Села батарейка: что происходит на рынке сохранения энергии

Немного истории создания ХИТ

Ещё в восемнадцатом веке итальянский учёный Луиджи Гальвани придумал простейший элемент который химическим способом выделял электрический ток. Однако он был не только учёным, но и физиком, врачом, физиологом. Он интересовался и проводил опыты которые были направлены на изучение реакции животных на внешние раздражители. Как и всё гениальное первый химический источник энергии был получен Луиджи абсолютно случайно, во время многочисленных экспериментов над лягушками. После присоединения двух пластин из металла к лягушачьей мышце на лапке, было замечено мускульное сокращение. Гальвани посчитал это нервной реакцией на внешний раздражитель и изложил это в результатах своих исследований, попавших в руки другого великого учёного Алессандро Вольта. Он и выложил свою теорию о возникновении напряжения в результате химической реакции, возникшей между двумя металлическими пластинами в среде мускульной ткани лягушки.

Что такое источник тока

Чтобы поддерживать ток в электрических цепях долгое время необходимо удерживать стабильное значение электрического поля. Именно в этом заключается роль источников электрического тока.

Во всех источниках происходит работа по разделению отрицательно и положительно заряженных частиц. Частицы с зарядами разных знаков скапливаются у полюсов источника тока (“плюса” и “минуса”), которые обозначены специальными клеммами. Между полюсами возникает разность потенциалов и электрическое поле, которое после подключения источника проводниками к электрической цепи, порождает электрический ток.

Первый вариант работающей батареи сконструировал итальянский ученый Алессандро Вольта в 1798 г. А в 1859 г. французский физик Гастон Планте свинцово-кислотные клетки — ключевой элемент аккумулятора для автомобиля. Кстати, автомобиль появился только через 26 лет.

Таким образом, внутри источника тока совершается работа по разделению электрических зарядов, без использования силового действия электрического поля. Силы, совершающие работу по сортировке (разделению) зарядов, по определению называются сторонними силами. Перечислим некоторые примеры сторонних сил:

Механические силы

Простейший пример — это электрофорная машина, диски которой приводятся во вращение рукой. Современные генераторы электрического тока преобразуют механическую энергию вращения вала от двигателей внутреннего сгорания или от паровых и гидротурбин;

Рис. 1. Электрофорная машина:.

Тепловое воздействие

Такие источники называют термоэлементами. Примером может служить так называемая термопара, то есть когда берутся две проволоки из разных металлов, делаются два спая, один из которых нагревают, а другой охлаждают. В результате появляется напряжение. Величина напряжения таких источников мала, но в они используются в качестве термодатчиков. Геотермальные станции, работающие в местах, где имеются природные источники горячей воды, также относятся к этому виду источников. ;

Фотоэффект

Энергия фотонов света переходит в электрическую энергию, когда твердое тело обладает свойствами полупроводника. К таким веществам относятся, например, кремний, германий, арсенид галлия. Солнечные батареи, которые были в первую очередь разработаны для космических кораблей, сейчас используются повсеместно;

Химические реакции

Набор определенных химических веществ может вступать в реакции, в результате которых внутренняя энергия переходит в электрическую. Такие источники тока называются гальваническими элементами в честь итальянского ученого Луиджи Гальвани. Батарейки для современных гаджетов, телевизионных пультов, все это — гальванические элементы. Батарейки используются один раз, так как после окончания химического процесса электроды теряют способность к накоплению зарядов;

Рис. 2. Гальванический элемент:.

Аккумуляторы

Данные источники тока выделены в отдельный класс, хотя механизм получения электрической энергии у них тоже основан на химических реакциях. В этих источниках электроды не расходуются. После подзарядки от электрической сети, источники снова возобновляют механизм химического воспроизводства электрической энергии.

Рис. 3. Примеры аккумуляторов:.

Современное применение ХИТ

Источники тока химические в настоящее время применяются в:

  • транспортных средствах;
  • переносных приборах;
  • военной и космической технике;
  • научном оборудовании;
  • медицине (электрокардиостимуляторы).

Привычные примеры ХИТ в быту:

  • батарейки (сухие батареи);
  • аккумуляторные батареи переносных бытовых приборов и электроники;
  • источники бесперебойного питания;
  • автомобильные аккумуляторы.

