Простой импульсный блок питания на ir2153

Содержание

Где взять нужный трансформатор для блока питания?

Проще всего подобрать трансформатор для бока питания на радиорынке, если, конечно, он есть в вашем городе. Там же можно договориться о перемотке трансформатора. Но, и трансформаторы, и услуги по их перемотке достаточно дороги.

Если у Вас в сарае или на балконе валяется какая-нибудь ненужная техника, то наверняка в ней есть и трансформаторы. Любой разборный сетевой трансформатор очень легко переделать под свои нужды. Самое главное, чтобы хватило его габаритной мощности.

Если мощность трансформатора меньше требуемой, то под нагрузкой выходное напряжение трансформатора может существенно просесть. Но, это тоже не беда, так как микросхемы типа TDA2030, TDA2040 и TDA2050 могут работать при значительном снижении напряжения питания, а именно: ±6, ±2,5 и ±4,5 Вольт соответственно.

Маловероятно, что вторичные обмотки найденного трансформатора подойдут по току и напряжению, но первичная обмотка уже рассчитана на напряжение осветительной сети и это самое лучшее подспорье, так как перемотать вторичную обмотку намного проще, чем первичную.

Хорошо, если это будет стандартный унифицированный трансформатор, тогда можно по его наименованию точно определить напряжения и максимально допустимые токи вторичных обмоток. Такие трансформаторы не поддаются разборке, поэтому прежде чем его покупать, нужно сверить название с данными в справочнике.

В сайте есть ссылка на справочник, в котором можно найти подробную информацию о большинстве унифицированных трансформаторов советского и постсоветского производства.

Если же это будет трансформатор без опознавательных знаков, то вероятность того, что его придётся перематывать, будет стремиться к 99%. За такой трансформатор много платить не стоит.

  • Годится для замены вторичной обмотки
  • Нужно мотать первичную обмотку
  • Нужно мотать первичную обмотку.

Видео: ГДЕ ВЗЯТЬ ИДЕАЛЬНЫЙ ТРАНСФОРМАТОР ДЛЯ ЛАБОРАТОРНОГО БЛОКА ПИТАНИЯ

В этом видео рассмотрен трансформатор от музыкального центра. На его основе можно сделать лабораторный блок питания. На выходе у него 35 вольт 20 ампер. Так же есть выход на 4,7 вольт 4 ампер для usb зарядников. Где взять нужный трансформатор для блока питания?

О мощности БП и транзиаторах

Но вернемся к БП, приведенному на рисунке 3. Минимальная мощность данного БП практически ни чем не ограничена, поэтому можно изготовить БП и на 50 Вт и меньше. Верхний же предел мощности ограничен некоторыми особенностями элементной базы.

Для получения больших мощностей требуются транзисторы MOSFET более мощные, а чем мощнее транзистор, тем больше емкость его затвора.

Если емкость затвора силового транзистора довольно высокая, то для её заряда-разряда требуется значительный ток. Ток транзисторов управления IR2153 довольно не велик (200 мА), следовательно, эта микросхема не может управлять слишком мощными силовыми транзисторами на больших частотах преобразования.

Исходя из вышесказанного становится ясно, что максимальная выходная мощность преобразователя на базе IR2153 не может быть более 500…600 Вт при частоте преобразования 50…70 кГц, поскольку использование более мощных силовых транзисторов на этих частотах довольно серьезно снижает надежность устройства.

Список рекомендуемых транзисторов для силовых ключей VТ1, VТ2 с краткими характеристиками сведен в таблицу 2.

Таблица 2

Наименование Емкостьзатвора, пкФ Сопротивлениеоткрытого перехода, Ом Максимальноенапряжение, В Максимальный ток, А
IRF740 1600 0,55 400 10 А
IRF840 1300 0,85 500 8 А
STP10NK60Z 1370 0,75 600 10 А

Выпрямительные диоды вторичных цепей питания должны иметь наименьшее время восстановления и как минимум двукратный запас по напряжению и трехкратный току.

Последние требования обоснованы тем, что выбросы напряжения самоиндукции силового трансформатора составляют 20…50 % от амплитуды выходного напряжения. Например при вторичном питании в 100 В амплитуда импульсов самоиндукции может составлять 120…

150 В и не смотря на то, что длительность импульсов крайне мала ее достаточно чтобы вызвать пробой в диодах, при использовании диодов с обратным напряжением в 150 В.

Трехкратный запас по току необходим для того, чтобы в момент включения диоды не вышли из строя, поскольку емкость конденсаторов фильтров вторичного питания довольно высокая, и для их заряда потребуется не малый ток. Наиболее приемлемые диоды VD4-VD11 сведены в таблицу 3.

