Какие существуют виды источников электрического тока?

Содержание

Энергия из морских волн

В апреле 2021 года британская компания Mocean Energy представила Blue X — прототип установки, которая будет преобразовывать кинетическую энергию морских волн в электричество.

Установка Blue X

(Фото: Mocean Energy)

Принцип работы такой: установку помещают на поверхность воды, она качается на волнах и приводит в движение шарнир посередине. Тот в свою очередь запускает генератор, который вырабатывает электроэнергию и по кабелям перенаправляет ее на сушу.

Как это применять: по оценкам Mocean Energy, если использовать хотя бы 1% всей доступной энергии волн в мире, можно обеспечить электричеством 50 млн зданий. Для сравнения: в России насчитывается около 14 млн жилых домов.

Происхождение электричества

История электричества рассматривалась в тематике Переменного тока, но остались подробности. Дочери Фалеса Милетского мир обязан знанию об электричестве. Слово происходит от древнегреческого названия янтаря, а первым всерьёз занялся исследованиями Уильям Гилберт. К тому времени уже известны работы Перегрина о магнетизме – единственный короткий манускрипт, а о Фалесе Милетском физик знал по трактатам Аристотеля.

Выход книги De magnete, magneticisque corparibus etc пришёлся на 1600 год. Чтобы лучше понять обстановку, вспомним, что после 9 лет следствия в указанный период сожгли Джордано Бруно. Без пролития крови, как требовали правила инквизиции. Бывший священник по доносу собственного друга отправился на костёр. Через 5 лет при короле Якове I произошёл Пороховой заговор. Суд обвинил группу католиков в попытке взорвать парламент и даже поймал – Гая Фокса.

Электричество

Той печальной осенью дворяне вразрез со сложившимися традициями подверглись пыткам на дыбе. Гай не сдавался, но когда начали подписывать показания соратники, он поступил аналогично. Почерк сильно отличался от обычного – невозможно писать с изувеченными руками. На казни Гаю помогли на виселицу взобраться палачи, но он сумел ловко прыгнуть и сломать шею, избежав дальнейших мучительных процедур.

В этой кутерьме Уильям Гилберт, пару лет не доживший до Порохового заговора, и ушедший из жизни с водворением на престол Якова I выпускает трактат, связанный с неописуемо загадочными явлениями – электричество и магнетизм. Описывает, что потёртый янтарь отклоняет в сторону стрелку компаса, конструирует прибор, именуемый версором, для наблюдения и опытов. Учёного легко могли обвинить в колдовстве – инквизиция и аналогичного рода структуры жгли ведьм. Сие затронуло преимущественно материковую часть Европы, но и в Англии было жарко. Закон о прекращении уголовного преследования за колдовство вышел в Великобритании лишь в 1735 году.

Прежде постоянное электричество вполне могло стать причиной если не казни, то неприятных процедур. Итак, Гилберт, набравшись смелости говорит, что электричество считается слабой силой, легко разрушаемой. Стоит лишь поместить между телами диэлектрик, как эффект притяжения нарушается. Одновременно магнетизм признается сильной чертой и не зависит от попадания влаги, влияния предметов и прочего. Избранные тела способны электризоваться, а другие нет. Магнетизм затрагивает лишь избранные материалы, а «слабое» явление влияет на все сущее (со слов Гилберта). Подмечены и иные характерные черты. К примеру, магниту свойственно постоянство, а для электризации тело следует натереть до «блеска, нагрева или истечения».

Изучение электричества

Книга полна технических ошибок из-за несовершенства методик исследования. Но это дало учёным исход, и через двести лет уже придумали Вольтов столб. Это источник постоянного напряжения, чуть напоминающий современный аккумулятор. Неплохо, если учесть, что после Фалеса Милетского прошло 20 веков (2000 лет), пока человек решился изложить научно простое явление электризации янтаря. Эстафету перенял Никола Кабео, в Философии магнетизма (1629 год) попытавшийся, избегая душ у материальных тел, объяснить загадочные явления. По соображениям учёного вещь, наделённая необычными качествами, раздвигала и сжимала воздух, отчего происходили наблюдаемые феномены. Натолкнуло на мысль отсутствие разницы меж обычными и заряженными телами в тысячекратных опытах над постоянными объектами.

Отцом постоянного тока называют Отто фон Герике, внимавшего с прилежностью трудам Гилберта. Учёный захотел создать машину, автоматизировавшую процесс трения, и пришёл постепенно к конструкции первого статического генератора. Для этих целей Герике рекомендует использовать шар из серы величиной с детскую голову. Накопленный электрический потенциал оказался потрясающим, учёный немедленно делает ряд открытий:

  1. Заряды способны притягиваться и отталкиваться.
  2. Электричество течёт по проводникам.

Течение тока по поводам

Реакция научного мира отсутствовала. Никто не заметил выдающихся открытий на фоне работ Герике по теме разреженных газов. Систематизировал сведения по электричеству Шарль Дюфе в декабре 1733 года, через много лет после смерти выдающегося учёного. Экспериментатор установил, что заряды бывают двух знаков, первый немедленно окрестили стеклянным, второй – смоляным. Через пару лет европейские государства начинают расставаться с практикой преследования граждан за колдовство, открытия следуют друг за другом.

Тепловые электрические станции – ТЭС

На тепловых электростанциях России производится примерно 70% всей электрической энергии. Они работают на мазуте, газе, угле, а в определенных местностях используется торф и сланцы.