Особенно широкое применение получили литиевые химические источники тока. Это связано с тем, что литий (Li) обладает самой высокой удельной энергией. Дело в том, что он отличается самым отрицательным электродным потенциалом среди всех прочих металлов. Литий-ионные аккумуляторы (ЛИА) опережают все прочие ХИТ по величинам удельной энергии и рабочего напряжения. Сейчас они постепенно осваивают новую сферу — автомобильный транспорт. В дальнейшем разработки ученых, связанные с усовершенствованием литиевых элементов питания, будут двигаться в направлении сверхтонких конструкций и крупных сверхмощных аккумуляторных батарей.

История применения аккумуляторных батарей

Свинцово-кислотная батарея – первая перезаряжаемая батарея, разработанная для коммерческого использования в 1850-х годах. Несмотря на довольно приличный возраст в более чем 150 лет, они по-прежнему активно применяются в современных устройствах. Более того, они активно применяются в приложениях, где, казалось бы, вполне возможно обойтись современными технологиями. Некоторые распространенные устройства вполне активно применяют СКБ, такие как источники бесперебойного питания (ИБП), гольфкары или вилочные погрузчики. Удивительно, но рынок свинцово-кислотных аккумуляторов по-прежнему растет для определенных ниш и проектов.

Первое, довольно ощутимое нововведение в свинцово-кислотную технологию пришло в 1970-е годы, когда были изобретены герметичные СКБ или необслуживаемые СКБ. Данная модернизация состояла в появлении специальных клапанов для стравливания газов при зарядке/разрядке аккумуляторов. Кроме того, применение увлажнённого сепаратора сделало возможным эксплуатировать аккумулятор в наклонном положении без протеканий электролита.

СКБ, или англ. SLA, часто классифицируют по типу или применению. В настоящее время наиболее распространенными являются два типа: гель, известный также как свинцово-кислотная батарея с регулируемым клапаном (valve-regulated lead acid (VRLA)) и абсорбирующий стеклянный мат (absorbent glass mat AGM). Аккумуляторы AGM используются для небольших ИБП, аварийного освещения и инвалидных колясок, в то время как VRLA предназначается для приложений более крупного формата, таких как резервное питание для сотовых ретрансляционных мачт, интернет-центров и вилочных погрузчиков. Свинцово-кислотные аккумуляторы также можно классифицировать по следующим признакам: автомобильные (стартер или SLI — запуск, освещение, зажигание); тяговые (тяга или глубокий цикл); стационарные (источники бесперебойного питания). Основным недостатком SLA во всех этих приложениях является жизненный цикл — если они многократно разряжаются, они сильно повреждаются.

Удивительно, но свинцово-кислотные аккумуляторы были бесспорными лидерами рынка аккумуляторных батарей в течении многих десятилетий, вплоть до появления литий-ионных батарей в 1980-х годах. Литий-ионная батарея представляет собой перезаряжаемую ячейку, в которой ионы лития движутся от отрицательного электрода к положительному во время разряда, и наоборот во время заряда. Литий-ионные аккумуляторы используют интеркалированные литиевые соединения, но не содержат металлического лития, который используется в одноразовых батареях.

Литий-ионный аккумулятор впервые был изобретен в 1970-х годах. В 1980-х на рынок была выпущена первая коммерческая версия батареи с катодом на основе оксида кобальта. Данный тип устройств имел значительно большие возможности по весу и емкости, по сравнению с системами на никелевой основе. Новые литий-ионные аккумуляторы способствовали огромному росту рынка мобильных телефонов и ноутбуков. Первоначально, из-за соображений безопасности, вводились более безопасные варианты, которые включали добавки на основе никеля и марганца в кобальт-оксидный материал катода, в дополнение к инновациям в строительстве клеток.

Первые литий-ионные элементы, представленные на рынке, были в жестких алюминиевых или стальных банках, и, как правило, имели только несколько форм-факторов цилиндрической или призматической (форма кирпича) формы. Однако, с расширением спектра применения литий-ионной технологии начали изменяться и их габаритные размеры.