Таблица 3.

Наименование Максимальноенапряжение, В Макс. ток, А Обратноевремя восстанов.,нС Примечания
16CTQ100 100 8   2 диода Шотки по 8 А в корпусе ТО-220
20CTQ150 150 10   2 диода Шотки по 10 А в корпусе Т0-220
30CPQ100 100 15   2 диода Шотки по 15 А в корпусе ТО-247
30CPQ150 150 15   2 диода Шотки по 15 А в корпусе ТО-247
40CPQ100 100 20   2 диода Шотки по 20 А в корпусе ТО-247
60CPQ150 150 30   2 диода Шотки по 30 А в корпусе Т0-247
15ETH06FP 600 15 35 1 диод 15 А в корпусе ТО-220
30EPF06 600 30 40 1 диод 30 А в корпусе Т0-247
30ETH06PBF 600 30 40 1 диод 30 А в корпусе ТО-220
80EBU02 200 80 35  
HER308 1000 3 30 DO-201
HER605 400 6 50 DO-201
HFA06TB120 1200 6 26 ТО-220
HFA08TB120 1200 8 28 ТО-220
HFA15TB60 600 15 60 ТО-220
HFA16TB120 1200 16 30 ТO-220
HFA25PB60 600 25 23 ТО-247
HFA30PB120 1200 30 37 ТО-247
MUR2020CT 200 10 25 2 диода по 10 А в корпусе ТО-220
MUR820 200 8 25 ТО-220
SF54 300 5 35 DO-201
SF56 600 5 35 DO-201
SF84 400 8 35 ТО-220

Емкость фильтров вторичного питания (С11, С12) не следует увеличивать слишком сильно, поскольку преобразование производится на довольно больших частотах.

Для уменьшения пульсаций гораздо актуальней использование большой емкости в первичных цепях питания и правильный расчет мощности силового трансформатора.

Во вторичных же цепях конденсаторов на 1000 мкФ в плечо вполне достаточно для усилителей до 100 Вт (конденсаторы по питанию, установленные на самих платах УМЗЧ должны быть не менее 470 мкФ) и 4700 мкФ для усилителя на 500 Вт.

Схема импульсного блока питания — 4 рабочие схемы

Схема импульсного блока питания, но не одна, а сразу четыре. В этом материале будет представлено вам несколько схем импульсных источников питания, выполненных на популярной и надежной микросхеме IR2153. Все эти проекты были разработаны известным пользователем Nem0. Поэтому я здесь буду писать от его имени. Показанные здесь все схематические решения были пару лет назад лично автором собраны и протестированы.

Но вот сейчас, в середине 2018 года, автор решил вновь предложить их вам для повторения, схемы абсолютно рабочие. В данной статье к сожалению не каждая схема имеет для наглядности фото уже готового прибора, но это пока все, что есть.

В общем начнем пока с так называемого «высоковольтного» блока питания:

Схема традиционная, которую использует Nem0 в большинстве своих конструкций импульсников. Драйвер получает питание напрямую от электросети через сопротивление. Это в свою очередь способствует уменьшению рассеиваемой на этом сопротивлении мощности, сравнительно с подачей напряжения от цепи 310v. Схема импульсного блока питания располагает функцией плавного включения напряжения, что существенно ограничивает пусковой ток. Модуль плавного пуска запитывается через конденсатор С2 понижающий сетевое напряжение 230v.

В блоке питания предусмотрена эффективная защита предотвращения короткого замыкания и пиковой нагрузки во вторичном силовом тракте. Роль датчика тока выполняет постоянный резистор R11, а регулировку тока срабатывания защиты выполняется с помощью подстроечника R10. Во время отсечки тока защитой, начинает светится светодиод, сигнализирующий о том, что защита сработала. Выходное двух полярное выпрямленное напряжение составляет +/-70v.

Трансформатор выполнен с одной первичной обмоткой, состоящей из пятидесяти витков, а 4 вторичные обмотки, содержат по двадцать три витка. Диаметр медной жилы и магнитопровод трансформатора расчитываются в зависимости от заданной мощности определенного блока питания.

Теперь рассмотрим следующий блок питания:

Эта версия блока питания во много схожа с описанной выше схемой, хотя в ней имеется существенное отличие. Дело в том, что здесь напряжение питания на драйвер поступает от специальной обмотки трансформатора, через балластный резистор. Все остальные компоненты в конструкции практически одинаковы.

