передавать на большие расстояния. Работу совершает не напряжение, а ток. Поэтому чем меньше его значение, тем меньше потери в проводах. Поэтому у всех потребителей в розетке имеется переменный ток одной и той же частоты и напряжения.

Аккумуляторы могут заряжаться только от постоянного тока, поэтому переменный ток сети выпрямляется, когда аккумулятор является основной частью системы. Солнечные элементы и топливные ячейки также производят только постоянный ток, который затем при необходимости можно преобразовать в переменный с помощью устройства, называемого инвертором.

Основная особенность постоянного напряжения в том, что оно постоянно как по своей величине, так и по знаку. Постоянный ток, «течет» в все время одну сторону. Первые электрические сети были постоянного тока. С этим было связано несколько проблем, одна из них — сложность конструкции самого генератора. Переменный ток (в отличие от постоянного) просто легче преобразовывать. Он преобразует переменный ток в постоянный а затем, при помощи блока питания, понижает его напряжение до значений, необходимых для работы всех компонентов внутри корпуса компьютера. Но, да. Можно сказать, что направление тока в бытовой электросети меняется 100 раз в секунду. При частоте переменного тока 50 Гц, направление движения электронов меняется 100 раз в секунду.

Там вы увидите, что переменный ток – это электрический ток, значение которого меняется по синусоидальному или косинусоидальному закону. Отсюда и понятие переменного тока, и главное отличие его от постоянного, который всегда течет в одном и том же направлении и имеет постоянную величину. Например, одним из распространенных видов переменного тока является ток, график закона которого выглядит в виде остриев пилы. Такой переменный ток называют пилообразным.

Примеры термоэлектрических генераторов промышленного применения

Универсальный термоэлектрический генератор Б4-М

Универсальный генератор Б4-М позволяет получать напряжение питания 12 В при установке на вертикальные горячие поверхности с температурой +250 °С и обеспечиваю­щие мощность теплового потока через генератор 300 Вт. Генератор обеспечивает непрерывную круглосуточную работу без постоянного наблюдения за его функционированием. Степень защиты ТЭГ Б4-М от прикосновения к токоведущим частям, попадания твердых посторонних тел и жидкости — IP35 по ГОСТ 14254-96. Генератор предназначен для работы в помещении и на открытом воздухе при любой погоде. Генератор снабжен бронерукавом, служащим защитой проводов выходного напряжения от механических повреждений и перегрева (рис. 2). На бронерукаве также установлен разъем выходного напряжения.

Рис. 2. Внешний вид и состав ТЭГ Б4-М (1 — рабочая поверхность; 2 — кожух; 3 — отверстия для крепежа; 4 — ребра радиатора; 5 — разъем подключения переходного устройства

В реальных условиях эксплуатации в силу ряда факторов достаточно сложно обеспечить постоянную температуру источника тепла. В этой связи для защиты от перегрева и повышения надежности генератор имеет встроенную тепловую защиту, предотвращающую выход из строя генератора при нагреве установочной поверхности до +300 °С. Основные технические характеристики ТЭГ Б4-М приведены в таблице 1.

В процессе проектирования систем с применением термоэлектричесих генераторов возникает вопрос: какими будут выходные параметры генератора при температурах ниже номинальной? На рис. 3 приведена зависимость выходной мощности генератора Б4-М на согласованной нагрузке от температуры источника тепла. На графике видна область срабатывания тепловой защиты после роста температуры источника тепла свыше +260 °С, при котором происходит уменьшение теплового потока через термоэлектрический модуль и, как следствие, снижение вырабатываемой электрической мощности. Испытания производились при комнатной температуре, в условиях естественной конвекции

Для нормальной работы ТЭГ Б4-М необходимо охлаждение радиатора, поэтому важно обеспечить свободное прохождение воздуха вдоль его ребер. Эксплуатация генератора на открытом воздухе, как правило, дает лучшие результаты за счет присутствия дополнительного естественного обдува радиатора, при этом защищать генератор от дождя и снега необходимости нет, так как попадание влаги на радиатор дополнительно охлаждает его и, соответственно, увеличивает вырабатываемую мощность устройства

Для питания электронных устройств рекомендуется применять соответствующий стабилизатор напряжения.

Рис. 3. Типовые результаты испытаний генератора Б4-М

Термоэлектрический генератор ТЭГ-5

Модернизация инфраструктуры промышленных предприятий и внедрение современных систем энергоучета зачастую ограничены отсутствием электрического питания в местах установки различных приборов телеметрии и передачи данных. При этом во многих случаях в наличии есть паропровод. Для получения источника электрической энергии от тепловой энергии пара служит термоэлектрический генератор ТЭГ-5 (рис. 4), устанавливаемый на паропроводах промышленных объектов и имеющий выходную мощность 5 Вт, гарантированную производителем для самых неблагоприятных сочетаний условий эксплуатации. Основные технические характеристики приведены в таблице 2.

Рис. 4. Генератор ТЭГ-5: сверху габаритные размеры; внизу внешний вид

 Термоэлектрический генератор на газовом топливе ТЭГ-15

Термоэлектрический генератор на газовом топливе ТЭГ-15 (рис. 5) предназначен для получения электрической энергии для питания аппаратуры учета расхода газа путем преобразования тепловой энергии сжигания газового топлива в электрическую. Генератор успешно эксплуатируется на газораспределительных пунктах и обеспечивает автономное питание систем сбора и передачи информации, независимое от внешних источников электрической энергии.

