Самая красивая теорема математики: тождество эйлера

Содержание

Можно ли переделать приемник с DVB-T на DVB-T2

Если у вас есть приставка, использующая стандарты для кабельного вещания, то возможности переделать ее под прием цифрового сигнала нет. Не поможет «прошивка» и переустановка софтовой программы тюнера и декодера. Вообще этот метод используется только для устранения системных ошибок, когда декодер путает каналы или качество приема значительно ухудшилось без видимых причин.

Только в этом случае прошивка может помочь.

Что делать, если скоро появится DVB-T3

Оригинально вещание в стандарте DVB-T просуществовало 10 лет, после этого, на смену ему пришел стандарт нового поколения DVB-T2, что заставило многих владельцев поменять свои телевизионные приемники.

Современный уровень технологий, пока что не позволяет совершить качественный скачек для усовершенствования технологии. То есть, пользователям не стоит волноваться, телевизионные приемники со стандартом DVB-T2 просуществуют еще много лет.

Мне нравитсяНе нравится

Тепловое действие тока

Электрический ток, проходя через любой проводник, сообщает ему некоторое количество энергии. В результате этого проводник нагревается. Передача энергии происходит на молекулярном уровне, т. е., электроны взаимодействуют с атомами или ионами проводника и отдают часть своей энергии.В результате этого, ионы и атомы проводника начинают двигаться быстрей, соответственно можно сказать, что внутренняя энергия увеличивается и переходит в тепловую энергию.Данное явление подтверждается различными опытами, которые говорят о том, что вся работа, которую совершает ток, переходит во внутреннюю энергию проводника, она в свою очередь увеличивается. После этого уже проводник начинает отдавать её окружающим телам в виде тепла. Здесь уже в дело вступает процесс теплопередачи, но сам проводник нагревается. Этот процесс рассчитывается по формуле: А=U·I·tА – это работа тока, которую он совершает, протекая через проводник. Можно также высчитать количество теплоты, выделяемое при этом, ведь это значение равно работе тока. Правда, это касается, лишь неподвижных металлических проводников, однако, такие проводники встречаются чаще всего. Таким образом, количество теплоты, также будет высчитываться по той же форме: Q=U·I·t.История открытия явленияВ своё время свойства проводника, через который протекает электрический тока, изучали многие учёные. Особенно среди них были заметны англичанин Джеймс Джоуль и русский учёный Эмилий Христианович Ленц. Каждый из них проводил свои собственные опыты, а вывод они смогли сделать независимо друг от друга. На основе своих исследований, они смогли вывести закон, который позволяет дать количественную оценку выделяемого тепла в результате воздействия электрического тока на проводник. Данный закон получил название «Закон Джоуля-Ленца». Джеймс Джоуль установил его в 1842 году, а примерно через год Эмиль Ленц пришёл к тому же выводу, при этом их исследования и проводимые опыты никак не были связаны друг с другом.Применение свойств теплового действия токаИсследования теплового воздействия тока и открытия закона Джоуля-Ленца позволили сделать вывод, подтолкнувший развитие электротехники и расширить возможности применения электричества. Простейшим примером применения данных свойства является простая лампочка накаливания. Устройство её заключается в том, что в ней применяется обычная нить накаливания, сделанная из вольфрамовой проволоки. Этот металл был выбран не случайно: тугоплавкий, он имеет довольно высокое удельное сопротивление. Электрический ток проходит через эту проволоку и нагревает её, т. е. передаёт ей свою энергию. Энергия проводника начинает переходить в тепловую энергию, а спираль разогревается до такой температуры, что начинает светиться. Главным недостатком такой конструкции, конечно, является то, что происходят большие потери энергии, ведь только небольшая часть энергии преобразуется в свет, а остальная уходит в тепло.Для этого вводится такое понятие в техники, как КПД, показывающее эффективность работы и преобразования электрической энергии. Такие понятия как КПД и тепловое воздействие тока применяются повсеместно, так как существует огромное количество приборов основанных подобном принципе. Это в первую очередь касается нагревательных приборов: кипятильников, обогревателей, электроплит и т. д.Как правило, в конструкциях перечисленных приборах присутствует некая металлическая спираль, которая и производит нагревание. В приборах для нагревания воды она изолирована, в них устанавливается баланс между потребляемой из сети энергией (в виде электрического тока) и тепловым обменом с окружающей средой.В связи с этим, перед учёными стоит нелёгкая задача по снижению потерь энергии, главной целью является поиск наиболее оптимальной и эффективной схемы. В данном случае тепловое воздействие тока является даже нежелательным, так как именно оно и ведёт к потерям энергии. Самым простым вариантом является повышение напряжения при передаче энергии. В результате снижается сила тока, но это приводит к снижению безопасности линий электропередач.Другое направление исследований – это выбор проводов, ведь от свойств проводника зависят и тепловые потери и прочие показатели. С другой стороны, различные нагревательные приборы требуют большого выделения энергии на определённом участке. Для этих целей изготавливают спирали из специальных сплавов. Для повышения защиты и безопасности электрических цепей применяются специальные предохранители. В случае чрезмерного повышения тока сечение проводника в предохранителе не выдерживает, и он плавится, размыкая цепь, защищая, таким образом, её от токовых перегрузок.