Например, менее дорогие версии более старой технологии применяются в ноутбуках и сотовых телефонах. Современные тонкие литий-полимерные элементы используются в смартфонах, планшетах и носимых устройствах. В настоящее время литий-ионные аккумуляторы используются в электроинструментах, электрических велосипедах и других устройствах. Такая вариация предвещает полную замену свинцово-кислотных устройств во все новых и новых приложениях, направленных на улучшение габаритных и силовых показателей.

17.1.1 Основные электрические характеристики химических источников питания

К
основным электрическим характеристикам
химических источников питания следует
отнести следующих параметры.

  1. Напряжение разомкнутой цепи (U) – это напряжение источника тока без нагрузки. Его значение определяется видом химической системы. На состояние напряжения разомкнутой цепи влияет также температура, концентрация электролита и степень разряженности химического источника тока.

  2. Номинальное напряжение (UH) – это напряжение источника тока в средней части его разрядной характеристики при разряде в номинальном (стандартном) режиме, который устанавливается согласно технической документации на данный ХИТ.

  3. Номинальная емкость (CH) – это количество электричества, которое может отдать химический источник тока во внешнюю цепь при его разряде в номинальном режиме при температуре 200 С. Измеряется в А·час.

Для
аккумуляторов номинальная емкость
зависит также от тока заряда и
продолжительности паузы между процессом
заряда и разряда.

  1. Номинальный ток разряда (IP) – это ток разряда, который регламентируется документацией на химический источник тока. Обычно он составляет долю от номинальной емкости. Например, 0,1СН – номинальный ток составляет одну десятую от номинальной емкости.

Для
аккумуляторов электрическим параметром
является также ток
заряда (
)–это ток
заряда, который регламентируется
документацией на аккумулятор.

  1. Рабочее напряжение (U) – это напряжение источника тока под заданной нагрузкой. Оно существенно меньше напряжения разомкнутой цепи, т.к. потенциалы электродов при протекании тока отличаются от потенциалов электродов разомкнутой цепи, и кроме того имеет место падение напряжения на внутреннем сопротивлении источника тока. В общем виде:

  • где R
    – полное внутреннее сопротивление
    источника тока;

  • – сопротивление металлических
    токопроводящих деталей и материала
    электродов;
  • RПОЛ
    – поляризационное сопротивление
    электродов.
  1. Напряжение в конце разряда (UК) – это минимальное напряжение разряда химического источника тока, ниже которого в нем происходят необратимые изменения. Разряжать химические источники тока ниже этого напряжения не рекомендуется. Разряд аккумуляторов до напряжений ниже UК значительно сокращает срок их службы.

  2. Разрядная характеристика – это изменение напряжения источника тока во времени при разряде постоянным током (чаще всего при постоянной активной нагрузке).

    Форма разрядной характеристики зависит от электрохимической природы источника тока, условий его разряда, технологии изготовления (рис.17.3). Для стабильной работы электронной аппаратуры с автономным питанием наилучшим является источник тока со стабильным напряжением на протяжении большей части разрядной кривой.

    Обычно разрядную характеристику снимают при разных токах разряда и температуры окружающей среды.

  3. Зарядная характеристика – это изменение источника тока во времени при заряде его при различных токовых режимах и температурных условиях. Это характеристика характерна только для аккумуляторов и позволяет понять все ограничения процесса заряда и возможности его контроля (рис.17.4).

  4. Коэффициент отдачи по емкости – показывает эффективность зарядно-разрядного цикла источника тока при различных режимах его эксплуатации и определяется как:

  1. где СР
    – отдаваемая емкость;
  2. СЗ
    – зарядная емкость.
  3. Этот
    параметр характерен только для
    аккумуляторов.
  1. Удельная энергия – характеризует энергию, которую может отдать источник тока на единицу веса (Вт·час/кг) или объема (Вт·час/м3). Эта характеристика применяется для сравнительной оценки различных источников тока.

Соседние файлы в предмете

Конструкция

Конструкция элемента влияет на принцип его работы. Каждый источник, который выдает электрический ток, имеет определенную конструкцию:

Самый простой бытовой аккумулятор включает в себя металлический корпус, внутри которого используется щелочная среда. Дополнительными элементами являются свинцовые пластины, на которых накапливаются катоды и аноды.

