Источник э.д.с. и источник тока

Содержание

Эффективность электронных коммутируемых электродвигателей

Электродвигатели с электронным управлением ЕС — бесщеточные двигатели постоянного тока, управляемые внешней электроникой — либо электронная плата, либо преобразователь частоты. Ротор содержит постоянные магниты, а статор имеет набор неподвижных обмоток. Коммутация выполняется с помощью электронных схем. «Плата» переключает фазы в неподвижных обмотках, чтобы поддерживать вращение двигателя. Это позволяет поддерживать тока якоря. Когда подключается напряжение правильной полярности и в нужное время возрастает  точность электрической машины. Поскольку скорость двигателя контролируется внешней электроникой, двигатели EC не имеют ограниченной синхронной скорости.

Двигатели EC имеют несколько преимуществ. Поскольку они не имеют щеток, они не искрят и срок их службы больше из-за отсутствия щеток, имеют меньше потери из-за «смарт управления» статором. Они обеспечивают лучшую производительность и управляемость,  чем асинхронные двигатели. С точки зрения размеров — небольшие электродвигатели могут достигать таких же габаритов, что и традиционные электрические машины постоянного или переменного тока.

Распределение мощности намного лучше у машин с электронным управлением. Бесщеточные электродвигатели постоянного тока (BLDC) зависят от источника питания постоянного напряжения. При использовании машин переменного тока появляются дополнительные затраты и сложность системы в случае необходимости регулирования. ЕС электродвигатели могут напрямую подключаться к источникам переменного тока благодаря наличию электронной системы управления. Более того, они слабо подвержены влиянию изменений частоты и напряжения сети, из чего можно сделать вывод что небольшие просадки напряжения сети не окажут существенного влияния на мощность машины, в отличии от асинхронных электродвигателей.

Если сравнить эффективность ЕС машины с машиной переменного тока с расщепленным полюсом или с конденсаторным электродвигателем, то можно увидеть, что машина с расщепленным полюсом имеет КПД порядка 15% — 25%, конденсаторные электродвигатели 30% — 50%, а ЕС машины имеют КПД в пределах 60% — 75% и являются наиболее эффективными и энергосберегающими.

Диапазон изменения КПД для конденсаторных асинхронных машин довольно велик и лежит в пределах 30% — 50%, что особенно сильно ощутимо при неполной их загрузке, например при работе в системах вентиляции и кондиционирования. ЕС электродвигатели имеют меньший диапазон изменения КПД при работе на различных скоростях и с различной нагрузкой. Как правило, у таких машин КПД не ниже 70%, а в машинах, работающих с номинальными параметрами, он может превышать 80%.

Машины с электронным управлением имеют регулятор скорости в качестве встроенной опции. Электродвигатели переменного тока могут иметь данную опцию только с внешним контролером (преобразователь частоты). Преобразователь частоты изменяют амплитуду и частоту напряжения, поступающего на электродвигатель, генерируя тем самым высшие гармоники, которые отрицательно сказываются на электрической машине, способствуя ее перегреву, и, как следствие, снижению срока службы.

Коммутационные схемы принимают входы с широтно-импульсной модуляцией от 4 до 20 мА и от 0 до 10 В. Это позволяет управлять скоростью в диапазоне от 10% до 100%. Мониторинг двигателей EC с помощью интегральной схемы прост, и может быть легко доступен разработчику для обеспечения обратной связи. Наконец, двигатели EC обеспечивают плавный пуск, снижение шума и более низкую температуру двигателя.

Электрические машины с электронным управлением обычно используются для приложений малой мощности, таких как небольшие вентиляторы, сервомоторы и системы управления движением. Однако, благодаря последним достижениям в области электроники и химии, двигатели EC находят свой путь в более крупные производственных приложениях, до 12 кВт и выше.