Реактивное движение

В основе движения ракет, салютов и некоторых живых существ: кальмаров, осьминогов, каракатиц и медуз — лежит закон сохранения импульса. В этих случаях движение тела возникает из-за отделения какой-либо его части. Такое движение называется реактивным.

Яркий пример реактивного движения в технике — движение ракеты, когда из нее истекает струя горючего газа, которая образуется при сгорании топлива.

Сила, с которой ракета действует на газы, равна по модулю и противоположна по направлению силе, с которой газы отталкивают от себя ракету:

→ →
F1 = — F2

Сила F2 называется реактивной. Это та сила, которая возникает в процессе отделения части тела. Особенностью реактивной силы является то, что она возникает без взаимодействия с внешними телами.

Закон сохранения импульса позволяет оценить скорость ракеты.

mг vг = mр vр,
где mг — это масса горючего,

vг — скорость горючего,

mр — масса ракеты,

vр — скорость ракеты.

Отсюда можно выразить скорость ракеты:

vр = mг vг / mр

Скорость ракеты при реактивном движении

vр = mг vг / mр
mг — это масса горючего

vг — скорость горючего [м/с]

mр — масса ракеты

v р — скорость ракеты [м/с]

Эта формула справедлива для случая мгновенного сгорания топлива. Мгновенное сгорание — это теоретическая модель. В реальной жизни топливо сгорает постепенно, так как мгновенное сгорание приводит к взрыву.

Заказать решение ТОЭ

  • Метрология Электрические измерения
  • Пигарев А.Ю. РГЗ по электротехнике и электронике в Multisim
  • Теория линейных электрических цепей ТЛЭЦ

    • Теория линейных электрических цепей железнодорожной автоматики, телемеханики и связи: задание на контрольные работы № 1 и 2 с методическими указаниями для студентов IV курса специальности Автоматика, телемеханика и связь на железнодорожном транспорте

      • Контрольная работа №1

      • Контрольная работа №2
  • Электротехника и основы электроники

    • Электротехника и основы электроники: Методические указания и контрольные задания для студентов-заочников инженерно-технических специальностей высших учебных заведений / Соколов Б.П., Соколов В.Б. – М.: Высш. шк., 1985. – 128 с, ил

      • Контрольная работа № 1 Электрические цепи

      • Контрольная работа № 2 Трансформаторы и электрические машины

      • Контрольная работа № 3 Основы электроники
  • Теоретические основы электротехники ТОЭ

    • Артеменко Ю.П., Сапожникова Н.М. Теоретические основы электротехники: Пособие по выполнению курсовой работы МГТУ ГА 2009

    • Переходные процессы Переходные процессы в электрических цепях

    • Теоретические основы электротехники Методические указания и контрольные задания для студентов технических специальностей вузов

      • Задание 1 Линейные электрические цепи постоянного и синусоидального тока

        • Задача 1.1 Линейные электрические цепи постоянного тока

        • Задача 1.2 Линейные электрические цепи синусоидального тока

      • Задание 2 Четырехполюсники, трехфазные цепи, периодические несинусоидальные токи, электрические фильтры, цепи с управляемыми источниками

