Основные принципы работы сварочного инвертора, отличия от трансформаторного аппарата

Содержание

Технические параметры

Итак, как работает инверторный сварочный аппарат – понятно. Данный принцип остается неизменным для всех типов таких устройств. Тем не менее на рынке доступно большое количество различных моделей, представленных как отечественным производителем, так и зарубежными компаниями.

Хотя принцип действия инверторных сварочных аппаратов остается неизменным, некоторые характеристики все же отличаются, а именно:

  • величина сварочного тока может варьироваться в широком диапазоне значений: профессиональным устройствам свойственны широкие интервалы, а вот бытовым вариантам более узкие;
  • продолжительность включения, показывающая длительность работы на выбранном токе без перерывов.
  • холостой ход;
  • напряжение электросети.

Таким образом, характеристики будут зависеть от параметров выходного выпрямителя, а также преобразователя частоты тока.

Еще к немаловажным критериям относится мощность прибора. В промышленных агрегатах она может быть очень высокой и достигать двадцати киловатт. Конечно же, использовать подобное оборудование в бытовых целях невозможно. Простая электросеть попросту не рассчитана на подобные нагрузки.

Характеристики сварочного инвертора.

Стоит понимать: стоимость инструмента будет зависеть от мощности. Чем она выше, тем больше придется заплатить.

Практически все современные типы подобных устройств способны осуществлять следующие виды сварки:

  • полуавтоматическая в среде инертных или активных газов, так называемая MIG/MAG;
  • ручная дуговая с применением электродов;
  • аргонодуговая в среде защитного газа.

В случае использования устройств в последнем типе сварки, инверторы могут комплектоваться дополнительными функциями. К таким относится возможность постепенного снижения силы тока, бесконтактное зажигание дуги, сварка в импульсном режиме, регулировка длительности обдува поверхности газом и т.д.

Процесс сварки в ручном режиме становится более простым и комфортным из-за наличия функции форсажа дуги – ее розжига простым касанием поверхности соединяемых металлических частей конструкции.

В инверторах могут быть реализованы и другие функции. Все они призваны сделать процесс сварки более простым

Тут важно понимать: количество «наворотов» устройства неукоснительно ведет к увеличению его стоимости

Работа в среде инертных газов также может быть облегчена некоторыми дополнительными возможностями агрегата.

Среди них:

  • «мягкий финиш» – автоматическое дожигание проволоки после окончания ее подачи;
  • «синергетика» – автоматическое «подстраивание» параметров сварки под значения, заранее заданные мастером;
  • «2/ такта» – возможность переключения подачи проволоки с автоматического режима на ручной и обратно;
  • «индуктивность» – позволяет понизить количество разбрызгиваемого металла, а также контролировать ширину шва и стабильность дуги.

Как работает сварочный инвертор

В качестве примера рассмотрим устройство сварочного инвертора бренда «TELWIN» (рисунки к указанному бренду отношения не имеют). Внешний вид платы с указанием расположения элементов схемы приведён на рисунке.

Вариант компоновки деталей сварочного инвертора.

Схема сварочного инвертора состоит из двух основных частей: силовой и управляющей.

Это интересно: Сварочный трансформатор — расчет, устройство и схема

17/05/2012

Modz — анимация потока материалов теперь доступно на Autodesk Labs

Приложение Factory Modz — выглядит как игрушка, но решает реальные производственные задачи. Можно смоделировать перемещение груза по системе транспортеров, добавить рабочих-операторов и погрузчики. Не забывайте, что вы можете управлять свойствами элементов расчетной схемы в окне «Factory Properties». — Изменять направление ленты транспортера, задать его скорость, ширину и т.д. в результате вы увидите, как будет перемещаться груз по ленте (или роликам) транспортера. Упадет ли он на поворотах, например.:)

Как это работает? Разместите транспортеры и другие элементы рабочего участка в Autodesk Factory Design Suite , установите из библиотеки «Factore Asset» элемент — Generator и задайте ему свойство, что он загружает на ленту транспортера коробку «Box». Этого достаточно для первого запуска моделирования. Перейдите на вкладку «FDS Labs» и запустите приложение (Run Factory.Modz().