Обозначения [ править | править код ]

Существуют различные варианты обозначений источника тока. Наиболее часто встречаются обозначения (a) и (b). Вариант (c) устанавливается ГОСТ и IEC . Стрелка в кружке указывает положительное направление тока в цепи на выходе источника. Варианты (d) и (e) встречаются в зарубежной литературе. При выборе обозначения нужно быть осмотрительным и использовать пояснения, чтобы не допускать путаницы с источниками напряжения.

Электротехника связывает природу электричества со строением вещества и объясняет его движением свободных заряженных частиц под воздействием энергетического поля.

Для того чтобы электрический ток протекал по цепи и совершал работу, необходимо иметь источник энергии, совершающий преобразование в электричество:

Читать также: Какое масло применять для смазки цепи бензопилы

механической энергии вращения роторов генераторов;

протекания химических процессов или реакций внутри гальванических приборов и аккумуляторов;

теплоты в терморегуляторах;

магнитных полей в магнитогидродинамических генераторах;

световой энергии в фотоэлементах.

Электрический ток в металлическом проводнике

Определение силы тока и электродвижущей силы в 18-м веке дали известные физики того времени.

Им считается идеальный источник, представляющий собой двухполюсник, на зажимах которого электродвижущая сила (и напряжение) всегда поддерживается постоянным значением. На него не влияет нагрузка сети, а внутреннее сопротивление у источника равно нулю.

На схемах он обычно обозначается кругом с буквой «Е» и стрелкой внутри, показывающей положительное направление ЭДС (в сторону увеличения внутреннего потенциала источника).

Схемы обозначения и вольт-амперные характеристики источников ЭДС

Теоретически на выводах у идеального источника напряжение не зависит от величины тока нагрузки и является постоянной величиной. Однако, это условная абстракция, которая не может быть осуществлена на практике. У реального источника при увеличении тока нагрузки значение напряжения на зажимах всегда уменьшается.

На графике видно, что ЭДС Е состоит из суммы падений напряжения на внутреннем сопротивлении источника и нагрузке.

постоянного и переменного напряжения;

управляемые напряжением или током.

Ими называют двухполюсники, создающий ток, который является строго постоянной величиной и никак не зависит от значения сопротивления на подключенной нагрузке, а внутреннее сопротивление его приближается к бесконечности. Это тоже теоретическое допущение, которое на практике не может быть достигнуто.

Схемы обозначения и вольт-амперная характеристика источника тока

Для идеального источника тока напряжение на его клеммах и мощность зависят только от сопротивления подключенной внешней схемы. При этом с увеличением сопротивления они возрастают.

Реальный источник тока отличается от идеального значением внутреннего сопротивления.

Примерами источника тока могут служить:

Вторичные обмотки трансформаторов тока, подключенных в первичную схему нагрузки своей силовой обмоткой. Все вторичные цепи работают в режиме надежного шунтирования. Размыкать их нельзя — иначе возникнут перенапряжения в схеме.

Катушки индуктивности, по которым проходил ток в течение некоторого времени после снятия питания со схемы. Быстрое отключение индуктивной нагрузки (резкое возрастание сопротивления) может привести к пробою зазора.

Генератор тока, собранный на биполярных транзисторах, управляемый напряжением или током.

В различной литературе источники тока и напряжения могут обозначаться неодинаково.

Виды обозначений источников тока и напряжения на схемах

Источники и потребители электрической энергии. Электрические цепи

Разделы: Технология

Цель урока:

Образовательная: повторить и обобщить знания по теме.

Развивающая:

  • формирование умений самостоятельно применять знания, полученные на уроках, при сборке электрических цепей.
  • развитие мышления, умения делать выводы, анализировать;

Воспитательная: привитие познавательного интереса к электротехнике, воспитание культуры труда, самостоятельности и творчества в коллективно-трудовой деятельности;

Оборудование:

  1. ПК и мультимедийный проектор. На ученических столах: источник тока (батарейка 4,5V), ключ, лампочка, соединительные провода, лист-задание
  2. Лабораторно-практическая работа «Монтаж электрических цепей».

