Линии магнитной индукции

Содержание

«Электромагнитная индукция»

Электромагнитная индукция — это явление, которое заключается в возникновении электрического тока в замкнутом проводнике в результате изменения магнитного поля, в котором он находится. Это явление открыл английский физик М. Фарадей в 1831 г. Суть его можно пояснить несколькими простыми опытами.

Описанный в опытах Фарадея принцип получения переменного тока используется в индукционных генераторах, вырабатывающих электрическую энергию на тепловых или гидроэлектростанциях. Сопротивление вращению ротора генератора, возникающее при взаимодействии индукционного тока с магнитным полем, преодолевается за счет работы паровой или гидротурбины, вращающей ротор. Такие генераторы преобразуют механическую энергию в энергию электрического тока.

Вихревые токи, или токи Фуко

Если массивный проводник поместить в переменное магнитное поле, то в этом проводнике благодаря явлению электромагнитной индукции возникают вихревые индукционные токи, называемые токами Фуко.

Вихревые токи возникают также при движении массивного проводника в постоянном, но неоднородном в пространстве магнитном поле. Токи Фуко имеют такое направление, что действующая на них в магнитном поле сила тормозит движение проводника. Маятник в виде сплошной металлической пластинки из немагнитного материала, совершающий колебания между полюсами электромагнита, резко останавливается при включении магнитного поля.

Во многих случаях нагревание, вызываемое токами Фуко, оказывается вредным, и с ним приходится бороться. Сердечники трансформаторов, роторы электродвигателей набирают из отдельных железных пластин, разделенных слоями изолятора, препятствующего развитию больших индукционных токов, а сами пластины изготовляют из сплавов, имеющих высокое удельное сопротивление.

Электромагнитное поле

Электрическое поле, созданное неподвижными зарядами, является статическим и действует на заряды. Постоянный ток вызывает появление постоянного во времени магнитного поля, действующего на движущиеся заряды и токи. Электрическое и магнитное поля существуют в этом случае независимо друг от друга.

Явление электромагнитной индукции демонстрирует взаимодействие этих полей, наблюдаемое в веществах, в которых есть свободные заряды, т. е. в проводниках. Переменное магнитное поле создает переменное электрическое поле, которое, действуя на свободные заряды, создает электрический ток. Этот ток, будучи переменным, в свою очередь порождает переменное магнитное поле, создающее электрическое поле в том же проводнике, и т. д.

Совокупность переменного электрического и переменного магнитного полей, порождающих друг друга, называется электромагнитным полем. Оно может существовать и в среде, где нет свободных зарядов, и распространяется в пространстве в виде электромагнитной волны.

Классическая электродинамика — одно из высших достижений человеческого разума. Она оказала огромное влияние на последующее развитие человеческой цивилизации, предсказав существование электромагнитных волн. Это привело в дальнейшем к созданию радио, телевидения, телекоммуникационных систем, спутниковых средств навигации, а также компьютеров, промышленных и бытовых роботов и прочих атрибутов современной жизни.

Краеугольным камнем теории Максвелла явилось утверждение, что источником магнитного поля может служить одно только переменное электрическое поле, подобно тому, как источником электрического поля, создающим в проводнике индукционный ток, служит переменное магнитное поле. Наличие проводника при этом не обязательно — электрическое поле возникает и в пустом пространстве. Линии переменного электрического поля, аналогично линиям магнитного поля, замкнуты. Электрическое и магнитное поля электромагнитной волны равноправны.

Электромагнитная индукция в схемах и таблицах

(Явление электромагнитной индукции, опыты Фарадея, правило Ленца, закон электромагнитной индукции, вихревое электрическое поле, самоиндукция, индуктивность, энергия магнитного поля тока)

Дополнительные материалы по теме:

Конспект урока по физике в 11 классе «Электромагнитная индукция».

Следующая тема: «».