Технология Tech Preview доступна до 31 июля 2012. Для скачивания модуля посетите сайт Autodesk Labs, а также страницы YouTube .

Factory Modz поддерживается Autodesk Factory Design Suite 2012 и 2013 Premium & Ultimate, а также все версии Product Design Suite 2013 и Autodesk Inventor 2013.

Всем успехов и отличного настроения!

Принцип работы инвертора

Принцип работы инвертора.

Если вы занимаетесь сварочными работами, то вам будет не лишним знать хотя бы немного информации, касающейся принципа работы инвертора.

  1. Итак, его действие основано на преобразовании тока. Если подробнее, то ток переменного характера от электросети, частота которого составляет 50 Гц, передается на выпрямитель.
  2. После чего он проходит через фильтр, который сглаживает его, в результате чего получается ток постоянного характера. Это постоянный ток в процессе преобразования (с помощью инвертора) вновь превращается в переменный, отличительной чертой которого от исходного является его частота.
  3. На выходе она соответствует уже значению от 20 до 50 кГц. Сварка может осуществляться при достижении силой тока показателей от 100 до 200 А. Достигается такой результат понижением напряжения высокой частоты, в результате чего сила тока набирает нужный показатель.

Способы подключения сварочного инвертора.

Именно высокая частота решает все проблемы технического характера и позволяет сделать сварочный аппарат инверторного типа настоящим шедевром электросварки по сравнению с другим оборудованием.

Аппараты для сварки, имеющие в своей основе трансформаторы, работают совсем по другому принципу, нежели инверторы. Инверторные сварочные аппараты работают по принципу преобразования тока высокой частоты в отличие от трансформаторов, в которых происходит преобразование ЭДС с помощью индукционной катушки. Так преобразование тока предварительного характера помогает уменьшить габариты трансформатора.

Например, для достижения силы тока в 160 А понадобится трансформатор, вес которого не будет превышать 250 г. Если брать сварочный аппарат обычного типа, то для достижения тех же показателей уже требуется достаточно неудобный и тяжелый трансформатор, вес которого составляет 18 кг.

После того как принцип действия сварочного аппарата по типу инвертора стал понятен, можно переходить к оценке его достоинств и недостатков.

Регулировка и управление сварочным током

Для регулировки сварочного тока в инверторных устройствах предусмотрен специальный электронный регулятор. Конкретные параметры выбираются потенциометром, размещенном на передней панели устройства. Его ручка вращается и постепенно устанавливается определенный уровень первоначального напряжения на входе. Здесь расположены логические элементы, созданные в виде операционных усилителей.

На выходе находится датчик тока, с которого по линии обратной связи поступает сигнал. С помощью компаратора осуществляется сравнение фактически полученного напряжения с уровнем напряжения, заданного при регулировке потенциометром.

Если уровни напряжений не совпадают, в этом случае импульс, поступающий на контроллер, изменит свою амплитуду

Одновременно изменится и скважность самих импульсов, выдаваемых контроллером. В результате, режим переключения транзисторов также изменится, оказывая тем самым влияние на величину сварочного тока

Суть данной схемы заключается в поддержании определенного равновесия и значения между фактическим и заданным током, обеспечивая его стабильное состояние.

Рассматриваемая схема носит достаточно общий характер и служит примером взаимодействия узлов, деталей и блоков во всех инверторах. Более детальные электрические схемы в разных моделях могут отличаться своими конструктивными особенностями.

Работа автоматики в сварочной аппаратуре:

  • Функция Ark Force. Предназначена для форсирования или увеличения мощности электрической дуги. Это нужно в тех случаях, когда капля металла с расплавленного электрода своевременно не отрывается и зависает, снижая размеры зазора. В результате, электрод может прилипнуть к заготовке, поэтому сварочный ток на короткое время увеличивается и быстро сдувает металлическую каплю.
  • Функция Anti Stick. В самом начале при возникновении дуги возможно прилипание электрода к свариваемой детали. В этот момент ток резко снижается, электрод отрывается, и аппаратура возвращается в первоначальное состояние.
  • Функция Hot Start. Данная опция создана, чтобы облегчить запуск электрической дуги. В момент розжига, когда электрод отрывается от заготовки, сварочный ток резко увеличивается на короткое время, после чего возникает стабильная дуга.