На демонстрационном столе: монтажная планшетка, гальванические элементы, аккумулятор, генератор велосипедный, элекрофорная машина и бытовые приборы — (утюг, лампа настольная, электрочайник, электродрель, электрический звонок, гирлянда и др.)

Образец изделия: — Фонарик из пластиковых бутылок

Ход урока

I. Организационный момент (проверка отсутствующих и готовности класса к уроку).

Учитель: Здравствуйте ребята! Присаживайтесь.

II. Проверка знаний и умений.

На прошлом уроке мы изучали условные обозначения элементов электрических схем. Ребята, как вы думаете, для чего нужно знать эти условные обозначения?

Ответ:

(Чтобы составить электрическую схему и собрать электрическую цепь).

Правильно! Это и будет целью нашего урока, научиться по схемам, собирать простейшие электрические цепи

Поэтому сегодня от вас, ребята, потребуются внимание, настойчивость и культура труда в достижении этой цели

А сейчас, мы проверим ваши знания по графическому обозначению элементов электрических схем.

Задание 1

Выполнить условные обозначения, применяемые на схемах электрической цепи. Ученики с места задают поочерёдно вопросы двум отвечающим одноклассникам у доски. Ответ выполняется графическим обозначением с помощью мела на классной доске.

Перед вами находятся две кнопки звукового экзаменатора опережения ответа. Кто после заданного вопроса первым нажмет кнопку, имеет право на ответ. Если ответ не верный, то право ответа на вопрос переходит второму отвечающему.

Реальный генератор

Главное различие между реальным и идеальным устройством — наличие внутреннего сопротивления. Чем выше данный параметр, тем ближе элемент к улучшенному варианту. Из этого следует, что напряжение и мощность значения конечные, т. е имеют определенный рабочий диапазон. При этом система также обладает ограничением по присоединяемой нагрузке. При решении задач, реальное устройство изображают в качестве идеального, с подключенным в параллель внутренним сопротивлением.

Эксплуатация данного агрегата возможна при холостом ходе (без внешней нагрузки) вследствие того, что имеем замкнутый контур за счет внутреннего сопротивления. Ток на выходе во время такого режима снижается до нулевого значения. При подключении накоротко (режим короткого замыкания) получим максимальную величину, а выходное напряжение опустится до 0.

В качестве примера такого устройства, обратимся к катушке индуктивности. Это положение справедливо в момент размыкания цепи. Так разность потенциалов в таком режиме резко увеличивается по сравнению с предыдущим состоянием. Все дело в ЭДС самоиндукции возникающей в этом элементе. При увеличении напряжения катушка накапливает энергию, при снижении отдает ее в сеть.

Еще одним примером является вторичная обмотка трансформатора тока, которая в нормальных условиях работы всегда должна быть закорочена. В противном случае, если в ней произойдет разрыв, то она станет генератором. Все дело в законе сохранения энергии, так мощность на первичной и вторичной обмотке должна быть одинаковой. Параметры первичной обмотки неизменны, вследствие конструктивных особенностей трансформатора (обмотка имеет один виток). При обрыве во вторичной обмотке, упорядоченного движения заряженных частиц не будет, соответственно напряжение резко возрастет.

Возможно, вам также будет интересно

Все изолированные импульсные стабилизированные ИП содержат входной и выходной фильтры, трансформатор, силовой ключ во входной цепи, выпрямитель в выходной цепи и контроллер. Управляющий контроллер может быть электрически соединен с общим проводом («землей») на первичной или вторичной стороне преобразователя. Оба варианта включения показаны на рис. 1, 2 соответственно. При старте ИП питание на контроллер необходимо подать

Все статьи цикла: Урок 1. Знакомство с пакетом Урок 2. Как задавать внешние воздействия с помощью стимуляторов Урок 3. Альтернативные способы задания внешних воздействий Урок 4. Как работать с редактором временных диаграмм Урок 5. Создание проекта в текстовом формате Урок 6. Инструменты, повышающие эффективность создания HDL-моделей. Урок 7. Проектирование схем: размещение электронных компонентов Урок 8.