Сила Лоренца

Когда некоторый участок провода, по которому идет электроток, находится в полевом пространстве, на движущиеся заряды действует сила со стороны поля. Ее называют силой Лоренца, по фамилии впервые обнаружившего это явление ученого. На ее значение оказывают влияние величины тока, индукции и угла между векторами этих двух величин.

Важно! Максимальное значение Лоренцовой силы достигается, когда проводниковый элемент образует с полем прямой угол. Когда направления поля и тока параллельны друг другу, рассматриваемая сила отсутствует. Чтобы узнать вектор этой силы, можно воспользоваться правилом правой руки

Указательный палец нужно жестко зафиксировать в положении, показывающем вектор МП, а большой – отвести в сторону движения тока. В такой позиции средний палец при оттягивании под прямым углом к руке укажет в сторону приложения силы Лоренца

Чтобы узнать вектор этой силы, можно воспользоваться правилом правой руки. Указательный палец нужно жестко зафиксировать в положении, показывающем вектор МП, а большой – отвести в сторону движения тока. В такой позиции средний палец при оттягивании под прямым углом к руке укажет в сторону приложения силы Лоренца.

Направление Лоренцовой силы

Для расчета значения этой величины для некоторого заряда, перемещающегося перпендикулярно полю, используют выражение:

F=B*q*v (здесь v – скорость движения заряда).

Когда имеется угол между направлениями, формула принимает вид:

F=B*q*v*sin α.

Если надо рассчитать индукцию в контуре, помещенном в однородное поле, используют равенство:

В=М(S*I),

где М – момент амперовой силы, а S – площадь поверхности контурного элемента.

Гистерезис ферромагнетиков

Еще одной особенностью ферромагнетиков является наличие петли гистерезиса, которая является основополагающим свойством ферромагнетиков.


Петля гистерезиса ферромагнетика.

Для понимания процесса намагничивания ферромагнетика изобразим зависимость индукции В от напряженности Н магнитного поля, где красным цветом выделим основную кривую намагничивания. Данная зависимость довольно неопределенна, так как зависит от предыдущего намагничивания ферромагнетика.

Возьмём образец ферромагнитного вещества, которое не подвергалось намагничиванию (точка 0) и поместим его в магнитное поле, напряженность Н которого начнем увеличивать, то есть зависимость будет соответствовать кривой 0 – 1, пока не будет достигнуто магнитное насыщение (точка 1). Дальнейшее увеличение напряженности не имеет смысла, потому как намагниченность J практически не увеличивается, а магнитная индукция увеличивается пропорционально напряженности Н. Если же начинать уменьшать напряженность, то зависимость В(Н) будет соответствовать кривой 1 – 2 – 3, при этом когда напряженность магнитного поля упадёт до нуля (точка 2), то магнитная индукция не упадёт до нуля, а будет равна некоторому значению Br, которое называется остаточной индукцией, а намагничивание будет иметь значение Jr, называемое остаточным намагничиванием.

Для того чтобы снять остаточное намагничивание и уменьшить остаточную индукцию Br до нуля, необходимо создать магнитное поле, противоположное полю, вызвавшему намагничивание, причем напряженность размагничивающего поля должна составлять Нс, называемая коэрцитивной силой. При дальнейшем росте напряженности магнитного поля, которое противоположно первоначальному полю, происходит насыщение ферромагнетика (точка 4).

Таким образом, при действии на ферромагнетик переменного магнитного поля зависимость индукции от напряженности будет соответствовать кривой 1 – 2 – 3 – 4 – 5 – 6 – 1, которая называется петлёй гистерезиса. Таких петель для ферромагнетика может быть множество (пунктирные кривые), называемые частными циклами. Однако, если при максимальных значениях напряженности магнитного поля происходит насыщение, то получается максимальная петля гистерезиса (сплошная кривая).

Так как магнитная проницаемость μr ферромагнетиков имеет довольно сложную зависимость от напряженности магнитного поля, поэтому нормируются два параметра магнитной проницаемости:

μн – начальная магнитная проницаемость соответствует напряженности Н = 0;

μmax – максимальная магнитная проницаемость достигается в магнитном поле при приближении магнитного насыщения.