Мощность на выходе этого источника питания обусловлено как характеристикой трансформатора и параметрами микросхемы IR2153, но и ресурсом диодов в выпрямителе. В данной схеме были задействованы диоды КД213А, у которых обратное максимальное напряжение 200v и прямой максимальный ток 10А. Для обеспечения корректной работы диодов при больших токах, их нужно устанавливать на радиатор.

Отдельного внимания заслуживает дроссель Т2. Наматывают его на совместном кольцевом магнитопроводе, в случае необходимости можно использовать другой сердечник. Намотка делается эмаль-проводом с сечением рассчитанным согласно току в нагрузке. Также и мощность импульсного трансформатора определяется в зависимости от того, какую выходную мощность вы хотите получить. Очень удобно делать расчеты трансформаторов с помощью специальных компьютерных калькуляторов.

Теперь третья схема импульсного блока питания на мощных полевых транзисторах IRFP460:

Этот вариант схемы уже имеет конкретную разницу относительно предыдущих моделей. Главные отличия, это система защиты от КЗ и перегруза здесь собрана с использованием трансформатора по току. И есть еще одна разница, это наличие в схеме пары предвыходных транзисторов BD140. Именно эти транзисторы дают возможность отрезать большую входную емкость мощных полевых ключей, относительно выхода драйвера.

Есть еще маленькое отличие, это гасящий напряжение резистор, относящейся к модулю плавного включения, установлен он в цепи 230v. В предыдущей схеме он расположен в силовом тракте +310v. Кроме этого в схеме имеется ограничитель перенапряжения, служащий для гашения остаточного импульса трансформатора. Во всем остальном никаких различий между приведенными выше схемами у этой больше нет.

Четвертая схема импульсника:

В этой схеме все упрощено до придела, здесь нет защиты от короткого замыкания, но собственно она не особо и нужна. В этом варианте блока питания, ток на выходе вторичной цепи 260v уменьшается на сопротивлении R6. Резистор R1 обрезает пиковый ток при пуске, а также сглаживает сетевые искажения.

Скачать: Дополнительные файлы

Предыдущая запись Схема усилителя класса D

Следующая запись Моноблок это что

Виды и принцип работы импульсных источников питания

Основной принцип работы импульсного источника питания (ИИП) состоит в том, что постоянное напряжение (выпрямленное сетевое или от стороннего источника) преобразовывается в импульсное частотой до сотен килогерц. За счет этого намоточные детали (трансформаторы, дроссели) получаются легкими и компактными.

Принципиально ИИП делятся на две категории:

  • с импульсным трансформатором;
  • с накопительной индуктивностью (она также может иметь вторичные обмотки)

Первые подобны обычным трансформаторным сетевым блокам питания, выходное напряжение у них регулируется изменением среднего тока через обмотку трансформатора. Вторые работают по другому принципу – у них регулируется изменением количества накопленной энергии.

По другим признакам ИИП можно разделить на нестабилизированные и стабилизированные, однополярные и двухполярные и т.п. Эти особенности не носят столь принципиального характера.

Силовой трансформатор

Силовой трансформатор работает на высоких частотах (до нескольких десятков килогерц), поэтому его можно выполнить на сердечнике не из трансформаторного железа, а на феррите. Также за счет повышенной частоты его размеры будут меньше, чем у сетевого, предназначенного для преобразования на частоте 50 Гц. Расчет импульсного трансформатора достаточно объемен. С ним можно разобраться для общего развития, а для практических целей лучше воспользоваться какой-либо программой, включая онлайн-сервисы.


Интерфейс программы Lite-CalcIT.

Популярностью пользуется программа Lite-CalcIT. Она может рассчитать трансформатор под имеющийся сердечник, а может подобрать оптимальный, исходя из введенных данных.

Технические характеристики и намоточные данные трансформаторов ТПИ

ТПИ служат для передачи кратковременных импульсов с наименьшими искажениями и действуют в переходящих процессах. Они позволяют менять уровни и полярность импульсного тока и согласовывать напряжение сопротивления генераторов с потребителями нагрузки, разделить потенциалы приемо-передающих устройств, и принимать сигналы от источника на определенных нагрузках. Они служат основным конвертирующим компонентом в оборудовании.

Существует несколько видов обмоток для ТПИ:

  • спиральные. Используют для снижения индуктивного рассеивания;
  • конические. Применяются для уменьшения индуктивного рассеивания и повышения обмоточной емкости;
  • цилиндрические. Обладают хорей технологичностью и простотой конструкции.

4-3

Применяется в блоках питания для радиоэлектроники. Сердечник выполнен из феррита марки Ф-720. Имеет длину и высоту 42 миллиметра, и ширину 20 мм. На внешние источники его устанавливают в качестве импульсных преобразователей, конвертируя колебания энергии в частоты до нескольких килогерц. Катушка имеет спиральную рядовую обмотку, выполненную из медной проволоки толщиной несколько сотых долей миллиметра. Изоляция сделана из технической пленки, количество выводов 18.