Аккумулятор

Обычная бытовая батарейка с входящим в её состав сухим элементом имеет металлический корпус, в который помещен стержень-накопитель катодов. Всё прочее пространство заполнено солевым электролитом.

Батарейка

Генератор переменного тока – это устройство, состоящее из трещоток или металлической рамки.

Механический принцип устройства

Тепловой источник тока, который уже включен в цепь. Это обычная рамка, установленная на подставке из диэлектрика. Обычно, конструкция подключена к измерительному прибору, типа амперметра. Источник тепла – это пламя или внешний электрический импульс.

Тепловое устройствоВажно! Подобная конструкция помогает точно понять, как образуется энергия, которая впоследствии преобразуется в ток. Каждый вариант строения обычно заключен в специальный корпус из диэлектрического материала

Некоторые виды химических источников тока[править | править код]

Гальванические элементыправить | править код

Гальванический элемент — химический источник электрического тока, названный в честь Луиджи Гальвани. Принцип действия гальванического элемента основан на взаимодействии двух металлов через электролит, приводящем к возникновению в замкнутой цепи электрического тока.

См. также Категория: Гальванические элементы.
Тип Катод Электролит Анод Напряжение,В
Литий-железо-дисульфидный элемент FeS2 Li 1,50 — 3,50
Марганцево-цинковый элемент MnO2 KOH Zn 1,56
Марганцево-оловянный элемент MnO2 KOH Sn 1,65
Марганцево-магниевый элемент MnO2 MgBr2 Mg 2,00
Свинцово-цинковый элемент PbO2 H2SO4 Zn 2,55
Свинцово-кадмиевый элемент PbO2 H2SO4 Cd 2,42
Свинцово-хлорный элемент PbO2 HClO4 Pb 1,92
Ртутно-цинковый элемент HgO KOH Zn 1,36
Ртутно-кадмиевый элемент HgO2 KOH Cd 1,92
Окисно-ртутно-оловянный элемент HgO2 KOH Sn 1,30
Хром-цинковый элемент K2Cr2O7 H2SO4 Zn 1,8 — 1,9

Другие типы:

  • Свинцово-плавиковый элемент
  • Медно-окисный гальванический элемент
  • Висмутисто-магниевый элемент
  • Ртутно-висмутисто-индиевый элемент
  • Литий-хромсеребряный элемент
  • Литий-висмутатный элемент
  • Литий-окисномедный элемент
  • Литий-йодсвинцовый элемент
  • Литий-йодный элемент
  • Литий-тионилхлоридный элемент
  • Литий-оксидванадиевый элемент
  • Литий-фторомедный элемент
  • Литий-двуокисносерный элемент
  • Диоксисульфатно-ртутный элемент
  • Серно-магниевый элемент
  • Хлористосвинцово-магниевый элемент
  • Хлорсеребряно-магниевый элемент
  • Хлористомедно-магниевый элемент
  • Иодатно-цинковый элемент
  • Магний-перхлоратный элемент
  • Магний-м-ДНБ элемент
  • Цинк-хлоросеребряный элемент
  • Хлор-серебряный элемент
  • Бром-серебряный элемент
  • Йод-серебряный элемент
  • Магний-ванадиевый элемент
  • Кальций-хроматный элемент

Электрические аккумуляторыправить | править код

Электрический аккумулятор — химический источник тока многоразового действия (то есть в отличие от гальванического элемента химические реакции, непосредственно превращаемые в электрическую энергию, многократно обратимы). Электрические аккумуляторы используются для накопления энергии и автономного питания различных устройств.

См. также Категория: Аккумуляторы.
  • Железо-воздушный аккумулятор
  • Железо-никелевый аккумулятор
  • Лантан-фторидный аккумулятор
  • Литий-железо-сульфидный аккумулятор[источник не указан 935 дней]
  • Литий-ионный аккумулятор
  • Литий-полимерный аккумулятор
  • Литий-фторный аккумулятор
  • Литий-хлорный аккумулятор
  • Литий-серный аккумулятор
  • Марганцево-оловянный элемент
  • Натрий-никель-хлоридный аккумулятор
  • Натрий-серный аккумулятор
  • Никель-кадмиевый аккумулятор
  • Никель-металл-гидридный аккумулятор
  • Никель-цинковый аккумулятор
  • Свинцово-водородный аккумулятор
  • Свинцово-кислотный аккумулятор
  • Серебряно-кадмиевый аккумулятор
  • Серебряно-цинковый аккумулятор
  • Цинк-бромный аккумулятор
  • Цинк-воздушный аккумулятор
  • Цинк-хлорный аккумулятор

Топливные элементыправить | править код

Топливный элемент — электрохимическое устройство, подобное гальваническому элементу, но отличающееся от него тем, что вещества для электрохимической реакции подаются в него извне — в отличие от ограниченного количества энергии, запасенного в гальваническом элементе или аккумуляторе.