Показана реализация квазилинейной поведенческой модели УВХ (устройство выборки-хранения) на языке Verilog-A. Р ассмотрена процедура идентификации параметров модели. Разработан инструментарий, позволяющий проводить анализ по переменному току для схем выборки-хранения. Рассмотрен модуль Verilog-A для автоматического построения АЧ Х и ФЧХ схем выборки-хранения. Этот модуль можно использовать для моделирования частотных свойств схем УВХ и А ЦП.

Примечания

  1. Импеданс является обобщением понятия сопротивление для случая реактивных элементов. Более подробно смотри в статье Электрический импеданс
  2. Применять закон Ома в такой формулировке к двухполюсникам с внутренними источниками некорректно, необходимо учитывать источники: U=Ir+ΣUint, где ΣUint — алгебраическая сумма ЭДС внутренних источников.
  3. Отсутствие источников выражается в том, что напряжение на выводах двухполюсника при отсутствии нагрузки равно нулю. Сюда же относится случай, когда источники есть, но не влияют на выходное напряжение («никуда не подключены»).
  4. Реза Ф., Сили С.Современный анализ электрических цепей Энергия, M.-Л., 1964 г., 480 с. с черт.
  5. Исключение составляют случаи применения стабилизаторов компенсационного типа. Например, двухполюсник, содержащий батарею и ОУ, на некотором участке ВАХ может иметь как сколь угодно малое, так и отрицательное выходное сопротивление — до тех пор, пока избытка энергии в батарее хватает для компенсации.
  6. То же самое, что и напряжение
  7. . Дата обращения 6 апреля 2014.
  8. Тем не менее, гасящие резисторы широко применяются для ограничения пускового тока тяговых электродвигателей постоянного тока на электротранспорте.
  9. Изменение выходного напряжения не более 1,3 мВ в диапазоне выходных токов 0,005÷1,5 А. В более узком диапазоне токов 0,25÷0,75 А типичное выходное сопротивление ещё меньше — 0,0003 ома.
  10. В рабочем диапазоне частот

Тепловые источники

К тепловым относят различные термоэлементы. Термоэлемент —  это прибор в котором, тепловая энергия, получаемая от нагревателя, превращается сначала во внутреннюю энергию вещества, а затем — в электрическую энергию.

Один из таких элементов называют термопарой (рис. 5). Термопара состоит из двух различных металлических проволок, спаянных вместе. Если нагреть место их соприкосновения, то на свободных концах проволочек можно обнаружить электрическое напряжение (ссылка).

Рис. 5. Две проволоки из различных металлов могут создавать ток в цепи при нагревании

Если свободные концы термопары присоединить к потребителю тока, то под действием тепловой энергии по замкнутой цепи побегут электроны, то есть, возникнет электрический ток.

Таким образом, эта незамысловатая конструкция преобразовывает внутреннюю энергию нагреваемых металлов в электрическую энергию.

Закон Ома для неоднородного участка

Простой закон Ома справедлив для так называемого однородного участка цепи — то есть участка, на котором нет источников тока. Сейчас мы получим более общие соотношения, из которых следует как закон Ома для однородного участка, так и полученный выше закон Ома для полной цепи.

Участок цепи называется неоднородным

, если на нём имеется источник тока. Иными словами, неоднородный участок — это участок с ЭДС.

На рис. 3 и источник тока. ЭДС источника равна , его внутреннее сопротивление считаем равным нулю (усли внутреннее сопротивление источника равно , можно просто заменить резистор на резистор ).

Рис. 3. ЭДС «помогает» току:

Сила тока на участке равна , ток течёт от точки к точке . Этот ток не обязательно вызван одним лишь источником . Рассматриваемый участок, как правило, входит в состав некоторой цепи (не изображённой на рисунке), а в этой цепи могут присутствовать и другие источники тока. Поэтому ток является результатом совокупного действия всех

источников, имеющихся в цепи.