Таким образом, у ферромагнетиков величины Br, Нс и μнmax) являются основными характеристиками, влияющими на выбор вещества в конкретном случае.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Вектор напряжённости магнитного поля как вспомогательный вектор для описания поля в магнетиках

Когда мы рассматриваем магнитное поле в вакууме при отсутствии магнетиков, магнитное поле порождается токами проводимости и выполняется равенство: где $\overrightarrow{j}$ — вектор плотности токов проводимости.

В магнетиках поле возникает благодаря токам проводимости и молекулярным токам ($\overrightarrow{j_m}$), что необходимо учитывать. Для молекулярных токов имеет место векторное равенство:

где $\overrightarrow{j_m}$ — объемная плотность молекулярных токов, $\overrightarrow{J\ }$ — вектор намагниченности. Так, при наличии магнетиков выражение (1) с учетом равенства (2) примет вид:

Выразим ток проводимости из уравнения (3), получим:

Взаимосвязь напряженности МП и магнитной индукции

Общий вид формулы напряженности магнитного поля:

Здесь Н – рассчитываемая величина, I – протекающий ток, r – дистанция до точки, чью характеристику поля надо оценить. Единица измерения напряженности выглядит как частное единиц, в которых измеряются сила тока и расстояние: ампера и метра (А/м).

Для соленоида, содержащего n витков и имеющего длину L, будет применяться выражение:

В условиях вакуума отношение величин напряженности и индукции может быть описано так:

где μ0 – константа, равная 1, 256*10-6.

С некоторым огрублением такое отношение справедливо и для воздушной среды. Когда в полевой зоне находится какой-то предмет, нужно учитывать магнитную проницаемость вещества, из которого он изготовлен (μ). Тогда отношение величин принимает следующий вид:

У парамагнетиков (например, алюминиевых изделий) и особенно у ферромагнетиков (все виды железа и стали) значение μ велико, что ведет к возрастанию индукции, тогда как у диамагнитных изделий (например, медных) она меньше единицы, что несколько понижает плотность потока.

Опираясь на приведенные выражения, можно составить формулы для проводниковых изделий различной формы:

  • для кольца с радиусом R: B=(μ*μ0*I*n)/2R;
  • для прямого кабеля бесконечной протяженности: В=(I*n*μ*μ0)/(2π х r);
  • для спирали: В=(I*n*μ*μ0)/L.

Физический смысл магнитной индукции (МИ)

Возможность действовать на предмет магнитным полем (МП) определяет сущность настоящей индукции. Она появляется в момент перемещения в катушке индуктивности магнита постоянной природы. Результатом такого движения является появление тока, с одновременным увеличением магнитного потока. Поскольку обмотка у катушки металлическая, а структура металла – кристаллическая решётка, то можно объяснить физические свойства этого явления.

Электроны, находящиеся в этой решётке, при отсутствии магнитного воздействия находятся в покое. Движения никакого нет. Оно начинается в тот момент, когда электроны попадают под воздействие переменного МП (поле изменяется при перемещении постоянного магнита).

Значение возникающего в катушке тока зависит от диаметра жилы и количества витков, физических характеристик магнита и скорости его движения.

Единица размерности в системе Си рассматриваемой характеристики – тесла. Она обозначается буквами Тл.

Важно! Электроны в решётке, после попадания катушки в МП, разворачиваются под некоторым углом и выстраиваются вдоль силовых линий МП. Количество ориентированных частиц и однородность их размещения зависимы от величины поля

Вектор – это вектор индукции магнитного поля (градиентный параметр МП).


Вектор магнитной индукции

Магнитная индукция прямолинейного проводника

Как известно простейшее магнитное поле создает прямолинейный проводник, по которому протекает электрический ток. Как я уже говорил в предыдущей статье, силовые линии данного магнитного поля представляют собой концентрические окружности расположенные вокруг проводника.

Магнитная индукция магнитного поля создаваемого прямолинейным проводником с током.