    • Теоретические основы электротехники сб. заданий Р.Я. Сулейманов Т.А. Никитина Екатеринбург УрГУПС 2010

    • Трехфазные цепи. Расчет трехфазных цепей

    • УГТУ-УПИ Решение ТОЭ Билеты по ТОЭ

    • Электромагнитное поле Электростатическое поле Электростатическое поле постоянного тока в проводящей среде Магнитное поле постоянного тока

Что делать, если скоро появится DVB-T3

Стандарт DVB-T просуществовал лет десять. Приход формата второго поколения заставил потребителя менять приемные устройства на новые. Возникает вопрос, не ожидает ли DVB-T2 участь предшественника.

В ближайшие десятилетия этого не произойдет. В обозримом будущем достичь увеличения скорости передачи данных невозможно, а дальнейшее сжатие только приведет к дефектам картинки. Так что телезрители могут выдохнуть и рассчитывать на долгосрочное использование современного оборудования.

Предыдущая
ТехнологияЧастоты эфирных цифровых каналов DVB-T2 для ручной настройки
Следующая
ТехнологияCтандарты цифрового телевидения: DVB-T, DVB-T2, DVB-C, DVB-C2, DVB-S, DVB-S2

Необходимое оборудование

Постепенный переход с аналогового на цифровое эфирное вещание происходит на всей территории России. Некоторые каналы всё ещё можно будет просматривать с помощью встроенных в телевизор тюнеров, декодирующих аналоговый сигнал. Но принимать большее количество стабильно транслируемых телевизионных каналов с улучшенными параметрами видео- и аудиосигналов получится, лишь перейдя на новый стандарт DVB-T2.

Что уже есть: стандартная комплектация

Большинство современных телевизоров известных компаний-производителей электроники имеют встроенный тюнер DVB-T2. Информацию об этом можно всегда найти в инструкции к имеющемуся телевизионному приёмнику.

Для более ранних моделей и телевизоров старого образца для приёма сигнала в цифровом формате придётся приобрести приставку (ресивер) DVB-T2, которых в настоящее время имеется большое разнообразие. Отличаются они не только внешним видом, материалом корпуса и комплектацией, но также процессором и непосредственно функциональностью самого тюнера.

Стандартная модель ресивера обычно имеет следующую комплектацию:

  • упаковочная коробка с инструкцией пользователя и гарантийным талоном;
  • приставка DVB-T2, дешифрующая и преобразующая цифровой сигнал в аналоговый;
  • ИК пульт дистанционного управления с двумя элементами питания;
  • сетевой адаптер для преобразования переменного напряжения сети в 5 В постоянного тока, если в самой приставке нет встроенного блока питания;
  • соединительный кабель 3RCA-3RCA («тюльпаны»), позволяющий подключить приставку к большинству телевизоров старого и нового поколений.

Что нужно ещё: дополнительное оборудование

Для приёма цифрового сигнала, кроме приставки, необходима телевизионная антенна с дециметровым диапазоном принимаемых частот (ДМВ, частоты от 300 МГц до 3 ГГц).

При выборе антенны самыми важными факторами являются:

  • расстояние до ретранслятора;
  • количество препятствий между ретранслятором и приёмной антенной.

В случае, если телевышка находится в прямой видимости, а количество стенных перегородок до внешней стены не велико, лучше всего приобрести комнатную антенну.

Если же расстояние до ретранслятора большое, а дом находится в низине или загорожен высокими постройками, необходимо покупать внешнюю активную (со встроенным усилителем) антенну, которую можно будет установить на крыше или на специальной мачте. В данном случае понадобятся:

  • соединительный коаксиальный кабель нужной длины с двумя штекерами;
  • внешний источник тока для питания усилителя.

Для подключения приставки к телевизору вместо стандартного аналогового подключения RCA можно использовать кабель HDMI, если на данных устройствах есть соответствующие разъёмы.

Его использование, благодаря большой пропускной способности, позволяет поддерживать передачу многоканальных цифровых аудиосигналов и цифровых видеосигналов высокого разрешения.