Пусть потенциалы точек и равны соответственно и . Подчеркнём ещё раз, что речь идёт о потенциале стационарного электрического поля, порождённого действием всех источников цепи — не только источника, принадлежащего данному участку, но и, возможно, имеющихся вне этого участка.

Химические и пьезоэлектрические источники напряжения

Еще одним способом получения электроэнергии выступают химические батареи. В составе батареи находятся два электрода, созданные из разнородных металлов (меди и цинка, например) и погруженные в электролит. Они могут создавать контакт между электролитом и цепью. С помощью электролита из медного электрода извлекают свободные электроны, а цинковый электрод их при этом притягивает.

Медный электрод, таким образом, имеет положительный заряд, а цинковый — отрицательный. Объединяясь, такие элементы образуют батарею.

У некоторых кристаллических материалов есть пьезоэлектрический эффект. К таким относятся: турмалин, кварц, титанат бария, сегнетова соль. Эффект сводится к тому, что при давлении на указанные материалы будет возникать незначительная разность потенциалов (напряжение).

Если давление отсутствует, отрицательные и положительные заряды распределяются в кристалле хаотичным образом. При наличии давления, электроны будут распределены только на одной стороне материала, тем самым создавая область отрицательных и положительных зарядов.

Напряжение снимается специальными электродами и появляется только при приложенном давлении. Такое явление называется пьезоэффектом. Прямой пьезоэлектрический эффект можно наблюдать в зажигалках, датчиках и кристаллических микрофонах.

Идеальный источник ЭДС

Идеальный источник ЭДС имеет неизменные ЭДС и напряжение на зажимах при всех токах нагрузки. У реального источника ЭДС и напряжение на зажимах изменяются при изменении нагрузки, например вследствие падения напряжения в обмотках генератора постоянного тока. Поэтому реальные источники ЭДС изображается с помощью двух последовательно включенных элементов – идеального источника ЭДС и сопротивления, которое учитывает внутреннее сопротивление реального источника (рисунок 2.3 а). Свойства реального источника ЭДС отражает вольт-амперная характеристика (ВАХ) или внешняя характеристика – зависимость напряжения между его выводами от тока источника (рисунок 2.3 б). Уравнение внешней характеристики реального источника ЭДС:

Метод расчета по законам Ома и Кирхгофа

До изучения технологий вычислений необходимо уточнить особенности типовых элементов при подключении к разным источникам питания. При постоянном токе сопротивлением индуктивности можно пренебречь. Конденсатор эквивалентен разрыву цепи. Также следует учитывать следующие различия разных видов соединений резисторов:

  • последовательное – увеличивает общее сопротивление;
  • параллельное – распределяет токи по нескольким ветвям, что улучшает проводимость.

Закон Ома для участка цепи

Типовая аккумуляторная батарея легкового автомобиля вырабатывает напряжение U = 12 V. Бортовой или внешний амперметр покажет соответствующее значение при измерении. Соединение клемм проводом недопустимо, так как это провоцирует короткое замыкание. Если жила тонкая (< 1 мм), высокая плотность тока в соответствующем поперечном сечении быстро увеличит температуру вплоть до теплового разрушения материала с разрывом цепи. Этот пример демонстрирует функциональность обычного плавкого предохранителя.

Подключив нагрузку, можно мультиметром проверить напряжение. Значение этого параметра остается неизменным. Если известно сопротивление (пример – R = 50 Ом), применение закона Ома (I = UR) поможет рассчитать ток:

I = 12/ 50 = 0,24 А.

По вычисленному значению с использованием формулы быстро определяется мощность:

P = I2 *R = U2/ R = 0,0576 * 50 = 2,88 Вт.

К сведению. Результат показанного расчета пригодится для поиска подходящего резистора. Следует делать запас в сторону увеличения. По стандарту серийных изделий подойдет элемент с паспортной номинальной мощностью 5 Вт.