См. также Категория: Топливные элементы.
  • Прямой метанольный топливный элемент.
  • Твердооксидный топливный элемент.
  • Щелочной топливный элемент.

Электрические аккумуляторы

Это источник постоянного тока многоразового использования, который действует не постоянно, а до следующего заряда. Они по своей химической природе подразделяются на типы:

  • свинцово-кислотные;
  • литий-ионные (литиевые);
  • никель-кадмиевые;
  • никелево-железные.

Свинцово-кислотные модели применяются в автомобилях, источниках бесперебойного питания, транспорте, промышленности, в отрасли связи и телекоммуникаций.

Литий-ионные батареи нашли широкое применение в мобильной связи, электроинструментах, системах телекоммуникаций, а также автономном и аварийном электроснабжении. Вот только небольшой перечень спектра их составов:

  • литий-титанатовый;
  • тионилхлоридный;
  • литий-кобальтовый;
  • литий-марганцевый;
  • литий-фосфат железный;
  • литий-полимерный;
  • литий-диоксид серный;
  • литий-диоксид марганцевый.

Литий-ионные источники тока

Никель-кадмиевые аккумуляторы

Никелево-железные щелочные – очень надёжный тип источника. Пагубные для свинцово-кислотных батарей глубокие разряды, частые недозаряды не выводят их из строя. Они используются в тяговых транспортных цепях, в цепях резервного питания.

Тяговый никель-железный аккумулятор

Основы работы источника тока с двумя операционными усилителями

Чтобы проанализировать источник тока на двух операционных усилителях, мы будем использовать его реализацию в LTspice.

Рисунок 5 – Источник тока на двух операционных усилителях. Схема LTspice

Здесь я использую «идеальный однополюсный операционный усилитель» из LTspice. Сначала я попробовал это с OP-77, но симуляция не прошла должным образом. Возможно, возникла проблема с макромоделью OP-77, потому что у меня есть другая версия схемы, в которой используется операционный усилитель LT1001A, и она моделируется правильно.

Схемы источника постоянного тока обычно полагаются на некоторый тип обратной связи, который заставляет источник напряжения вырабатывать заданный ток независимо от сопротивления нагрузки (простой пример этого вы можете увидеть в управляемом напряжением светодиодном драйвере).

В источнике тока с двумя операционными усилителями U1 усиливает дифференциальное управляющее напряжение, а U2 сконфигурирован как повторитель напряжения, который измеряет напряжение на нагрузке и подает его обратно на входной каскад.

Показанная выше конфигурация источников напряжения создает дифференциальное входное напряжение, которое изменяется от +250 мВ до –250 мВ. Согласно уравнению, приведенному в примечании к применению, выходной ток должен изменяться от 2,5 мА до –2,5 мА, поскольку AV = 1 и R1 = 100 Ом, и это именно то, что мы наблюдаем:

Рисунок 6 – Зависимость выходного тока от входного дифференциального напряжения

Одна вещь, на которую вам нужно обратить внимание в этой схеме, – это выходное напряжение U1. Весь ток нагрузки исходит от U1

Если пренебречь очень небольшими токами, которые протекают через резистор обратной связи R4 и на неинвертирующий вход U2, напряжение на выходе U1 будет равно Iвых, умноженному на сумму сопротивления нагрузки и сопротивления R1.

\(V_{вых,U1}\approx \left(R_{нагр}+R1\right)I_{вых}\)

Это напряжение может легко превысить то, что фактически может генерировать выходной каскад операционного усилителя, особенно если вы используете шины ±3 В или ±5 В, а не аналоговые напряжения питания ±12 В или ±15 В, которые, как я полагаю, раньше были более распространены.