Импульсный источник питания на IR2153

Читать все новости ➔

О статье. В глобальной помойке много схем с использованием этой микросхемы и описанием делайте вот так и так… А как так и почему ? Будет ли работать ? На последний вопрос очень часто ответ – нет!! Очень много “Чудодейственных” печаток и советов применить именно 1000мкф х500В конденсатор, который не найти или стоить будет ползарплаты.

Постараюсь описать с чем пришлось столкнуться при построении устройства, как решалось, свести все к простым и понятным принципам, применяя которые каждый может определится с тем, что ему нужно.

О самой “ирке”- IR2153. Микросхема разработана для применения в электронных балластах экономичных ламп, это устройства микроскопической мощности, работает на частотах порядка 30КГц, не имеет  специально предусмотренных цепей защиты и управления.

Это дает повод для размышлений! IR2153 имеет малое потребление и может питаться просто через гасящий резистор, также имеется разделение для верхнего и нижнего ключей полумоста, поэтому не требуется мотать трансформаторы или применять оптическое разделение сигналов управления ключами.

Это делает микросхему привлекательной не только для любителей, но и для серьезных брендов выпускающих продукцию серийно!

И так, сам проект.

Питание –  сеть переменного тока 250В 50..60Гц Выход – 150В переменного тока частотой 50..60КГц на сменный трансформатор. Ориентировочная мощность – 200Вт.

Трансформатор на фото:  напряжение холостого хода – 25В, напряжение под нагрузкой 200Вт – 23.5В

Здесь блок нагружен на 4 галогеновые лампы 12В 50Вт каждая.Здесь по просьбе фанов этой чипы, блок нагружен на трансформатор 10КВ и убитую люминесцентную лампу, что дает жесткую нагрузку.Здесь запустил настоящий HVшный девайс, называю его свечкой, электроды  кабель 2.5мм2, нагреваются и горят очень шустро, транзисторам тоже нелегко.Схема:

Платы блока. Формат Sprint Layout, основная плата и плата выходного драйвера полевых транзисторов.

Комплектующие: C1                        – 220мкФ х 450В (у нас все скромненько

TL494CN: схема функциональная

Итак, задачей данной микросхемы является широтно-импульсная модуляция (ШИМ, или англ. Pulse Width Modulated (PWM)) импульсов напряжения, вырабатываемых внутри как регулируемых, так и нерегулируемых ИБП. В блоках питания первого типа диапазон длительности импульсов, как правило, достигает максимально возможной величины (~ 48% для каждого выхода в двухтактных схемах, широко используемых для питания автомобильных аудиоусилителей).

Микросхема TL494CN имеет в общей сложности 6 выводов для выходных сигналов, 4 из них (1, 2, 15, 16) являются входами внутренних усилителей ошибки, используемых для защиты ИБП от токовых и потенциальных перегрузок

Контакт № 4 – это вход сигнала от 0 до 3 В для регулировки скважности выходных прямоугольных импульсов, а № 3 является выходом компаратора и может быть использован несколькими способами. Еще 4 (номера 8, 9, 10, 11) представляют собой свободные коллекторы и эмиттеры транзисторов с предельно допустимым током нагрузки 250 мА (в длительном режиме не более 200 мА)

Они могут соединяться попарно (9 с 10, а 8 с 11) для управления мощными полевыми транзисторами (MOSFET-транзисторов) с предельно допустимым током 500 мА (не более 400 мА в длительном режиме).

Каково же внутренне устройство TL494CN? Схема ее показана на рисунке ниже.

Микросхема имеет встроенный источник опорного напряжения (ИОН) +5 В (№ 14). Он обычно используется в качестве эталонного напряжения (с точностью ± 1%), подаваемого на входы схем, потребляющих не более 10 мА, например, на вывод 13 выбора одно- или двухтактного режима работы микросхемы: при наличии на нем +5 В выбирается второй режим, при наличии на нем минуса напряжения питания – первый.

Для настройки частоты генератора пилообразного напряжения (ГПН) используют конденсатор и резистор, подключаемые к контактам 5 и 6 соответственно. И, конечно, микросхема имеет выводы для подключения плюса и минуса источника питания (номера 12 и 7 соответственно) в диапазоне от 7 до 42 В.

Из схемы видно, что имеется еще ряд внутренних устройств в TL494CN. Описание на русском языке их функционального назначения будет дано ниже по ходу изложения материала.