Для определения магнитной индукции В прямого провода в точке Р введем некоторые обозначения. Так как точка Р находится на расстоянии b от провода, то расстояние от любой точки провода до точки Р определяется как r = b/sinα. Тогда наименьшую длину проводника dl можно вычислить из следующего выражения

В итоге закон Био – Савара – Лапласа для прямолинейного провода бесконечной длины будет иметь вид

где I – ток, протекающий по проводу,

b – расстояние от центра провода до точки, в которой рассчитывается магнитная индукция.

Теперь просто проинтегрируем получившееся выражение по dα в пределах от 0 до π.

Таким образом, итоговое выражение для магнитной индукции прямолинейного провода бесконечной длины будет иметь вид

где μ  – магнитная постоянная, μ = 4π•10-7 Гн/м,

I – ток, протекающий по проводу,

b – расстояние от центра проводника до точки, в которой измеряется индукция.

Формула индуктивности

Имеется большое множество разновидностей катушек индуктивности, отличающихся конфигурацией и областью применения. Ниже предоставлено ряд формул, показывающих, как найти индуктивность катушки:

  1. Измерение индуктивности стандартной катушки производится по формуле:

L=µ0µN2S/l, где:

  • L – характеристика катушки (Гн);
  • µ0 – магнитная const;
  • µ – проницаемость вещества сердечника;
  • N – количество оборотов проводника;
  • S – площадь диаметрального разреза (м2);
  • l – активная часть катушки в метрах.
  1. Индуктивность прямого проводника:

L=5.081(ln4l/d-1), где:

  • L – характеристика катушки (нГн);
  • l – размер проводника;
  • d – диаметр провода.
  1. Определять индуктивности катушек с воздушным сердечником возможно благодаря формуле:

L=r2N2/9r+10l, где:

  • L – характеристика катушки (мкГн);
  • r – наружный радиус;
  • l – активная часть катушки.
  1. Индуктивность многослойной катушки с воздушным сердечником:

L=0,8r2N2/6r+9l+10d, где:

  • L – характеристика катушки (мкГн);
  • r – усредненный радиус катушки;
  • l – активная часть катушки;
  • d – глубина катушки.
  1. Индуктивность плоской катушки:

L=r2N2/6r+11d, где:

  • L – характеристика катушки (мкГн);
  • r – усредненный радиус катушки;
  • d – глубина катушки.

В радиотехнике часто используется сопряжение нескольких катушек. При последовательном или параллельном соединении катушек индуктивности используются различные формулы, находящие общую индуктивность.

Суммарная индуктивность, при последовательном подсоединении, рассчитывается как:

Lобщ=L1+L2+…+Ln.

При параллельном соединении катушек суммарная индуктивность равна выражению:

1/Lобщ=1/L1+1/L2+…+1/Ln.

Магнитосфера Земли

На нашей планете существуют миллионы магнитов разной величины и происхождения, но самым большим из них, к которому мы постоянно прикасаемся, является сама наша Земля. В первый раз о Земле как о подобном предмете было сказано в 1600 году. Этот год ознаменовался появлением книги английского физика У. Гильберта, в которой он тесно связывает Землю и эту материю. Кроме того, он говорит о том, что ось магнитного поля Земли и ось, по которой планета вращается, не являются идентичными, а наоборот, имеют лишь одну точку соприкосновения. Если сделать графический рисунок этого явления вокруг нашего голубого шара, то сразу становится видно, что оно очень похоже с обычным постоянным магнитом. Первые карты, показывающие нашу планету с такой стороны, были нарисованы Э. Галлеем в 1702 году. Каким же образом Земля регенерирует свои особые свойства? Все довольно просто. Как известно, в глубинах нашей планеты есть ядро. Это огромный шар раскаленного железа, которое является отличным проводником тока, то есть заряженное ядро и дает мощное потоки нчастиц. Благодаря этому явлению Земля окружена магнитосферой, которая защищает ее от отрицательных влияний из глубины космоса, и даже от родного нам Солнца. Индукция магнитного поля Земли равна 0,5 · 10- 4 Тл.