На практике приходится решать более сложные задачи. Так, при значительной длине линии нужно учесть влияние соединительных ветвей цепи. Через стальной проводник ток будет протекать хуже, по сравнению с медным аналогом. Следовательно, надо в расчете учитывать удельное сопротивление материала. Короткий провод можно исключить из расчета. Однако в нагрузке может быть два элемента. В любом случае общий показатель эквивалентен определенному сопротивлению цепи. При последовательном соединении Rэкв = R1 + R2 +…+ Rn. Данный метод пригоден, если применяется постоянный ток.

Закон Ома для полной цепи

Для вычисления такой схемы следует добавить внутреннее сопротивление (Rвн) источника. Как найти ток, показывает следующая формула:

I = U/ (Rэкв + Rвн).

Вместо напряжения (U) при расчетах часто используют типовое обозначение электродвижущей силы (ЭДС) – E.

Первый закон Кирхгофа

По классической формулировке этого постулата алгебраическая сумма токов, которые входят и выходят из одного узла, равна нулю:

I1 + I2 + … + In = 0.

Это правило действительно для любой точки соединения ветвей электрической схемы. Следует подчеркнуть, что в данном случае не учитывают характеристики отдельных элементов (пассивные, реактивные). Можно не обращать внимания на полярность источников питания, включенных в отдельные контуры.

Чтобы исключить путаницу при работе с крупными схемами, предполагается следующее использование знаков отдельных токов:

  • входящие – положительные (+I);
  • выходящие – отрицательные (-I).

Второй закон Кирхгофа

Этим правилом установлено суммарное равенство источников тока (ЭДС), которые включены в рассматриваемый контур. Для наглядности можно посмотреть, как происходит распределение контрольных параметров при последовательном подключении двух резисторов (R1 = 50 Ом, R2 = 10 Ом) к аккумуляторной батарее (Uакб = 12 V). Для проверки измеряют разницу потенциалов на выводах пассивных элементов:

  • UR1 = 10 V;
  • UR1 = 2 V;
  • Uакб = 12 V = UR1 + UR2 = 10 + 2;
  • ток в цепи определяют по закону Ома: I = 12/(50+10) = 0,2 А;
  • при необходимости вычисляют мощность: P = I2 *R = 0,04 * (50+10) = 2,4 Вт.

Второе правило Кирхгофа действительно для любых комбинаций пассивных компонентов в отдельных ветвях. Его часто применяют для итоговой проверки. Чтобы уточнить корректность выполненных действий, складывают падения напряжений на отдельных элементах. Следует не забывать о том, что дополнительные источники ЭДС делают результат отличным от нуля.

Сравнительная таблица

Сравнительный график переменного тока и постоянного тока

Переменный ток Постоянный ток
Количество энергии, которое можно нести Безопасно переносить на большие расстояния по городу и может обеспечить большую мощность. Напряжение постоянного тока не может перемещаться очень далеко, пока оно не начнет терять энергию.
Причина направления потока электронов Вращающийся магнит вдоль провода. Устойчивый магнетизм вдоль провода.
частота Частота переменного тока составляет 50 Гц или 60 Гц в зависимости от страны. Частота постоянного тока равна нулю.
направление Он меняет свое направление, пока течет по кругу. Он течет в одном направлении в цепи.
ток Это величина, изменяющаяся во времени Это ток постоянной величины.
Поток электронов Электроны продолжают переключать направления – вперед и назад. Электроны неуклонно движутся в одном направлении или «вперед».
Получен из Генератор переменного тока и сеть. Ячейка или батарея.
Пассивные параметры Сопротивление. Только сопротивление
Фактор силы Лежит между 0 и 1. это всегда 1.
Типы Синусоидальный, Трапециевидный, Треугольный, Квадратный. Чистый и пульсирующий.

Постоянный ток

Международный символ этого напряжения DC — Direct Current (постоянный ток), а условное обозначение на электросхемах «—» или «=». Величина и полярность этого вида напряжения являются неизменными, а сила тока изменяется только при изменениях нагрузки. Этот вид электрического тока производится аккумуляторами, батарейками и элементами солнечных электростанций.