Действие автоматики в комплексе обеспечивает быструю работу инверторного устройства, высокое качество сварных швов.

Виртуальные компоненты

Виртуальный компонент–это компонент, для которого не требуется ни моделирование геометрии, ни файл. Он эквивалентен пользовательской детали в спецификации. С практической точки зрения виртуальные компоненты рассматриваются и обрабатываются как реальные компоненты: они отображаются в браузере, характеризуются такими свойствами, как количество, номер детали, структура спецификации и др.

Виртуальные компоненты обладают следующими характеристиками:

  • Они обладают полным набором свойств, как реальные компоненты.
  • Они действуют так же, как реальные компоненты в спецификации (сливаются, переносятся и т.д.).
  • Над ними можно выполнять операции копирования, создания массивов и повторно использовать их в операциях «Копирование/Зеркальное отражение компонента».
  • У них есть представление для браузера сборки.

Примеры стандартных виртуальных компонентов:

  • Крепления, которые не требуется моделировать.
  • Объемные материалы: газ, воздух, нефть, смазка и т. п.
  • Нематериальные записи в спецификации, например, программное обеспечение, установленное на компьютер.

Команда «Создание компонента по месту» служит для создания виртуального компонента в сборке. Виртуальные компоненты можно удалять так же, как и другие компоненты. Если в браузере удалены все экземпляры виртуального компонента, то виртуальный компонент необходимо создать вновь с помощью команды «Создание компонента по месту».

Работа платы управления

Для питания элементов платы применяется стабилизатор напряжения, рассчитанный на 15 В и установленный на теплоотводящий радиатор. Напряжение питания поступает из основного выпрямителя. Одна из функций стабилизатора питания – подача напряжения на реле, обеспечивающее «плавный пуск» устройства. При подаче напряжения начинают заряжаться конденсаторы: при этом напряжение возрастает и, чтобы защитить диодную сборку, применяется схема ограничения, в которую входит мощный (на 8 Вт) резистор. Как только конденсаторы зарядятся, инвертор заработает, реле замкнет свои контакты, и резистор в дальнейшей работе участвовать не будет.

Управление сварочным аппаратом.

Помимо стабилизатора напряжения, в электронной схеме инвертора есть множество других систем, обеспечивающих высокие эксплуатационные качества устройства. Основными из этих электронных блоков является:

  1. Система управления и драйверы: здесь главный элемент – микросхема ШИМ-контроллера, которая «занимается» управлением работы мощных транзисторов;
  2. Регулировочные и контрольные цепи: основной элемент – трансформатор тока, чья задача заключается в контролировании силы тока выходного трансформатора;
  3. Система контроля напряжения питающей сети и тока на выходе: состоит из ОУ (операционного усилителя), собранного на микросхеме (например, LM324). Назначение системы – при необходимости включать аварийную защиту, отслеживать работу и исправность основных элементов электронного блока.

ГОСТ, сертификация и маркировка

Для полупроводниковых инверторов технические условия в полной мере содержатся в ГОСТ 24376-91, а за их соблюдение отвечает нормативно-технический документ ТУ 34-38-11274-88.

Кроме того, часть производимых аппаратов, особенно промышленных, проходят аттестацию НАКС.

Делается это для проверки соответствия заданным технологическим характеристикам различных способов сварки, которые применяются на опасных объектах.

Процесс аттестации проводится путем сопоставления параметров, указанных в документации к оборудованию с фактическими показателями.

Разница между аттестованными и неаттестованными моделями, полностью идентичными конструктивно, заключается исключительно в наличии документа о проведении дополнительных приемо-сдаточных испытаний, коим является соответствующее свидетельство Национального Агентства Контроля Сварки (НАКС).