Индуктивность.Электродвижущая сила самоиндукции

• Электромагнетизм •
  • Магнитное поле тока, магнитная индукция, магнитный поток
  • Электромагнитная сила
  • Взаимодействие парал лельных проводов с токами
  • Магнитная проницаемость
  • Напряженность магнитного поля,магнитное напряжение
  • Закон полного тока
  • Магнитное поле катушки с током
  • Ферромагнетики,их намагничивание и перемагничивание
  • Ферромагнитные материалы
  • Магнитная цепь и ее расчет
  • Электромагниты
  • Электромагнитная индукция
  • Принцип работы электричес кого генератора
  • Принцип работы электродви гателя
  • Вихревые токи
  • Индуктивность.Электродви жущая сила самоиндукции
  • Энергия магнитного поля
  • Взаимная индуктивность
• Обзор сайта •
  • Электрооборудование до 1000 В
  • Электрические аппараты
  • Электрические машины
  • Эксплуатация электро оборудования
  • Электрооборудование электротехнологических установок
  • Электрооборудование общепромышленных установок
  • Электрооборудование подъемно-транспортных установок
  • Электрооборудование металлообрабатывающих станков
  • Электрооборудование выше 1000 В
  • Электрические аппараты высокого напряжения
  • Электротехника
  • Электрическое поле
  • Электрические цепи постоянного тока
  • Электромагнетизм
  • Электрические машины постоянного тока
  • Основные понятия,отно сящиеся к переменным токам
  • Цепи переменного тока
  • Трехфазные цепи
  • Электротехнические измерения и приборы
  • Трансформаторы
  • Электрические машины переменного тока
  • Электромонтаж
  • С чего начинается электро монтаж энергоснабжения электрооборудования и электропроводки
  • Монтаж электропроводки
  • Расчёт потребляемой мощ ности,сечения кабеля и номинала автоматического выключателя
  • Электромонтажные работы и прокладка кабеля в жилых и нежилых помещениях
  • Электромонтажные работы по расключению распаечных коробок и электрооборудова ния
  • Электромонтаж и заземле ние розеток
  • Электромонтаж уравнива ния потенциалов
  • Электромонтаж контура заземления
  • Электромонтаж модульного штыревого контура заземле ния
  • Электромонтаж нагреватель ного кабеля для подогрева полов
  • Электромонтажные работы по прокладке кабеля в зем ле
  • Электричество в частном доме
  • Проект электроснабжения
• Электротехника •
  • Электрическое поле
  • Электрические цепи постоянного тока
  • Электромагнетизм
  • Электрические машины постоянного тока
  • Основные понятия,отно сящиеся к переменным токам
  • Цепи переменного тока
  • Трехфазные цепи
  • Электротехнические измерения и приборы
  • Трансформаторы
  • Электрические машины переменного тока

ЭЛЕКТРОСПЕЦ

ЭЛЕКТРОСПЕЦ

При прохождении тока по цепи каждый контур или виток катушки пронизывается собственным магнитным потоком, который называется потоком самоиндукции ΦL. Сумма потоков самоиндукции всех витков контура или катушки называется потокосцеплением самоиндукции ΦL. При постоянной магнитной проницаемости среды магнитный поток и потокосцепление самоиндукции пропорциональны току. Отношение потокосцепления самоиндукции к току контура или катушки при неизменной магнитной проницаемости среды постоянно и называется индуктивностью:

Индуктивность характеризует связь потокосцепления самоиндукции с током контура. Единицей измерения индуктивности в системе СИ служит генри (Г):

Ом-секунда или генри — крупная единица, поэтому часто пользуются дольными единицами — миллигенри (1 мГ 1 • 10-3 Г) и микрогенри (1 мкГ =1 • 10-6 Г). Условное обозначение участка цепи, обладающего индуктивностью, показано на рис. 3.32.