Из-за этого ограничения я бы сказал, что источник тока с двумя операционными усилителями является подходящим выбором для приложений с низким сопротивлением нагрузки и/или небольшими выходными токами.

Что такое источники тока

Источники тока – это элементы электрической цепи, который поддерживают энергию с заданными параметрами. При этом, энергоснабжение цепи не зависит от характеристик элементов, входящих в её состав, в частности, сопротивления.


Прибор для выработки тока

Различают идеальные и реальные устройства для выработки тока:

  • Идеальные определяются только благодаря гипотезам и теоретическим выкладкам. Так, учёные нередко определяют ряд условий, при которых ток имеет максимальные значения, приближенные к идеалу. То есть, осуществляется имитация идеального источника.
  • Реальные условия поддерживают заданные параметры выходного тока и напряжения. Любой прибор обеспечивает свою работу, при условии, что это позволяют сделать его технические характеристики.

Важно! Таким образом, максимальное значение тока и напряжения дают возможность определить, какой именно вариант источника будет использован в цепи – идеальный или реальный

Виды источников

Существует несколько видов устройств для выработки тока, каждый из которых имеет свои основные показатели, характеристики и особенности, приведённые в следующей таблице:

Вид источника Характеристики источника тока
Механический Специальное устройство (генератор) обеспечивает трансформацию механической энергии в электрическую. В настоящее время большое количество тока производится именно с помощью механических источников.
Тепловой В основу работы агрегатов заложен принцип переработки тепловой энергии в электрическую. Такое преобразование происходит благодаря разности температур контактирующих между собой полупроводников. В настоящее время разработаны источники тока, тепловая энергия в которых вырабатывается благодаря распаду радиоактивных элементов.
Химический Химические варианты можно условно разделить на 3 группы – гальванические, аккумуляторы и тепловые. · Гальванический элемент работает посредством взаимодействия 2-х разных металлов, помещенных в электролит. · Аккумуляторы – устройства, которые можно несколько раз заряжать и разряжать. Существует несколько видов аккумуляторов с различными типами элементов, входящих в их состав. · Химически-тепловые используются только для кратковременной работы. Применяются, в основном, в сфере ракетостроения.
Световой В конце XX века достаточно популярными стали солнечные батареи, которые «собирают» световые частицы, преобразуемые впоследствии в электрическую энергию. Это происходит за счет выдачи напряжения и благодаря воздействию на световые частицы.

Вам это будет интересно Особенности поперечного сеченияВажно! Каждый вид имеет свои преимущества и недостатки, которые определяются принципом использования, а также исходными показателями вырабатываемой энергии

Механические источники

Механические агрегаты являются самыми простыми по принципу их использования и обустройства. Характеристика таких генераторов очень проста для понимания. В специальных устройствах вырабатывается энергия, которая впоследствии преобразуется в электричество. Такие приборы используются на тепловых электростанциях и гидроэлектростанциях.

Механический

Классификация ХИТ

Химические источники тока отличаются по:

  • размеру;
  • конструкции;
  • реагентам;
  • природе энергообразующей реакции.

Эти параметры определяют эксплуатационные свойства ХИТ, подходящие для конкретной области применения.

Классификация электрохимических элементов основана на различии в принципе работы устройства. В зависимости от этих характеристик, различают:

  1. Первичные химические источники тока — элементы одноразового действия. В них имеется определенный запас реагентов, который расходуется при реакции. После полного разряда такая ячейка теряет работоспособность. По-другому первичные ХИТ называют гальваническими элементами. Верным будет и называть их просто — элемент. Самые простые примеры первичного источника питания — «батарейка» А-А.
  2. Перезаряжаемые химические источники тока — аккумуляторы (их также называют вторичными, обратимыми ХИТ) являются многоразовыми элементами. Путем пропускания тока от внешней цепи в обратном направлении через аккумулятор после полного разряда израсходованные реагенты регенерируются, вновь накапливая химическую энергию (заряжаясь). Благодаря возможности подзарядки от внешнего постоянного источника тока это устройство используется в течение долгого времени, с перерывами на подзарядку. Процесс выработки электрической энергии называется разрядом аккумулятора. К таким ХИТ можно отнести элементы питания многих электронных устройств (ноутбуки, мобильные телефоны и т. п.).
  3. Тепловые химические источники тока — приборы непрерывного действия. В процессе их работы происходит непрерывное поступление новых порций реагентов и удаление продуктов реакции.
  4. В комбинированных (полутопливных) гальванических элементах имеется запас одного из реагентов. Второй подается в устройство извне. Срок работы устройства зависит от запаса первого реагента. Комбинированные химические источники электрического тока используются как аккумуляторы, если есть возможность восстановления их заряда путем пропускания тока от внешнего источника.
  5. ХИТ возобновляемые перезаряжаются механическим или химическим путем. Для них существует возможность замены после полного разряда израсходованных реагентов на новые порции. То есть они не являются устройствами непрерывного действия, а, подобно аккумуляторам, периодически подзаряжаются.