Формула параллельного соединения резисторов

Общее сопротивление нескольких резисторов соединенных параллельно определяется по следующей формуле:

Ток, протекающий через отдельно взятый резистор, согласно закону Ома, можно найти по формуле:

Пример  №1

При разработке устройства, возникла необходимость установить резистор с сопротивлением 8 Ом. Если мы просмотрим весь номинальный ряд стандартных значений резисторов, то мы увидим, что резистора с сопротивлением в 8 Ом в нем нет.

Выходом из данной ситуации будет использование двух параллельно соединенных резисторов. Эквивалентное значение сопротивления для двух резисторов соединенных параллельно рассчитывается следующим образом:

Данное уравнение показывает, что если R1 равен R2, то сопротивление R составляет половину сопротивления одного из двух резисторов. При R = 8 Ом, R1 и R2 должны, следовательно, иметь значение 2 × 8 = 16 Ом.
Теперь проведем проверку, рассчитав общее сопротивление двух резисторов:

Таким образом, мы получили необходимое сопротивление 8 Ом, соединив параллельно два резистора по 16 Ом.

Пример расчета №2

Найти общее сопротивление  R из трех параллельно соединенных резисторов:

Общее сопротивление R рассчитывается по формуле:

Этот метод расчета может быть использованы для расчета любого количества отдельных сопротивлений соединенных параллельно.

Один важный момент, который необходимо запомнить при расчете параллельно соединенных резисторов – это то, что общее сопротивление всегда будет меньше, чем значение наименьшего сопротивления в этой комбинации.

Как рассчитать сложные схемы соединения резисторов

Более сложные соединения резисторов могут быть рассчитаны путем систематической группировки резисторов. На рисунке ниже необходимо посчитать общее сопротивление цепи, состоящей из трех резисторов:

Резисторы R2 и R3 соединены последовательно (группа 2). Они в свою очередь соединены параллельно с резистором R1 (группа 1).

Последовательное соединение резисторов группы 2 вычисляется как сумма сопротивлений R2 и R3:

В результате мы упрощаем схему в виде двух параллельных резисторов. Теперь общее сопротивление всей схемы можно посчитать следующим образом:

Расчет более сложных соединений резисторов можно выполнить используя законы Кирхгофа.

Ток, протекающий в цепи параллельно соединенных резисторах

Общий ток I протекающий в цепи параллельных резисторов равняется сумме отдельных токов, протекающих во всех параллельных ветвях, причем ток в отдельно взятой ветви не обязательно должен быть равен току в соседних ветвях.

Несмотря на параллельное соединение, к каждому резистору приложено одно и то же напряжение. А поскольку величина сопротивлений в параллельной цепи может быть разной, то и величина протекающего тока через каждый резистор тоже будет отличаться (по определению закона Ома).

Рассмотрим это на примере двух параллельно соединенных резисторов. Ток, который течет через каждый из резисторов ( I1 и I2 ) будет отличаться друг от друга поскольку сопротивления резисторов R1 и R2 не равны.
Однако мы знаем, что ток, который поступает в цепь в точке «А» должен выйти из цепи в точке «B» .

Первое правило Кирхгофа гласит: «Общий ток, выходящий из цепи равен току входящий в цепь».

  • Таким образом, протекающий общий ток в цепи  можно определить как:
  • I = I1 + I2
  • Затем с помощью закона Ома можно вычислить ток, который протекает через каждый резистор:
  • Ток, протекающий в R1 = U ÷ R1 = 12 ÷ 22 кОм = 0,545 мА
  • Ток, протекающий в R 2 = U ÷ R2 = 12 ÷ 47 кОм = 0,255 мА
  • Таким образом, общий ток будет равен:
  • I = 0,545 мА + 0,255 мА = 0,8 мА
  • Это также можно проверить, используя закон Ома:
  • I = U ÷ R = 12 В ÷ 15 кОм = 0,8 мА (то же самое)
  • где 15кОм — это общее сопротивление двух параллельно соединенных резисторов (22 кОм и 47 кОм)
  • И в завершении хочется отметить, что большинство современных резисторов маркируются цветными полосками и назначение ее можно узнать здесь.