Определим индуктивность кольцевой катушки. Потокосцепление кольцевой катушки (3-20)

а индуктивность её

Таким образом, индуктивность катушки зависит от размеров катушки, от числа витков и от магнитной проницаемости среды (сердечника):

Всякое изменение тока в цепи (в контуре) сопровождается изменением магнитного потока и потокосцепления самоиндукции, а следовательно, возникновением э. д. с., которая в этом случае называется э. д. с. самоиндукции. Явление возникновения э. д. с. в контуре вследствие изменения тока в этом контуре называется самоиндукцией. Величина э. д. с. самоиндукции определяется по (3-29):

Следовательно,э. д. с. самоиндукции пропорциональна индуктивности и скорости изменения тока в цепи. Направление э. д. с. самоиндукции определяется по закону Ленца. При увеличений тока, т. е. при di/dt > О, э. д. с. eL отрицательна и, следовательно, направлена встречно току; наоборот, при уменьшении тока, т. е. при di/dt < О э. д. с. eL положительна и, следовательно, направлена одинаково с током.

Магнитный поток

Для характеристики воздействия индукционного фона на контур из металла используют такую величину, как поток. Она является скалярной. В контексте этого необходимо узнать, индукция в чем измеряется. Она зависит от количества идущих через единицу сечения проводящего элемента силовых линий. В международной системе СИ за измерительную единицу принимается Тесла (Тл). Отсюда и название устройства, предназначенного для замеров – теслометра. 1 Тл – индукция, возникающая в полевом пространстве, в котором момент силы в 1 Н*м оказывает воздействие на контур площадью 1 квадратный метр, по которому течет ток в 1 ампер.

Постоянные магниты

Источником магнитного поля (МП) могут служить постоянные магниты. Они изготавливаются из магнетита. В природе он известен как оксид железа. Это минерал чёрной окраски, имеющий молекулярное строение FeO·Fe2O3. Свойства магнитов известны с давних времён. Магниты имеют два полюса – северный и южный.

Постоянные магниты можно классифицировать по следующим критериям:

  • материал, из которого изготовлен магнит;
  • форма;
  • сфера использования.

Магниты с постоянными полюсами изготавливаются из различных материалов:

  • ферритов – прессованных изделий из порошков оксида железа и оксидов иных металлов;
  • редкоземельных – нодимовых (NdFeB), самариевых (SmCo), литых (сплавы металлов), полимерных (магнитопласты).

Форма магнитов самая различная:

  • цилиндрическая (прямоугольная);
  • подковообразная;
  • кольцеобразная;
  • дискообразная.

Направление линий МП в зависимости от формы магнита

Постоянные магниты нашли широкое применение в различных отраслях народного хозяйства:

  • МРТ – медицинский прибор для диагностики человеческого организма;
  • приводы жёстких дисков в современных компьютерах;
  • в радиотехнике, при изготовлении динамиков;
  • производство декоративных украшений с применением магнитов на полимерной основе.

В двигателях постоянного тока такие магниты вмонтированы в корпус индуктора.

Самоиндукция. Энергия магнитного поля

Самоиндукция является важным частным случаем электромагнитной индукции, когда изменяющийся магнитный поток, вызывающий ЭДС индукции, создается током в самом контуре. Если ток в рассматриваемом контуре по каким-то причинам изменяется, то изменяется и магнитное поле этого тока, а, следовательно, и собственный магнитный поток, пронизывающий контур. В контуре возникает ЭДС самоиндукции, которая согласно правилу Ленца препятствует изменению тока в контуре.

Собственный Φ, пронизывающий контур или катушку с током, пропорционален силе тока I

Коэффициент пропорциональности L в этой формуле называется коэффициентом самоиндукциииндуктивностью катушки. Единица индуктивности в СИ называется генри (Гн). Индуктивность контура или катушки равна или 1 Гн, если при силе постоянного тока 1 А собственный поток равен 1 Вб

В качестве примера рассчитаем индуктивность длинного соленоида, имеющего N витков, площадь сечения S и длину l. Магнитное поле соленоида определяется формулой (см. § 1.17)

где I – ток в соленоиде, n = N / e – число витков на единицу длины соленоида.