Схемы инверторов

Получившееся выпрямленное напряжение поступает на преобразователь (инвертор). Его выполняют на биполярных или полевых транзисторах, а также на IGBT-элементах, сочетающих свойства полевых и биполярных. В последние годы получили распространение мощные и недорогие полевые транзисторы с изолированным затвором (MOSFET). На таких элементах удобно строить ключевые схемы инверторов. В схемах импульсных блоков питания используются различные варианты включения MOSFET, но в основном применяются двухтактные схемы из-за простоты и возможности наращивания мощности без существенных переделок.

Пуш-пульная схема


Схема пуш-пульного преобразователя.

Пуш-пульный инвертор (push – толкать, pull – тянуть) — пример двухтактного преобразователя. Транзисторные ключи работают на первичную обмотку трансформатора, состоящую из двух полуобмоток I и II. Транзисторы поочередно открываются на заданный промежуток времени. Когда открыт верхний по схеме транзистор, ток течет через полуобмотку I (красная стрелка), когда второй – через полуобмотку II (зеленая). Чтобы избежать ситуации, когда оба ключа открыты (из-за конечной скорости работы транзисторов), схема управления формирует паузу, называемую Dead time.


Управление транзисторами с учетом Dead time.

Такая схема хорошо работает при низком напряжении питания (до +12 вольт). Минусом является наличие выбросов амплитудой, равной удвоенному напряжению питания. Это влечет за собой применение транзисторов, рассчитанных на вдвое большее напряжение.

Мостовая схема

От главного недостатка предыдущей схемы свободна двухтактная мостовая.


Двухтактная мостовая схема инвертора.

Здесь одновременно открывается пара транзисторов T1 и T4, потом Т2 и Т3 (сигнал управления ключами формируется с учетом Dead time). При этом первичная обмотка подключается к источнику питания то одной стороной, то другой. Амплитуда импульсов равна полному напряжению питания, и выбросы напряжения отсутствуют. К минусам относят применение четырех транзисторов вместо двух. Помимо увеличения габаритов БП это ведет к удвоенным потерям напряжения.

Полумостовая схема

На практике часто применяют полумостовую схему инвертора – в определенной мере компромисс между предыдущими двумя схемами.


Полумостовая схема.

В этом случае одна сторона обмотки коммутируется поочередно открывающимися транзисторами Т1 и Т2, а другая подключается к средней точке емкостного делителя С1, С2. Достоинства схемы:

  • в отличие от пушпульной отсутствуют выбросы напряжения;
  • в отличие от мостовой используются только два транзистора.

На другой чаше весов – обмотка трансформатора запитана лишь от половины напряжения питания.

Однотактные схемы

В схемотехнике преобразователей применяются и однотактные схемы – прямоходовые и обратноходовые. Их принципиальное отличие от двухтактных – трансформатор (точнее, его первичная обмотка) служит одновременно накопительной индуктивностью. В обратноходовых схемах энергия накапливается в первичной обмотке во время открытого состояния транзистора, а отдается в нагрузку через вторичную обмотку во время закрытого. В прямоходовых накопление энергии и отдача потребителю происходит одновременно.


Две фазы работы обратногоходового однотактного инвертора.

Детали балласта люминесцентной лампы

Электролитические конденсаторы типа К50-68, неполярные — К10-17б , К73-17. Минимальное напряжение конденсатора С5 должно быть не менее 400 В. Диод VD5 обязан быть типа ultra-fast рассчитанным на обратное напряжение не менее 400 В. Им могут быть следующие диоды: BYV26D, 11DF4, BYV26C, BYV26B, HER156, HER157, HER105, SF28, HER205, HER106, HER206, SF106. Микросхему IR2151 возможно заменить на IR2153, IR2152, IR2155.

Возможна замена транзисторов: КП728, КП726, IRF730, IRF740, IRF840, КП770Д, КП751А. Термистор R7 возможно поменять на В59339-А1801-Р20 или же на В59339-А1501-Р20, B59320-J120-A20. Хотя иногда данный термистор можно исключить из схемы. Для этого попробуйте запустить лампу без термистора. Если она включается уверенно, без многократных вспышек, то термистор можно не устанавливать.

Детали

В ИИП применены резисторы МЯТ, С2-23, конденсатор С1 типа К73-17 или импортный, он должен быть рассчитан на работу при переменном напряжении не менее 400 В, конденсатор C3 — К10-17 или SMD, остальные конденсаторы оксидные отечественного или импортного производства.

Диоды 1N4007 можно заменить на 1N4005, 1N4006 или маломощный диодный мост, рассчитанный на работу в сети 220 В, например КЦ407А.