Параллельное соединение резисторов — онлайн калькулятор

Чтобы быстро вычислить общее сопротивление двух и более резисторов, соединенных параллельно, вы можете воспользоваться следующим онлайн калькулятором:

Подведем итог

Когда два или более резистора соединены так, что оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов, то говорят, что они соединены между собой параллельно. Напряжение на каждом резисторе внутри параллельной комбинации одинаковое, но токи, протекающие через них, могут отличаться друг от друга, в зависимости от величины сопротивлений каждого резистора.

Эквивалентное или полное сопротивление параллельной комбинации всегда будет меньше минимального сопротивления резистора входящего в параллельное соединение.

Характеристики платы Arduino UNO ATmega328P ATmega16U2.

Микроконтроллер ATmega328P
Тактовая частота 16 МГц
Напряжение питания от USB 5 вольт
Напряжение питание через разъем для внешнего
источника питания или контакт Vin 6-20 вольт
Цифровые входы/выходы 20
Выходы ШИМ 6
Аналоговые входы 6
Максимальная нагрузка на вход/выход 40 мА
Максимальная нагрузка на выход 5v 500 мА
Максимальная нагрузка на выход 3.3v 50 мА
Память для хранения программ (Flash) 32 Кб
Оперативная память (RAM) 2 Кб
Энергонезависимая память (ROM) 1 Кб
SPI есть
I2C он же TWI есть
Размер платы 68.6 х 54.3 мм
Габариты всего устройства 74.8 х 54.3 х 14 мм
Вес платы 25 г

Есть так же AREF опорный аналого-цифровой преобразователь напряжения .

Для того, чтобы этот пин заработал, вы должны перед использованием функции analogRead (); запустить функцию analogReference ();

Возможно кто-то назовет эти характеристики скромными, но этого вполне достаточно чтобы построить небольшого робота, систему умный дом или даже фрезерный ЧПУ станок, которым можно будет управлять в ручном режиме, с помощью компьютера или андроид устройства.

Хочу обратить ваше внимание на то что некоторые платы китайского производства на отрез отказываются работать от внешних источников питания, или если работают то не корректно!

Аргумент комплексного числа

      Рассмотрим радиус–вектор произвольного, но отличного от нуля, комплексного числа   z.

      Аргументом комплексного числа z называют угол φ между положительным направлением вещественной оси и радиус-вектором    z.

      Аргумент комплексного числа  z  считают положительным, если поворот от положительного направления вещественной оси к  радиус-вектору z  происходит против часовой стрелки, и отрицательным  — в случае поворота по часовой стрелке (см. рис.).

      Считается, что комплексное число нуль аргумента не имеет.

      Поскольку аргумент любого комплексного числа определяется с точностью до слагаемого 2kπ , где  k  — произвольное целое число, то вводится, главное значение аргумента, обозначаемое   arg z   и удовлетворяющее неравенствам:

      Тогда оказывается справедливым равенство:

      Если для комплексного числа   z = x + i y   нам известны его модуль   r = | z | и его аргумент φ, то мы можем найти вещественную и мнимую части по формулам

(3)

      Если же комплексное число   z = x + i y   задано в алгебраической форме, т.е. нам известны числа   x   и   y,   то модуль этого числа, конечно же, определяется по формуле

(4)

а аргумент определяется в соответствии со следующей Таблицей 1.

      Для того, чтобы не загромождать запись, условимся, не оговаривая этого особо, символом  k  обозначать в Таблице 1 произвольное целое число.

      Таблица 1. – Формулы для определения аргумента числа   z = x + i y

Расположениечисла  z Знаки x и y Главное значение аргумента Аргумент Примеры
Положительная вещественнаяполуось

x > 0 ,

y = 0

φ = 2kπ

x > 0 ,

y > 0

Положительнаямнимаяполуось

x = 0 ,

y > 0

x < 0 ,

y > 0

Отрицательнаявещественнаяполуось

x < 0 ,

y = 0

π φ = π + 2kπ

x < 0 ,

y < 0

Отрицательнаямнимаяполуось

x = 0 ,

y < 0

x > 0 ,

y < 0

Расположениечисла  z Положительнаявещественнаяполуось
Знаки x и y

x > 0 ,

y = 0

Главноезначениеаргумента
Аргумент φ = 2kπ
Примеры
Расположениечисла  z  
Знаки x и y