Магнитный поток, пронизывающий все N витков соленоида, равен

Следовательно, индуктивность соленоида равна

где V = Sl – объем соленоида, в котором сосредоточено магнитное поле. Полученный результат не учитывает краевых эффектов, поэтому он приближенно справедлив только для достаточно длинных катушек. Если соленоид заполнен веществом с μ, то при заданном токе I индукция магнитного поля возрастает по модулю в μ раз (см. § 1.17); поэтому индуктивность катушки с сердечником также увеличивается в μ раз:

ЭДС самоиндукции, возникающая в катушке с постоянным значением индуктивности, согласно формуле Фарадея равна

ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в ней.

Магнитное поле обладает энергией. Подобно тому, как в заряженном конденсаторе имеется запас электрической энергии, в катушке, по виткам которой протекает ток, имеется запас магнитной энергии. Если включить электрическую лампу параллельно катушке с большой индуктивностью в электрическую цепь постоянного тока, то при размыкании ключа наблюдается кратковременная вспышка лампы (рис. 1.21.1). Ток в цепи возникает под действием ЭДС самоиндукции. Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Рисунок 1.21.1.
Магнитная энергия катушки. При размыкании ключа K лампа ярко вспыхивает.

Из закона сохранения энергии следует, что вся энергия, запасенная в катушке, выделится в виде джоулева тепла. Если обозначить через R полное сопротивление цепи, то за время Δt выделится количество теплоты ΔQ = I2RΔt.

Ток в цепи равен

Выражение для ΔQ можно записать в виде

В этом выражении ΔI < 0; ток в цепи постепенно убывает от первоначального значения I до нуля. Полное количество теплоты, выделившейся в цепи, можно получить, выполнив операцию интегрирования в пределах от I до 0. Это дает

Эту формулу можно получить графическим методом, изобразив на графике зависимость магнитного потока Φ(I) от тока I (рис. 1.21.2). Полное количество выделившейся теплоты, равное первоначальному запасу энергии магнитного поля, определяется площадью изображенного на рис. 1.21.2 треугольника.

Рисунок 1.21.2.
Вычисление энергии магнитного поля.

Таким образом, энергия Wм магнитного поля катушки с индуктивностью L, создаваемого током I, равна

Применим полученное выражение для энергии катушки к длинному соленоиду с магнитным сердечником. Используя приведенные выше формулы для коэффициента самоиндукции Lμ соленоида и для магнитного поля B, создаваемого током I, можно получить:

где V – объем соленоида. Это выражение показывает, что магнитная энергия локализована не в витках катушки, по которым протекает ток, а рассредоточена по всему объему, в котором создано магнитное поле. Физическая величина

равная энергии магнитного поля в единице объема, называется объемной плотностью магнитной энергии. Дж. Максвелл показал, что выражение для объемной плотности магнитной энергии, выведенное здесь для случая длинного соленоида, справедливо для любых магнитных полей.

Определение

Рассмотрим схему катушки, по обмоткам которой протекает электрический ток (рис. 1). Так как вокруг проводника, который находится под током, всегда существует связанное с ним магнитное поле, то силовые линии этого поля пронизывают плоскости витков. В результате такого взаимодействия соленоиды образуют собственное магнитное поле, магнитные линии которого замыкаются за его пределами.

Рис. 1. Магнитное поле катушки

Частным случаем катушки является замкнутый контур (один виток). В нём, как и в катушке, образуется собственное магнитное поле (см. рис. 2). Если ток постоянный, то в контуре никаких изменений не происходит.

Но при изменении параметров, например, в результате размыкания цепи, изменяется магнитный поток, создаваемый электрическим полем, что является причиной возникновения ЭДС индукции. Аналогичное изменение произойдёт и в случае замыкания цепи.