Закон Ома

Закон
Ома. Напряжение и ток считаются наиболее благоприятными свойствами
электрических цепей. Одной из основных характеристик применения электроэнергии
является быстрая транспортировка энергии из одного места в другое и передача ее
потребителю в правильной форме. Производство разности потенциалов по току
приводит к мощности, т.е. к количеству энергии, высвобождаемой в электрической
цепи за единицу времени. Как упоминалось выше, для измерения мощности в
электрической цепи потребуется 3 устройства.

Так
каково же сопротивление провода или цепи в целом? Имеет ли проволока, как и
водопроводные трубы или трубки вакуумной системы, постоянное свойство, которое
можно назвать сопротивлением? В трубах, например, соотношение перепада
давления, при котором создается поток, деленное на скорость потока, обычно
является постоянным свойством трубы. Аналогичным образом, тепловой поток в
проволоке подчиняется простому соотношению, которое включает разность
температур, площадь поперечного сечения проволоки и длину проволоки.
Обнаружение этого соотношения для электрических цепей является результатом
успешного поиска.

В
1820-х годах немецкий школьный учитель Георг Ом первым начал искать
вышеупомянутые отношения. Прежде всего, он искал славу и знаменитостей, которые
позволили бы ему преподавать в университете. Это была единственная причина, по
которой он выбрал область исследований, имеющую особые преимущества.

Ом
был сыном слесаря, поэтому он умел рисовать металлическую проволоку различной
толщины, которая ему требовалась для экспериментов. Так как в то время не было
возможности купить подходящую проволоку, Ом сделал это сам. Во время
экспериментов он пробовал различные длины, толщины, металлы и даже температуры.
Он варьировал все эти факторы по порядку. Во времена Ома батареи все еще были
слабыми, в результате чего ток был разной силы. По этой причине исследователь
использовал термопару в качестве генератора, горячая точка которого была
помещена в пламя. Он также использовал грубый магнитный амперметр, а разность
потенциалов (называемая «напряжением» после Ом) измерялась путем
изменения температуры или количества термосплавов.

Доктрина
электрических цепей только начала развиваться. После изобретения батарей около
1800 года, она начала развиваться гораздо быстрее. Были разработаны и
изготовлены (часто вручную) различные устройства, открыты новые законы,
появились понятия и термины и т.д. Все это привело к более глубокому пониманию
электрических явлений и факторов.

Обновление
знаний об электричестве стало, с одной стороны, причиной появления новой
области физики, с другой — основой быстрого развития электротехники, т.е. были
изобретены батареи, генераторы, системы электроснабжения для освещения и
электропривода, электрические печи, электродвигатели и т.д.

Открытия
Ома имели большое значение как для развития изучения электричества, так и для
развития прикладной электротехники. Они упростили прогнозирование свойств
электрических цепей для постоянного тока, а затем и для переменного. В 1826 г.
Ом опубликовал книгу, в которой представил теоретические выводы и
экспериментальные результаты. Но его надежды не оправдались, книга была
высмеяна. Это было связано с тем, что метод грубых экспериментов казался
непривлекательным в то время, когда многие люди были преданы философии.

У
него не было выбора, кроме как отказаться от должности учителя. По той же
причине ему не назначили встречу в университете. В течение 6 лет ученый жил в
нищете, не имея уверенности в завтрашнем дне, с горьким разочарованием.