От сети постоянного тока работают двигатели трамваев, троллейбусов и другого электротранспорта. Эти электродвигатели имеют лучшие тяговые характеристики, чем двигатели переменного тока.

Информация! От постоянного напряжения работает бОльшая часть электронных схем, но они получают питание от сети переменного тока через встроенный или внешний блок питания с выпрямителем.

Переменный ток

Международное обозначение этого напряжения AC — Alternating Current (переменный ток), а условное обозначение на электросхемах «~» или «≈».

Величина и полярность переменного тока в сети всё время меняется. Частота этих изменений составляет 50Гц в Европе и некоторых других странах и 60Гц в США. Большинство бытовых и промышленных электроприборов изготавливаются для питания переменным напряжением.

Практически вся электроэнергия, используемая в быту и промышленности, является переменной. Для передачи на большие расстояния его повышают при помощи трансформаторов, а в конечной точке линии понижают до необходимой величины. Это позволяет уменьшить стоимость ЛЭП и потери. Для того, чтобы исключить колебания напряжения, для особоважных приборов устанавливаются стабилизаторы.

При увеличении напряжения и неизменной передаваемой мощности сила тока и сечение проводов пропорционально уменьшается. Если напряжение не повышать, то для подачи электроэнергии к потребителю необходимо использовать кабеля большого сечения, а передача на большие расстояния окажется невозможной. Вот почему в розетке переменный ток.

В домашней розетке два контакта — фазный и нулевой. В некоторых случаях к ним добавляется заземляющий. Это однофазное напряжение является частью трёхфазной системы. Она включает в себя три одинаковых сети. Напряжение в этих сетях сдвинуто по фазе на 120° друг относительно друга.

Вначале эта система была шестипроводной. В таком виде её изобрёл Никола Тесла. Позже М. О. Доливо-Добровольский усовершенствовал эту схему и предложил передавать трёхфазное напряжение по трём или чётырём проводам (L1, L2, L3, N). Он также показал преимущества трёхфазной системы электроснабжения перед схемами с другим числом фаз.

Виды источников

Существует несколько видов устройств для выработки тока, каждый из которых имеет свои основные показатели, характеристики и особенности, приведённые в следующей таблице:

Вид источника Характеристики источника тока
Механический Специальное устройство (генератор) обеспечивает трансформацию механической энергии в электрическую. В настоящее время большое количество тока производится именно с помощью механических источников.
Тепловой В основу работы агрегатов заложен принцип переработки тепловой энергии в электрическую. Такое преобразование происходит благодаря разности температур контактирующих между собой полупроводников. В настоящее время разработаны источники тока, тепловая энергия в которых вырабатывается благодаря распаду радиоактивных элементов.
Химический Химические варианты можно условно разделить на 3 группы – гальванические, аккумуляторы и тепловые. · Гальванический элемент работает посредством взаимодействия 2-х разных металлов, помещенных в электролит. · Аккумуляторы – устройства, которые можно несколько раз заряжать и разряжать. Существует несколько видов аккумуляторов с различными типами элементов, входящих в их состав. · Химически-тепловые используются только для кратковременной работы. Применяются, в основном, в сфере ракетостроения.
Световой В конце XX века достаточно популярными стали солнечные батареи, которые «собирают» световые частицы, преобразуемые впоследствии в электрическую энергию. Это происходит за счет выдачи напряжения и благодаря воздействию на световые частицы.

Вам это будет интересно Особенности поперечного сеченияВажно! Каждый вид имеет свои преимущества и недостатки, которые определяются принципом использования, а также исходными показателями вырабатываемой энергии

Механические источники

Механические агрегаты являются самыми простыми по принципу их использования и обустройства. Характеристика таких генераторов очень проста для понимания. В специальных устройствах вырабатывается энергия, которая впоследствии преобразуется в электричество. Такие приборы используются на тепловых электростанциях и гидроэлектростанциях.