Что касается маркировки, то инверторы обозначаются аббревиатурой способа сварки, который они поддерживают.

В дополнение следует отметить, что существует маркировка CUT, которая указывает, что данная модель выполняет резку материала плазменным методом.

Качество и удобство

Дуговая сварка является очень ответственной работой и чтобы ее удачно выполнить сварщик должен иметь определенные знания и опыт. С помощью инвертора можно выполнить сварку более просто, не имея больших навыков в работе.

Поджигание дуги можно назвать одним из главных преимуществ, поскольку в старых агрегатах невозможно было из-за перепадов напряжения в сети поджечь дугу, электроды сразу залипают. Когда ток добавляется, то происходит обратный процесс — начинается пережигаться металл. Принцип работы инверторов позволяет не зависеть от напряжения в сети. В данных устройствах сварочный ток держится на входе неизменным от напряжения в сети.

Работая обычным сварочным аппаратом можно «пережечь» или «недожечь» металл, отчего шов получится некачественным, он будет ослаблен, из-за чего образуются отверстия. У нового типа агрегатов остается ток неизменным, он устанавливается потенциометром на шкале сварочного тока.

Сварочные инверторы могут поддерживать выбранный ток в заданных пределах, и он будет все это время постоянным

Это позволяет не брать во внимание длину дуги, что только облегчает работу специалисту. Здесь даже новичок сможет овладеть «прихватками», благодаря устройству нового типа

Те, кто уже не первый день работает сварочным инвертором, уже смогли оценить его возможности. Они значительно облегчают поджигание, контролируют дугу, устраняют залипание электродов. Такие агрегаты очень выгодны для применения в частном и профессиональном строительстве.

Или все-таки инвертор?

Конечно, в нем собраны все пожелания домашнего мастера по сварке: широчайшие функциональные возможности, разнообразные режимы сварки – все для счастья человека. Популярности среди широких масс населения этому типу сварочного оборудования не занимать. Цена, правда, высоковата. Но по мнению многих, эта овчинка по-настоящему стоит выделки.

На что обращаем внимание при его выборе домой?

  • Главный критерий – также напряжение электрической сети, это те же 220В и 380В. И так же, как в предыдущих случаях, трехфазные модели инверторов являются более мощными. А от мощности устройства зависит его долговечность и срок использования. Ведь чем больше мощность, тем меньше перегревается аппарат.
  • Следующий критерий – характеристики токов и режимы сварки. Их выбор будет зависеть только от одного – толщины свариваемых металлических заготовок. В интернете вы сможете найти множество данных о зависимости диаметра сварочных электродов в миллиметрах от значения сварочного тока в амперах. Обычно для домашнего инвертора вполне хватает силы тока от 60А до 160А. К тому же имеющаяся возможность плавно регулировать величину тока позволит вам еще больше повысить качество сварочного шва.
  • Еще один важнейший фактор, который нужно учитывать при выборе инвертора в обязательном порядке. Это продолжительность включения ПВ, которая показывает время работы аппарат без перерыва при максимальных значениях тока. Иногда этот показатель называют ПН – продолжительностью нагрузки. Чем выше продолжительность включения, тем дольше инвертор сможет функционировать без перегрева. Вообще-то ПВ можно рассчитать, исходя из чистого времени сварки по отношению к паузам для смены электрода или подготовки материалов. Если, к примеру, в спецификации инвертора указана ПВ в 80%, то чистое время сварочного процесса будет длиться ровно 4 минуты. Затем вам придется сделать паузу длительностью в 1 минуту.
  • Следующий критерий всегда указан в паспорте устройства – мощность инвертора. В этой строчке называется уровень номинального сварочного тока, при использовании которого инвертор не будет самопроизвольно выключаться из-за перегрева. Мощность лучше выбирать с запасом: если потребность в номинальном токе составляет 120А, выбирайте аппарат с показателем в 180А. Такой запас позволит вам использовать длинные электрические кабели и, самое главное, вы сможете работать при скачках напряжения с общей сети.
  • ДПН расшифровывается как «диапазон питающего напряжения». Этот параметр делает безболезненными перепады напряжения в 20 – 30%, которые встречаются сплошь и рядом в сельской местности.
  • Лучшие сварочные инверторы снабжены фирменными дополнительными опциями, которые облегчают работу сварщика – новичка, должны быть особенно важны для вас, если вы – тот самый новичок в сварочном деле. Речь о АП – антиприлипании, ГС – горячем старте, ФД – форсаже дуги. Значимы ли они для вас с вашим текущим опытом – решать вам и только вам.