Рис. 5. Термоэлектрический генератор ТЭГ-15 на газораспределительных пунктах

Применение термоэлектрических генераторов на газовом топливе позволяет снизить затраты, исключив необходимость подключения к линиям электроснабжения пунктов размещения измерительной и передающей аппаратуры. Генераторы снабжены аккумуляторными батареями и устройством контроля заряда и работы устройства. Как указано в таблице 3, номинальная мощность генератора составляет 15 Вт. Этой мощности достаточно для питания современных электронных приборов учета расхода и параметров газа. В случае необходимости получения большей мощности или резервирования генераторы могут каскадироваться.

Основные технологические процессы в электроэнергетике

Нормативы потребления электроэнергии на человека без счетчика

Производство электроэнергии в России базируется на трёх китах энергетической системы. Это атомная, тепловая и гидроэнергетика.

Три вида генерирования электричества

Электростанция Топливо Генерация
ТЭС Уголь, мазут Получение пара от сгорания топлива, который движет турбины генераторов
ГЭС Потенциальная энергия потока воды Движение турбин под напором воды
АЭС Урановые сердечники Получение пара от тепла ядерной реакции. Энергия пара движет генераторные паротурбины

Ультразвуковой способ

Студентами Пенсильванского университета (США) на недавней выставке в 2011 году был продемонстрирован способ передачи электротока с помощью ультразвука. Передатчик генерировал акустические волны в ультразвуковом диапазоне, приёмник преобразовывал их в электрический ток. В качестве носителя энергии ультразвук был выбран не случайно. Его воздействие на организм человека абсолютно безвредно.

Несовершенство этого способа заключается в том, что КПД передачи очень низкий, нужны прямая видимость между абонентами и ограниченность расстояния (7-10 метров).

Метод электромагнитной индукции

Работа обыкновенного трансформатора даёт представление о том, как осуществляется передача электричества без проводов методом электромагнитной индукции. В процессе участвуют две катушки. Магнитное поле, возбуждаемое протекающим током по виткам первичной обмотки, индуцирует электрический поток во вторичной обмотке трансформатора.

Примерами использования эффекта электромагнитной индукции могут быть зарядные устройства смартфонов и электрические зубные щётки. Недостатком такого способа передачи энергии является непременная близость катушек. Даже при небольшом увеличении промежутка между обмотками большая часть энергии начинает распыляться в пространстве.

Один из видов электромагнитной индукции – это использование резонанса. Суть способа заключается в том, что приёмник и передатчик функционируют в одном частотном диапазоне. Передающее и приёмное устройства представляют собой соленоид с одним слоем витков. Генерирующий прибор оснащён конденсаторной схемой, с помощью которой он настраивается на частоту приёмника.

Демонстрация метода электромагнитной индукции

Электростатическая индукция

В основе метода заложен принцип прохождения энергии через тело диэлектрика. Способ называют ёмкостной связью. Генератор создаёт в ёмкости электрическое поле, которое возбуждает разницу потенциалов между двумя электродами потребителя.

Никола Тесла для демонстрации беспроводной лампы освещения использовал именно метод электростатической индукции. Лампа получала питание от переменного электрического поля высокой частоты. Она светилась ровно, независимо от её перемещения в пространстве комнаты.

Микроволновое излучение

Специалисты космотехники разработали способ передачи электроэнергии от орбитальных солнечных батарей на космические корабли с помощью радиосигнала микроволнового диапазона. Проблема этого метода состоит в том, что для приёма и передачи пучкового излучения требуются антенны с очень большой диафрагмой.

Учёные НАСА в 1978 году пришли к выводу, что для передачи микроволнового луча частотой 2,45 ГГц излучающая антенна должна иметь диаметр отражающей поверхности 1 км. Приёмная ректенна должна быть диаметром 10 км. Уменьшить эти размеры возможно путём использования сверхкоротких волн. Однако сигналы такого диапазона быстро поглощаются атмосферой или блокируются дождевыми осадками.

Обратите внимание! Безопасная плотность мощности излучаемой энергии равняется 1 мВт/см2. Этой норме отвечает антенна диаметром 10 км с передающей мощностью потенциала 750 МВт

Электропроводность Земли

Существует теория использования недр и океанов Земли для беспроводной передачи энергии. Электропроводимость гидросферы, залежей металлических руд может быть использована для передачи низкочастотного переменного тока. Электростатическая индукция диэлектрических тел может возникать в огромных залежах кварцевого песка и тому подобных минералов.

Передача электрического тока возможна также через воздушное пространство методом электростатической индукции. Никола Тесла в своё время выдвинул предположение, что в будущем появятся технологии, которые для передачи электроэнергии будут использовать землю, океанические воды и атмосферу планеты.

Всемирная беспроводная система

Впервые о Всемирной беспроводной системе передачи электроэнергии стало известно от великого учёного Теслы. В 1904 году он заявил, что создание ВБС, используя высокую электрическую проводимость плазмы и Земли, вполне осуществимо.