Но
постепенно его работы впервые стали известны за пределами Германии. Ом
пользовался уважением за рубежом и использовал свои исследования. В результате,
его соотечественники дома должны были признать его. В 1849 году он был назначен
профессором Мюнхенского университета.

Ом
обнаружил простой закон, устанавливающий связь между током и напряжением для
обрыва провода (для части цепи, для всей цепи). Он также создал правила для
определения того, что изменится, если будет взята проволока другого размера.
Закон Ома сформулирован следующим образом: Ток на участке цепи прямо
пропорционален напряжению на этом участке и обратно пропорционален
сопротивлению этого участка.

Советы по эксплуатации аккумуляторов

А теперь самые простые советы, которые помогут прослужить вашим аккумуляторам максимально долго.

  • Берегите элементы питания от огня и воды – оба фактора чреваты выходом из строя.
  • Чрезмерное охлаждение и нагревание, а также резкая смена температур тоже губительны.
  • Применяйте соответствующий вашему аккумулятору тип зарядки, коих есть аж 4 штуки.
  • Первый – это медленный заряд низким постоянным током. Происходит он в течение довольно длительного времени – до 18 часов. Такой метод подходит почти для всех аккумуляторов и является самым безопасным.
  • Второй – быстрый заряд. Происходит в течение 3-5 часов при постоянном токе в 1/3С.
  • Третий – дельта V заряд (ускоренный) — начальные ток равен номинальной емкости элемента, напряжение постоянно меняется. Заряд происходит за 1-1,5 часа. При этом возможен перегрев и разрушение устройства.
  • Четвертый тип называется реверсивным. При нем длинные импульсы заряда сменяются короткими импульсами разряда. Такой метод наиболее полезен для аккумуляторов с «эффектом памяти».

На этом закончим наш обзор. Мы разобрали электрохимические источники тока и получили простейшее представление об их работе. Если вы хотите изучить тему глубже, то уже не обойтись без учебных пособий и видео, которые можно легко отыскать в сети.

Общие сведения

Упорядоченное движение электрических зарядов в физическом теле называют током. Значит, для того чтобы он существовал необходима какая-то сила, воздействующая на обладающие энергией элементарные частицы. Причём её действие должно быть постоянной для поддержания необходимого электротока в установленный промежуток времени. Именно для этого и используют источники электрического тока, приборы, которые умеют генерировать электричество.

Создание первого источника датируется 1800 годом, когда физик Вольт представил сообществу прибор, названный им «электродвижущий аппарат». Позже он получил официальное название «вольтов столб». Принцип работы этого устройства заключался в растворении цинковой пластины, соединённой с медным проводником. Физик придал приспособлению вертикальную форму и разместил химические вещества поочерёдно. В итоге получился как бы слоёный пирог. Между пластинами цинка и меди заливался электролит.

Полуметровый столб Вольта подключался к замкнутой цепи, причём медный вывод считался плюсовым, а цинковый минусовым. Таким образом, Вольт, не поняв действительной причины возникновения тока, практически пришёл к созданию гальванического элемента, действие которого основывалось именно на превращении химической энергии в электрическую.

Несмотря на то что Вольт так и не смог понять действительную причину появления тока его прибор стал популярен среди учёных исследовавших электричество. Как выяснилось впоследствии «вольтов столб» стал прототипом гальванической батареи. В 1830 году русский учёный Петров на базе изобретения француза создал источник, выдающий 1,7 киловольта. Длина его установки составляла 12 метров, а мощность 85 ватт.

Сегодня под источником тока понимают генератор способный преобразовывать различного рода матерею в электричество, то есть создавать электромагнитное поле.

Следует отметить, что в электротехнике источники разделяют на два вида: тока и напряжения.

Отличия их в следующем:

  • генератор тока выдаёт постоянный поток электронов в независимости от напряжения и, по сути, является конденсатором с бесконечной ёмкостью;
  • источник напряжения обеспечивает постоянную разность потенциалов и похож на аккумулятор.

Но на самом деле эти различия чисто теоретические, на практике же отличия не существуют. Это связано с тем, что изготовить идеальный прибор невозможно. То есть такой, на который не влияет нагрузка приёмника, а внутреннее сопротивление нулевое.