В качестве резюме пройдемся по главным идеям нашего обзора. Классификация сварочных аппаратов – стройная и понятная система, которая отлично поможет принять решение, какой сварочный аппарат будет самым оптимальным для ваших работ в домашних условиях.

Желаем дельного похода в магазин, грамотного продавца и хороших помощников рядом.

Технология инверторной сварки

Когда все готово к работе , это означает, что можно начинать. Первым делом необходимо поджечь дугу. Это может производиться тремя способами – чирканьем, постукиванием или касанием ( в случае, если в аппарате есть функция автоматического поджога). Как только она образовалась нужно начинать расплавлять металл, чтобы образовалась сварочная ванна, где потом, когда металл кристаллизуется, останется качественный шов

На этом этапе очень важно положение электрода по отношению к поверхности. Вести можно прямо под углом 90 градусов или наискось, под углом 30-60 градусов

Прямо вести электрод нельзя. Его нужно перемещать «петельками», «зигзагом», «треугольниками». Выбор узора, по которому будет реализоваться шов, для начинающих – по желанию. Потом с опытом, мастер сам поймет, в каких положениях ему удобнее вести проводник тем или иным способом. И, наконец, немаловажным моментом является удержание дуги. Для этого необходимо четко соблюдать равномерное расстояние между металлом и электродом. В идеале это 2-3 мм. При подымании проводника дуга теряется и от этого страдает шов. Есть агрегаты с функцией автоматического удержания дуги, если не получается вручную, лучше воспользоваться такой опцией. Если и так все получается, значит мастеру не потребуется дополнительная возможность техники.

Рабочие точки

В файле детали можно выбрать вершины модели, ребро и пересечения осей, пересечения трех непараллельных граней или плоскостей, а также другие рабочие элементы для использования в качестве рабочих точек. Можно также создать рабочую точку в процессе создания других рабочих элементов, требующих указания точки.

В этом случае в файле сборки рабочая точка может располагаться на пересечении граней и ребер деталей, на их вершинах либо определяться рабочей геометрией всех иерархических уровней структуры сборки.

Рабочие точки могут располагаться в отверстиях и вырезах на гранях детали, поверхностях модели, вспомогательных и базовых поверхностях. Если включен режим выбора контура, можно поместить рабочую точку на одном или нескольких замкнутых контурах.

Можно размещать или проецировать рабочие точки на грани деталей, линейные ребра, дуги и окружности. Кроме того, рабочие точки могут быть зафиксированы в центрах дуг, окружностей и эллипсов.

Рабочие точки используются в следующих целях:

  • Обозначение центров валов и массивов
  • Определение координатных систем
  • Определение плоскостей (по трем точкам)
  • Задание 3D траекторий

При создании элементов 3D сдвига можно указать рабочую точку на пересечении рабочих осей и рабочих плоскостей. Выбирая эти точки и вершины существующих деталей, пользователь задает траекторию сдвига.

Применение многоуровневых инверторов [ править | править код ]

Многоуровневые инверторы включают в себя матрицу силовых полупроводников и конденсаторных источников напряжения, выход которых генерирует напряжения со ступенчатыми формами сигналов. Коммутация переключателей позволяет добавлять напряжения конденсатора, которые достигают высокого напряжения на выходе, в то время как силовые полупроводники должны выдерживать только пониженные напряжения. На рисунке справа показана принципиальная схема одного фазового отрезка инверторов с различным количеством уровней, для которых действует мощность полупроводников представленных идеальным выключателем с несколькими положениями.