Изменение параметров магнитного поля вызывает появление вихревого электрического поля, что в свою очередь приводит к возбуждению индуктивной электродвижущей силы. Возникновение ЭДС индукции, в результате изменения ток в замкнутом контуре, называется самоиндукцией.

Магнитный поток, ограниченный поверхностью контура, меняется прямо пропорционально изменению тока, циркулирующего в нём.

Рис. 2. Явление самоиндукции

Направление вектора ЭДС самоиндукции не совпадает с направлением тока в период его возрастания (при замыкании цепи), но он сонаправлен с ним в период убывания (разъединения цепи). Такое действие проявляется в замедлении появления тока в соленоиде при замыкания цепи, или в его задержке на какое-то время после разрыва цепи.

Описанное явление можно наблюдать на опыте с лампочками, одна из которых подключена последовательно с индуктивностью (см. рис. 3).

Рис. 3. Схема опыта с лампочками

Как видно на рисунке слева, ток от источника питания, проходящий через лампочку 2, при замыкании контактов встретит сопротивление вихревых токов, поскольку они противоположно направлены. Поэтому зажигание этой лампочки произойдёт с задержкой.

На время включения лампочки 1 вихревые токи повлияют, но сила тока в её цепи уменьшится после зажигания лампы 2. При отключении цепи от источника питания произойдёт обратный процесс: лампочка в цепи индуктивности некоторое время будет медленно угасать, а вторая лампа потухнет сразу после разъединения контактов.

График на рисунке 4 красноречиво объясняет эффект задержки.

Рис. 4. Иллюстрация задержки изменения тока в цепи индуктивности

Обратите внимание на нелинейность изменения силы тока по времени. Аналогичные процессы происходят в цепи, состоящей из одной катушки

На рисунке 5 изображена такая схема и график изменения силы тока

Аналогичные процессы происходят в цепи, состоящей из одной катушки. На рисунке 5 изображена такая схема и график изменения силы тока.

Рис. 5. Возникновение самоиндукции

Остаётся добавить, что скорость изменение величины ЭДС зависит от количества витков соленоида. Чем больше витков, тем больше влияние вихревых токов, на параметры цепи.

В случае с переменным током амплитуда ЭДС самоиндукции пропорциональна амплитуде синусоиды питания, её частоте и индуктивности катушки.

Синусоидальный ток, проходя через катушку индуктивности, сдвигается по фазе на величину π/2. Именно этот сдвиг является причиной отставания собственного тока катушки от тока, вырабатываемого источником питания.

Вектор магнитной индукции

ОпределениеВектор магнитной индукции — силовая характеристика магнитного поля. Она определяет, с какой силой магнитное поле действует на заряд, движущийся в поле с определенной скоростью. Обозначается как→B. Единица измерения — Тесла (Тл).

За единицу магнитной индукции можно принять магнитную индукцию однородного поля, котором на участок проводника длиной 1 м при силе тока в нем 1 А действует со стороны поля максимальная сила, равна 1 Н. 1 Н/(А∙м) = 1 Тл.

Модуль вектора магнитной индукции — физическая величина, равная отношению максимальной силы, действующей со стороны магнитного поля на отрезок проводника с током, к произведению силы тока и длины проводника:

B=FAmaxIl..

За направление вектора магнитной индукции принимается направление от южного полюса S к северному N магнитной стрелки, свободно устанавливающейся в магнитном поле.

Наглядную картину магнитного поля можно получить, если построить так называемые линии магнитной индукции. Линиями магнитной индукции называют линии, касательные к которым направлены так же, как и вектор магнитной индукции в данной точке поля.

Особенность линий магнитной индукции состоит в том, что они не имеют ни начала, ни конца. Они всегда замкнуты. Поля с замкнутыми силовыми линиями называют вихревыми. Поэтому магнитное поле — вихревое поле.

Замкнутость линий магнитной индукции представляет собой фундаментальное свойство магнитного поля. Оно заключается в том, что магнитное поле не имеет источников. Магнитных зарядов, подобным электрическим, в природе нет.