x > 0 ,

y > 0

Главноезначениеаргумента
Аргумент
Примеры
Расположениечисла  z Положительнаямнимаяполуось
Знаки x и y

x = 0 ,

y > 0

Главноезначениеаргумента
Аргумент
Примеры
Расположениечисла  z  
Знаки x и y

x < 0 ,

y > 0

Главноезначениеаргумента
Аргумент
Примеры
Расположениечисла  z Отрицательнаявещественнаяполуось
Знаки x и y

x < 0 ,

y = 0

Главноезначениеаргумента π
Аргумент φ = π + 2kπ
Примеры
Расположениечисла  z  
Знаки x и y

x < 0 ,

y < 0

Главноезначениеаргумента
Аргумент
Примеры
Расположениечисла  z Отрицательнаямнимаяполуось
Знаки x и y

x = 0 ,

y < 0

Главноезначениеаргумента
Аргумент
Примеры
Расположениечисла  z  
Знаки x и y

x < 0 ,

y < 0

Главноезначениеаргумента
Аргумент
Примеры

Расположение числа   z :

Положительная вещественная полуось

Знаки x и y :

x > 0 ,   y = 0

Главное значение аргумента:

Аргумент:

φ = 2kπ

Примеры:

Расположение числа   z :

Знаки x и y :

x > 0 ,   y > 0

Главное значение аргумента:

Аргумент:

Примеры:

Расположение числа   z :

Положительная мнимая полуось

Знаки x и y :

x = 0 ,   y > 0

Главное значение аргумента:

Аргумент:

Примеры:

Расположение числа   z :

Знаки x и y :

x < 0 ,   y > 0

Главное значение аргумента:

Аргумент:

Примеры:

Расположение числа   z :

Отрицательная вещественная полуось

Знаки x и y :

x < 0 ,   y = 0

Главное значение аргумента:

π

Аргумент:

φ = π + 2kπ

Примеры:

Расположение числа   z :

Знаки x и y :

x < 0 ,   y < 0

Главное значение аргумента:

Аргумент:

Примеры:

Расположение числа   z :

Отрицательная мнимая полуось

Знаки x и y :

x = 0 ,   y < 0

Главное значение аргумента:

Аргумент:

Примеры:

Расположение числа   z :

Знаки x и y :

x < 0 ,   y < 0

Главное значение аргумента:

Аргумент:

Примеры:

Джоуль для измерения физических величин

Труды Джоуля позволили сформировать закон сохранения энергии. Отвечая на вопрос, что измеряется в джоулях, можно определить этой единицей количество работы, которая совершается в процессе перемещения точки приложения силы в количестве одного ньютона на расстояние в один метр в направлении действия приложенной силы. В теории электричества понятие джоуля эквивалентно работе, совершаемой силами электрического поля в течение 1 секунды с напряжением в 1 вольт, для того чтобы поддержать силу тока в 1 ампер.

Энергия по своей сути является физической величиной, отображающей переход материи из одного состояния в другое. Замкнутая физическая система позволяет сохранять энергию ровно столько времени, пока сама система находится в замкнутом состоянии. Это положение представляет собой закон сохранения энергии.
Энергия представлена различными видами. Кинетическая энергия связана со скоростью, которой обладают точки, движущиеся в механической системе. Для потенциальной энергии характерно создание определенных энергетических запасов, позволяющих в дальнейшем получить кинетическую энергию. Эти категории попадают под возможность их измерения в джоулях. Кроме того, существует энергия, связанная с внутренней энергией молекулярных связей. Широко известна ядерная и гравитационная энергия, а также энергия электрического поля.

В процессе механической работы один вид энергии превращается в другой. Данная физическая категория тесно связана с величиной и направлением силы, воздействующей на тело, а также с пространственным перемещением этого тела.

Важнейшим понятием классической термодинамики, измеряемым в джоулях, является теплота. В соответствии с ее первым началом, количество теплоты, получаемое системой, расходуется при совершении работы, которая требуется для противодействия внешним силам. Одновременно в процессе работы изменяется внутренняя энергия. Таким образом, для теплообмена, изменяющего внутреннюю энергию, обязательно совершение механической работы, измеряемой в джоулях.