Двухуровневый инвертор генерирует выходное напряжение с двумя значениями (уровнями) относительно отрицательного терминала конденсатора , в то время как трехуровневый инвертор генерирует три напряжения и так далее.

Представим, что m является количеством шагов фазового напряжения относительно отрицательного терминала инвертора, тогда количество шагов в напряжении между двумя фазами загрузки k,

k = 2 m + 1 <displaystyle k=2m+1>

и количество шагов p в фазовом напряжении трехфазной нагрузки в соединении

p = 2 k − 1 <displaystyle p=2k-1>

Имеется три различные топологии для многоуровневых инверторов: зафиксированная на диод (нейтрально зафиксированная) ; зафиксированная на конденсатор (навесные конденсаторы); и каскадно-расположенный многоэлементный с отдельными источниками постоянного тока .Кроме того, несколько модуляций и стратегий управления были разработаны или приняты для многоуровневых инверторов включая следующее: многоуровневая синусоидальная модуляция длительности импульса (PWM), многоуровневое выборочное гармоническое устранение и векторная пространством модуляция (SVM).

Основные положительные стороны многоуровневых инверторов заключаются в следующем:

1) Они могут генерировать выходные напряжения с чрезвычайно низким искажением и понизить dv/dt.

2) Они тянут входной ток с очень низким искажением.

3) Они генерируют меньшее напряжение общего режима (CM), таким образом уменьшая стресс в моторных подшипниках. Кроме того, с помощью сложных методов модуляции, напряжения CM могут быть устранены.

4) Они могут работать с более низкой частотой переключения.

Топология каскадных многоуровневых инверторов

Различная топология преобразователя представленная здесь, основывается на последовательном соединении однофазных инверторов с отдельными источниками постоянного тока. Рисунок справа показывает цепь электропитания для одного участка фазы девятиуровневого инвертора с четырьмя клетками в каждой фазе. Получающееся фазовое напряжение синтезируется добавлением напряжений, сгенерированных различными участками.

Каждый однофазный инвертор полного моста генерирует три напряжения на выводе: + Vdc, 0, и — Vdc. Это стало возможным путем подключения конденсаторов последовательно с ac стороной через четыре выключателя питания. Получающееся выходное колебание напряжения переменного тока от-4 Vdc до 4 Vdc с девятью уровнями и ступенчатой формой сигнала, почти синусоидальной, даже без применения фильтров.

Для преобразования электроэнергии, а точнее сказать, напряжения, можно использовать различные устройства, такие как трансформаторы, генераторы, зарядные устройства. Все они являются преобразователями электрической энергии. Так как для питания многих современных устройств нужно не только переменное, но и постоянное напряжение, то для этих целей не всегда есть возможность применять такой источник энергии, как аккумуляторная батарея. Именно она выдаёт идеальное постоянное напряжение путём химической реакции. Раньше для преобразования и понижения напряжения применялись только низкочастотные трансформаторы, работающие в паре с выпрямителем и сглаживающим фильтром. Однако они обладали очень большими габаритами. С ростом и развитием инновационных технологий в быту и на производстве стали появляться электронные устройства, требующие миниатюрных преобразовательных устройств. Так и появились импульсные преобразователи постоянного напряжения. Миниатюрность их требуется больше для переносных мобильных устройств, нежели для стационарных.

Все импульсные преобразователи можно разделить на следующие группы:

  1. Повышающие, понижающие, инвертирующие;
  2. Со стабилизацией и без неё;
  3. С гальванической развязкой и без неё;
  4. Регулируемые и нерегулируемые;
  5. Обладающие различным диапазоном входного и выходного напряжения.

Однако импульсные преобразователи собраны на более сложных схемах, нежели их предшественники классические понижающие выпрямители.