Механический

Чем отличается переменный ток от постоянного

Электродвигатели постоянного тока используют графитовые щетки и коллекторный узел для смены направления тока и, соответственно, полярности магнитного поля во вращающемся роторе. Именно это взаимодействие между вращающимся ротором и неподвижным постоянным магнитным полем статора и приводит машину в движение. Таким образом получается, что ротор как – бы пытается «догнать статор» . Еще одним видом машин переменного напряжения являются синхронные электродвигатели.

Для преобразования переменного тока в постоянный в зоне розетки применяются трансформаторы напряжения с наличием выпрямителей или специализированные блоки питания. В качестве широко распространенного примера потребления постоянного тока можно привести практически все электроинструменты, которые эксплуатируются с батареями. Аккумуляторное устройство остается в любом случае источником питания постоянного типа. Преобразование в переменный достигается в случае необходимости при помощи инверторов – специальных элементов. Ниже приведен рисунок с главными характеристиками данного вида тока – номинальными показателями частоты и действующего напряжения. Очевидно, что в случае с током постоянного вида параметры направления и напряжения остаются неизменными, а вот для переменного наблюдается трансформация данных величин. Инвертор – стандартный прием в бытовых условиях, представляет собой генератор напряжения периодического вида, получаемого из приближенного к синусоиде постоянного.

То есть током называется движение носителей заряда в силу каких-либо причин. Объединим полюса, и потечёт электрический ток. Движение носителей будет продолжаться до тех пор, пока потенциал не уравняется. Но постоянный у нас в этом случае ток или переменный? Нет. В более широком смысле постоянным (выпрямленным) током называется именно движения носителей заряда в одном направлении. Приблизительно постоянным можно считать ток разряда автомобильного аккумулятора. Строго говоря, напряжение здесь со временем падает, а потому даже при одной и той же нагрузке эффект разнится хронометрически. Как бы то ни было, источником постоянного тока можно считать адаптеры. В общем и целом нужно понимать, что устройство постоянного тока может функционировать только от того номинала, для которого сконструировано.

В постоянном же количество данных частиц за одинаковые интервалы времени всегда равнозначно. Переменный ток постоянно изменяет свою силу, величину или направление. Его легче преобразовать в переменный ток другого напряжения, изменить напряжение в электрических сетях в зависимости от необходимых потребностей.

На планете Земля на сегодняшний день 98% всей электроэнергии вырабатывается генераторами переменного тока. Такой ток достаточно легко производить и передавать на большие расстояния. Работу совершает не напряжение, а ток. Поэтому чем меньше его значение, тем меньше потери в проводах. Поэтому у всех потребителей в розетке имеется переменный ток одной и той же частоты и напряжения.

Аккумуляторы могут заряжаться только от постоянного тока, поэтому переменный ток сети выпрямляется, когда аккумулятор является основной частью системы. Солнечные элементы и топливные ячейки также производят только постоянный ток, который затем при необходимости можно преобразовать в переменный с помощью устройства, называемого инвертором.

Основная особенность постоянного напряжения в том, что оно постоянно как по своей величине, так и по знаку. Постоянный ток, «течет» в все время одну сторону. Первые электрические сети были постоянного тока. С этим было связано несколько проблем, одна из них — сложность конструкции самого генератора. Переменный ток (в отличие от постоянного) просто легче преобразовывать. Он преобразует переменный ток в постоянный а затем, при помощи блока питания, понижает его напряжение до значений, необходимых для работы всех компонентов внутри корпуса компьютера. Но, да. Можно сказать, что направление тока в бытовой электросети меняется 100 раз в секунду. При частоте переменного тока 50 Гц, направление движения электронов меняется 100 раз в секунду.

Там вы увидите, что переменный ток – это электрический ток, значение которого меняется по синусоидальному или косинусоидальному закону. Отсюда и понятие переменного тока, и главное отличие его от постоянного, который всегда течет в одном и том же направлении и имеет постоянную величину. Например, одним из распространенных видов переменного тока является ток, график закона которого выглядит в виде остриев пилы. Такой переменный ток называют пилообразным.