Диоды Шотки 1N5819 заменимы на 1N5817, 1N5818 или на диоды серий КД5Ю, КД521, КД522, но в последнем случае выходное напряжение уменьшится примерно на 1 В. Светодиод HL1 может быть любого цвета свечения.

Трансформатор намотан на магнитопроводе типоразмера R10x6x4 (EPCOS B64290L0038-N87) из феррита с магнитной проницаемостью 2200.

Применен провод ПЭЛ ШО диаметром 0,12 мм. Первичную обмотку наматывают виток к витку в один ряд — это примерно 85 витков (допускается отклонение ±10 витков).

Емкость конденсатора С1, мкФ Оптимальная мощность нагрузки, мВт
0,33 <=200
0,47 200…300
0.68 300…400

Для повышения надежности изоляции первичную обмотку покрывают 2…3 слоями лака, для этих целей применен аэрозольный автомобильный акриловый лак. который обладает повышенной устойчивостью к атмосферным и механическим воздействиям. Затем наматывают вторичную обмотку — 30 витков также виток к витку в один ряд.

Печатная плата для устройства не разрабатывалась Все детали размещены на макетной печатной плате с применением проводного монтажа. Плата размещена в пластмассовом корпусе размерами 60x35x25 мм. В корпусе необходимо сделать отверстия для светодиода, сетевого и выходного кабелей.

Рис. 2. Нагрузочные характеристики источника питания.

Выходная мощность источника питания зависит от емкости гасящего конденсатора С1. В таблице указана его емкость для различных значений выходной мощности. Нагрузочные характеристики источника показаны на рис.2.

Если потребляемая нагрузкой мощность меньше оптимальной, избыточная энергия будет идти на нагрев микросхемы. После сборки устройство в настройке не нуждается и сразу может быть использовано для питания соответствующей нагрузки.

А. Депарма, г. Харьков, Украина. Р-2010-05.

Даташит на IR2153 — Скачать.

Литература:

  1. Нечаев И. Блок питания антенного усилителя. Р-1994-03.
  2. Москатов Е. Усовершенствованный ИИП в спичечной коробке. Р-2009-03.
  3. Соломин В. Сетевой в габаритах «Кроны». Р-1999-09.
  4. Сидорович О. Сетевой «Гальванический элемент 373». Р-2000-09.
  5. Хабаров А. Миниатюрный блок питания.Р-2001-09.
  6. Москатов Е. Импульсный ИП в спичечной коробке.Р-2005-06.
  7. IR2153 SELF-OSCILLATING HALF-BRIDGE DRIVER. — www.irf.com.
  8. Каталог «Ферриты Epcos” Сердечники кольцевые — www.ferrite.com.ua

П О П У Л Я Р Н О Е:

  • Цифровая шкала — частотомер

При работе на любительской радиостанции перед радиолюбителем часто встает необходимость точно знать частоту, на которую настроен его трансивер или приемник для того, чтобы не уйти за пределы диапазона или для точной настройки на заранее оговоренную частоту. Механические шкалы не дают такой возможности поэтому приходится конструировать электронные шкалы. Подробнее…

Параболическая 3G антенна за 5 минут

Простейшая 3G/4G антенна своими руками

В моём загородном доме есть проблемы с подключением из-за низкого уровня сигнала.

В статье ниже, я вам расскажу, как я решил проблему с подключением моего 3G модема бесплатно, всего за 5 минут работы.

Подробнее…

Схема простого металлоискателя

Самотактируемый полумостовой драйвер

Отличительные особенности:

Интегрированный 600В полумостовой драйвер
15.6В стабилитрон на линии Vcc
Действительная микромощность при старте
Более жесткое начальное управление временем паузы
Низкий температурный коэффициент длительности паузы
Функция выключения (1/6 от Vcc на выводе СТ)
Увеличенный гистерезис блокировки при снижении напряжения (1 В)
Более маломощная схема преобразования уровня
Постоянная ширина импульсов LO,HO при старте
Уменьшено di/dt для лучшей нечувствительности к шумам
Выход драйвера нижнего уровня в фазе с RT
Внутренний 50нс диод запуска (IR2153D)
Увеличенная стойкость к защелкиванию на всех входах и выходах
Защита от электростатических разрядов на всех выводах
Напряжение смещения VOFFSET не более 600В
Скважность 2 (меандр)
Tr/Tp 80/40нс
Vclamp 15.6В
Пауза 1.2 мкс

Типовая схема включения:

Rt Резистор задающего генератора, для нормального функционирования в фазе с LO
Ct Конденсатор задающего генератора
VB Напряжение питания ключей верхнего уровня
HO Выход драйвера верхнего уровня
VS Возврат питания верхнего уровня
VCC Питание драйверов нижнего уровня и логики
LO Выход драйвера нижнего уровня
COM Общий питания и логики

IR2153 – улучшенная версия драйвера IR2155 и IR2151, которая содержит драйвер високовольтного полумоста с генератором аналогичным промышленному таймеру 555 (К1006ВИ1). IR2153 отличается лучшими функциональными возможностями и более прост в использовании по сравнению с предыдущими микросхемами. Функция выключения в данном устройстве совмещена с выводом СТ, при этом выключение обоих каналов происходит при подаче управляющего сигнала низкого уровня.