Принципы классификация

Источники питания сварочной дуги классифицируются по многим градациям. В их числе:

  • по предназначению — для ручной сварки, сварки под флюсом или в среде защитного газа (например, аргонодуговой);
  • по числу сварочных постов, которые можно подключить единовременно;
  • по способности передвигаться — мобильные и стационарные;
  • по способу производства энергии — преобразователи или производители;
  • по роду выходного тока;
  • по ВАХ (вольт-амперная характеритика).

Основными параметрами сварочного аппарата для сварщика являются назначение данного конкретного агрегата и сварочный ток, который он выдает. Во многих случаях ключевым требованиям является подбор нужной вольт-амперной характеристики (ВАХ).

Так, например, для сварки в среде защитных газов требуются устройства с жесткой характеристикой, варящие постоянным током. Для ручной и полуавтоматической сварки под флюсом применяются аппараты переменного и постоянного тока с падающей характеристикой.

Некоторые современные источники питания сварочной дуги универсальны: имеют много режимов работы, в том числе позволяют менять род сварочного тока и изменять его ВАХ.

Как проверить инвертор на ЖК телевизоре

Если техника была куплена давно, то со временем в телевизоре могут образоваться определенные проблемы из-за выхода из строя инвертора. На ЖК мониторах обычно неисправности выглядят примерно одинаково.

Чтобы проверить работоспособность устройства, необходимо убедиться, что:

  1. Все лампы работают исправно, в противном случае подсветка полностью отключается.
  2. Подсветка функционирует стабильно. Явный признак неисправности – лампы сначала включаются в обычном режиме, а после короткого времени отключаются.
  3. Монитор не мигает.

Если при включении телевизора пользователь не наблюдает описанные неисправности, значит, прибор на ЖК мониторе работает стабильно и готов к дальнейшей работе.

Методы модуляции

Широкое развитие силовых электрических преобразователей в последние десятилетия привело к увеличению количества исследований в области модуляции. Метод модуляции непосредственно влияет на эффективность всей энергосистемы (силовой части, системы управления), определяя экономическую выгоду и производительность конечного продукта.

Главная цель методов модуляции – добиться лучшей формы сигналов (напряжений и токов) с минимальными потерями. Другие второстепенные задачи управления могут быть решены посредством использования правильного способа модуляции, такие как уменьшение синфазной помехи, выравнивание постоянного напряжения, уменьшение пульсаций входного тока, снижение скорости нарастания напряжения. Одновременное достижение всех целей управления невозможно, необходим компромисс. Каждая и каждое приложение должны быть глубоко изучены для определения наиболее подходящего метода модуляции.

  • Методы модуляции можно разделить на четыре основные группы:
  • ШИМ – широтно-импульсная модуляция
  • ПВМ – пространственно-векторная модуляция
  • гармоническая модуляция
  • методы переключения переменной частоты

Стоимость

Приводим таблицу с примерными ценами на популярные автомобильные инверторы.

 Таблица: характеристики AVS
IN-2000W

Тип, модель Модифицированный синус, IN-2000W
Артикул A78003S
Входное напряжение 12 Вольт
Выходное напряжение 220 Вольт +-10%. 
Частота выходного напряжения 50 Гц +-3 Гц
Номинальная мощность 2000 Вт
Допустимая пиковая мощность 4000 Вт
Максимальная выходная эффективность 92%
Размеры, см 35х20х7
Рабочая температура 0-35°С
Длина провода питания 60 см
Подключаемые устройства электроприборы с выходным напряжением 5 В (1000 мАч), подключаемые через
USB
Порог отключения при низком входном напряжении 10,2-10,8 В
Порог отключения при высоком входном напряжении 15-16 В
USB-разъём имеется
Защита от короткого замыкания и перегрева, перегрузки, низкого питающего
напряжения
имеется
Материал корпуса алюминий, пластик
Вес в упаковке, г 2165
Комплектация Преобразователь с проводами
Гарантия 1 год
Производитель AVS, Китай