Кроме того, формирование выходных импульсов связано с моментом пересечения увеличивающегося напряжения на Vcc порога схемы блокировки от понижения напряжения, тем самым была достигнута более высокая стабильность импульсов при запуске.

Стойкость к шумам была значительно улучшена за счет уменьшения скорости изменения тока драйверов (di/dt) а также за счет увеличения гистерезиса схемы блокировки от понижения напряжения (до 1В)

Наконец, существенное внимание было уделено повышению стойкости защелок и обеспечению всесторонней защиты от электростатических разрядов на всех выводах

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

На основе микросхемы IR2153 и силовых IGBT транзисторов было сконструировано множество схем, таких как драйвер и генератор индукционного нагревателя, источник питания для катушки Тесла, DC-DC преобразователи, импульсные источники питания и так далее. А связка NGTB40N120FL2WG + IR2153 работают вместе как нельзя лучше, где IR2153 является драйвером — задающим генератором импульсов, а пара биполярных транзисторов с изолированным затвором на 40А/1000В может обрабатывать большой ток нагрузки.

Структурная и принципиальная схема основных частей блока

Обобщенная структурная схема импульсного БП.

На входе блока питания устанавливается сетевой фильтр. Принципиально на работу самодельного или промышленного импульсного блока питания он не влияет – все будет функционировать без него. Но отказываться от схемы фильтрации нельзя – из-за крайне нелинейной формы потребляемого тока импульсные источники интенсивно «сыплют» помехами в бытовую сеть 220 вольт. По этой причине работающие от этой же сети устройства на микропроцессорах и микроконтроллерах – от электронных часов до компьютеров – будут работать со сбоями.


Схема сетевого фильтра.

Назначение входного устройства — защита от двух видов помех:

  • синфазной (несимметричной) – возникает между любым проводом и землей (корпусом) БП;
  • дифференциальной (симметричной) – между проводами (полюсами) питания.

Фильтр, как и весь блок питания, на входе защищен предохранителем F (плавким или самовосстанавливающимся). После предохранителя стоит варистор – резистор, сопротивление которого зависит от приложенного напряжения. Пока входное напряжение в норме, сопротивление варистора велико и он не оказывает никакого действия на работу схемы. Если напряжение повышается, сопротивление варистора резко просаживается, что вызывает увеличение тока и сгорание предохранителя.

Конденсаторы Cx блокируют дифференциальные помехи на входе и выходе фильтра в диапазоне до 30 МГц. На частоте 50 Гц их сопротивление велико, поэтому влияния на сетевое напряжение они не оказывают. Их емкость может быть выбрана от 10 до 330 нФ. Резистор Rd устанавливается для безопасности – через него разряжаются конденсаторы после отключения питания.

Синфазные помехи подавляет фильтр на Cy и L. Их значения для частоты среза f связаны формулой Томпсона:

f=1/(2*π*√L*C), где:

  • f – частота среза в кГц (берется частота преобразования импульсника);
  • L – индуктивность дросселя, мкГн;
  • С – емкость Cy, мкФ.

Синфазный дроссель наматывается на ферритовом кольце. Обмотки одинаковые, мотаются на противоположных сторонах.


Конструктив синфазного дросселя.

После фильтра сетевое напряжение выпрямляется. В большинстве случаев используется стандартный двухполупериодный мостовой выпрямитель.

Функции выводов входных сигналов

Как и любое другое электронное устройство. рассматриваемая микросхема имеет свои входы и выходы. Мы начнем с первых. Выше уже было дан перечень этих выводов TL494CN. Описание на русском языке их функционального назначения будет далее приведено с подробными пояснениями.

Вывод 1

Это положительный (неинвертирующий) вход усилителя сигнала ошибки 1. Если напряжение на нем ниже, чем напряжение на выводе 2, выход усилителя ошибки 1 будет иметь низкий уровень. Если же оно будет выше, чем на контакте 2, сигнал усилителя ошибки 1 станет высоким. Выход усилителя по существу, повторяет положительный вход с использованием вывода 2 в качестве эталона. Функции усилителей ошибки будут более подробно описаны ниже.