Таблица:
характеристики ROBITON R200

Тип, модель Модифицированная синусоида, ROBITON R200 
Входное напряжение 10-15 В DC
Выходное напряжение 220-240 В ~ 50/60 Гц
Максимальная постоянная мощность 150 Вт
Допустимая пиковая мощность 300 Вт
Максимальная выходная эффективность или КПД 90%
Предупреждение о недостаточном входном напряжении 10.5 В
Отключение при недостаточном входном напряжении 10 В
USB разъём имеется
Защита от короткого замыкания и перегрева, перегрузки, низкого питающего
напряжения
имеется
Комплектация Предохранитель 15 А, встроен в штекер прикуривателя, запасной
предохранитель в комплекте
Температура эксплуатации от -10 до +40°С, рекомендовано для наибольшей эффективности от +10 до
+27°С
Габариты 15*9,5*5,5 см
Вес 0,65 кг
Производитель Россия

Таблица:
характеристики WESTER MSW250 12-​220В+​USB

Тип, модель модифицированная синусоида, WESTER MSW250 12-220В+USB
Входное напряжение (постоянный ток) 12В (11-15В)
Выходное напряжение (переменный ток) 220В
Частота выходного напряжения 50 Гц ± 5%
Напряжение USB-порта (постоянный ток)
Номинальная мощность 250 Вт
Пиковая мощность 500 Вт
КПД преобразователя более 85%
Вес нетто 0,7 кг
Подключение в прикуриватель
Форма выходного сигнала аппроксимированная синусоида
Количество розеток 1
Защита от короткого замыкания, перегрева, перегрузки

Таблица:
стоимость популярных на российском рынке преобразователей 12 в 220

AVS IN-2000W 7000 рублей 2000 Вт
AIRLINE API-1000-07 6000 рублей 1000 Вт
ВЫМПЕЛ ПН-90 4500 рублей 1500 Вт
PITATEL KV-M400SmartD.12 3000 рублей 400 Вт
ROBITON R200 2000 рублей 150 Вт
WESTER MSW250  1800 рублей 250 Вт
AIRLINE API-75-00 900 рублей 75 Вт

Схема и принцип работы инвертора 12 220

Основная часть радиодеталей, использующих инверторы, используют в работе высокие частоты. Импульсный инвертор в полной мере заменяет классическую схему, в которой применяются трансформаторы. Микросхему К561ТМ2 формируют два D-триггера, у которых присутствует вход R и S. Такая микросхема создается с учетом использования КМОП-технологий, посредством заключения в пластиковый корпус.

Задающие генераторы инверторов монтируются с учетом К561ТМ2, с использованием для функционирования устройства DD1. На делитель частот осуществляется монтирование триггера DD1.2. Усилительные каскады принимают сигнал с микросхем.

Генераторы с синусоидой для инвертора 12 220 В работают на высоких частотах. Чтобы образовать контур с размером 50 Гц, используют вторичную обмотку с параллельным подсоединением конденсаторов и нагрузок. Подключая любое устройство, инверторы создают преобразовательное напряжение в 220 В.

Схема обладает одним существенным недостатком — несовершенной формой параметров на выходах.

Говоря о том, как работает инвертор 12 220, стоит указать что микросхему К561ТМ2 дублирует К564ТМ2. Увеличить мощность на преобразователе можно путем подбора более интенсивного транзистора

Важно учитывать то факт, какие конденсаторы устанавливаются на выходах. Они обладают напряжением 250 В

Заключение

Сварочные инверторы могут быть профессиональными или бытовыми, поэтому при покупке следует учитывать, с какой целью он будет использоваться. Агрегаты профессиональные рассчитаны на 8-часовое использование, а бытовые приборы смогут работать без перерыва всего 20-30 минут, после чего они нуждаются в отдыхе в течение 30-60 минут. Существуют еще промышленные инверторы, предназначенные для продолжительного периода использования в тяжелых условиях.

Учитывая все преимущества данных агрегатов можно точно сказать, что с их помощью всегда достигается качественный результат, если соблюдать все правила их эксплуатации и правильно подбирать агрегат.

https://youtube.com/watch?v=VWB1qmZlj50