Вывод 2

Это отрицательное (инвертирующий) вход усилителя сигнала ошибки 1. Если этот вывод выше, чем на выводе 1, выход усилителя ошибки 1 будет низким. Если же напряжение на этом выводе ниже, чем напряжение на выводе 1, выход усилителя будет высоким.

Вывод 15

Он работает точно так же, как и № 2. Зачастую второй усилитель ошибки не используется в TL494CN. Схема включения ее в этом случае содержит вывод 15 просто подключенный к 14-му (опорное напряжение +5 В).

Вывод 16

Он работает так же, как и № 1. Его обычно присоединяют к общему № 7, когда второй усилитель ошибки не используется. С выводом 15, подключенным к +5 В и № 16, подключенным к общему, выход второго усилителя низкий и поэтому не имеет никакого влияния на работу микросхемы.

Вывод 3

Этот контакт и каждый внутренний усилитель TL494CN связаны между собой через диоды. Если сигнал на выходе какого-либо из них меняется с низкого на высокий уровень, то на № 3 он также переходит в высокий

Когда сигнал на этом выводе превышает 3,3 В, выходные импульсы выключаются (нулевая скважность). Когда напряжение на нем близко к 0 В, длительность импульса максимальна

В промежутке между 0 и 3,3 В, длительность импульса составляет от 50% до 0% (для каждого из выходов ШИМ-контроллера — на выводах 9 и 10 в большинстве устройств).

Если необходимо, контакт 3 может быть использован в качестве входного сигнала или может быть использован для обеспечения демпфирования скорости изменения ширины импульсов. Если напряжение на нем высокое (> ~ 3,5 В), нет никакого способа для запуска ИБП на ШИМ-контроллере (импульсы от него будут отсутствовать).

Вывод 4

Он управляет диапазоном скважности выходных импульсов (англ. Dead-Time Control)

Если напряжение на нем близко к 0 В, микросхема будет в состоянии выдавать как минимально возможную, так и максимальную ширину импульса (что задается другими входными сигналами). Если на этот вывод подается напряжение около 1,5 В, ширина выходного импульса будет ограничена до 50% от его максимальной ширины (или ~ 25% рабочего цикла для двухтактного режима ШИМ-контроллера). Если напряжение на нем высокое (> ~ 3,5 В), нет никакого способа для запуска ИБП на TL494CN. Схема включения ее зачастую содержит № 4, подключенный напрямую к земле.

Важно запомнить! Сигнал на выводах 3 и 4 должен быть ниже ~ 3,3 В. А что будет, если он близок, например, к + 5 В? Как тогда поведет себя TL494CN? Схема преобразователя напряжения на ней не будет вырабатывать импульсы, т.е

не будет выходного напряжения от ИБП.

Вывод 5

Служит для присоединения времязадающего конденсатора Ct, причем второй его контакт присоединяется к земле. Значения емкости обычно от 0,01 μF до 0,1 μF. Изменения величины этого компонента ведут к изменению частоты ГПН и выходных импульсов ШИМ-контроллера. Как правило здесь используются конденсаторы высокого качества с очень низким температурным коэффициентом (с очень небольшим изменением емкости с изменением температуры).

Вывод 6

Для подключения врямязадающего резистора Rt, причем второй его контакт присоединяется к земле. Величины Rt и Ct определяют частоту ГПН.

f = 1,1 : (Rt х Ct).

Вывод 7

Он присоединяется к общему проводу схемы устройства на ШИМ-контроллере.

Вывод 12

Он замаркирован литерами VCC. К нему присоединяется «плюс» источника питания TL494CN. Схема включения ее обычно содержит № 12, соединенный с коммутатором источника питания. Многие ИБП используют этот вывод, чтобы включать питание (и сам ИБП) и выключать его. Если на нем имеется +12 В и № 7 заземлен, ГПН и ИОН микросхемы будут работать.

Вывод 13

Это вход режима работы. Его функционирование было описано выше.

Выводы по nrf24l01

Беспроводной модуль nrf24l01 нельзя назвать простым в освоении устройством. И подключение, и программирование требует определенных навыков. Но стоимость и доступность модуля позволяет рекомендовать его для тех, кто занимается проектами интернета вещей или нуждается в простых инструментов для коммуникаций. Купив специальный адаптер для nrf24l01 вы можете существенно упростить подключение к ардуино. А использование библиотек позволяет максимально упростить код. Старайтесь не покупать модули nrf24l01 дешево у совсем уж неизвестных продавцов, и тогда никаких проблем с работой ваших проектов не будет.