Все ТЭС можно условно разделить на два основных вида. Первый вариант является так называемым паротурбинным, где первичным двигателем служит паровая турбина. Эти устройства могут быть конденсационными (КЭС), вырабатывающими только электроэнергию, и теплоэлектроцентралями (ТЭЦ), производящими не только электричество, но и тепло. Коэффициент полезного действия ТЭЦ составляет 60-70%, а у КЭС этот показатель равен 30-40%. Основным недостатком тепловых станций считается их обязательная привязка к потребителям тепла.

Положительных качеств у тепловых электростанций значительно больше. Они свободно размещаются на всех территориях, где имеются природные ресурсы и не подвержены сезонным колебаниям погодных условий. Однако, используемое топливо является не возобновляемым, а сами установки негативно влияют на экологическую обстановку. Российские ТЭС не имеют достаточно эффективных систем очистки выходящих газов от вредных и токсичных веществ. Более экологичными считаются газовые установки, но трубопроводы, проложенные к ним, наносят непоправимый вред природе.

Электростанции, расположенные в европейской части Российской Федерации, работают в основном на мазуте и природном газе, а в восточных районах они располагаются возле месторождений угля, добываемого открытым способом. Большинство установок относится к государственным районным электростанциям – ГРЭС, входящим в Единую энергосистему страны.

Электричество. Основные понятия

2013-05-13

Теория 3 комментария

В этой статье предлагаю вам вспомнить базовые понятия в электрике, без которых любая работа, связанная с электричеством становится проблематичной.

Итак, любая электрическая цепь представляет собой совокупность различных устройств, образующих путь для прохождения электрического тока. Простейшая электрическая цепь может состоять из источника энергии, нагрузки и проводников.

Проводники — вещества, проводящие электрический ток. Они обладают малым удельным сопротивлением( т.е оказывают наименьшее сопротивление прохождению тока) и способны проводить электрический ток практически без потерь. Лучшими проводниками являются золото, серебро, медь и алюминий. Наибольшее распространение, вследствии дороговизны золота и серебра, получили медь и алюминий. Медь наиболее часто встречающийся проводник, в отличии от алюминия, обладающий большей устойчивостью к окислению и физическим воздействиям: изгибу, скручеванию. Недостатком меди, по сравнению с алюминием, является более высокая стоимость.

Помимо проводников существуют также диэлектрики — вещества которые обладают большим удельным сопротивлением электрическому току (т.е являются непроводящими электрический ток). К ним относятся пластмассы, дерево, текстолит и т.д

Также надо отметить и еще один тип — полупроводники. По своему удельному сопротивлению они занимают промежуточное положение между проводниками и диэлектриками. Проводимость этих материалов существенно меняется под влиянием внешних факторов. К числу полупроводников относятся многие химические элементы, но наибольшее распространение получили кремний и германий.

Источник энергии — это устройство, преобразующее механическую, химическую, тепловую и другие виды энергии в электрическую.

Нагрузка — потребитель электрической энергии, т.е любой электроприбор, который преобразовывает электрическую энергию в механическую, тепловую, химическую и т.д

Электрическим током в электротехнике называют направленное движение заряженных частиц под действием электрического поля, создаваемого источником питания. Величина, характеризующая ток называется сила тока. Сила тока измеряется в Амперах и обозначается буквой А. Различают постоянный и переменный токи.

Постоянный ток ( DC, по-английски Direct Current) — это ток, свойства которого и направление не меняются с течением времени. Обозначается постоянный ток и напряжение в виде короткой горизонтальной черточки или двух параллельных, одна из которых штриховая.

Переменный ток (AC по-английски Alternating Current) — это ток, который изменяется по величине и направлению с течением времени. На электроприборах обозначается отрезком синусоиды «

». Основными параметрами переменного тока являются период, амплитуда и частота.

Период — промежуток времени, в течение которого ток совершает одно полное колебание.

Частота — величина, обратная периоду, число периодов в секунду, измеряется в герцах (Гц).

Ток и напряжение в нагрузке увеличиваются и уменьшаются, а разница между минимальным и максимальным их значением называется амплитудой.

Измерение тока проводится амперметром, который подключается последовательно нагрузке.

Любой проводник в цепи, в зависимости от сечения, длины, материала, оказывает сопротивление прохождению электрического тока. Свойство проводника препятствовать прохождению электрического тока называют сопротивлением. Сопротивление измеряется в Омах (Ом).

Разность потенциалов на концах источника питания называется напряжением. Напряжение измеряют в Вольтах и обозначают буквой В (V). В трехфазной электрической сети различают такие понятия, как линейное и фазное напряжения. Линейное напряжение ( или иначе межфазное) — это напряжение между двумя фазными проводами (380V). Фазное напряжение — это напряжение между нулевым проводом и одним из фазных (220V). Измеряется напряжение вольтметром, который подключается параллельно нагрузке.

Еще одним важным понятием в электротехнике является понятие мощности. Мощность источника характеризует скорость передачи или преобразования электроэнергии. Мощность измеряется в Ваттах (Вт, W).

Суммарная мощность всех подключенных потребителей равна сумме потребляемых мощностей каждым потребителем. Робщ = Р1+Р2+. Рn

Различают понятия активной и реактивной мощности. P – активная мощность (эффективная), связана с той электрической энергией, которая может быть преобразована в другие виды энергии – тепловую, световую, механическую и др., измеряется в ваттах (Вт), представляет собой полезную мощность, которую можно использовать для выполнения работы.

История

Как появились первые источники тока? Химические источники получили название гальванических элементов в честь итальянского ученого восемнадцатого века — Луиджи Гальвани. Он был врачом, анатомом, физиологом и физиком. Одним из направлений его исследований было изучение реакций животных на различные внешние воздействия. Химический способ получения электроэнергии был открыт Гальвани случайно, во время одного из опытов над лягушками. Он подсоединил к оголенному нерву на лягушачьей лапке две металлические пластины. При этом произошло мускульное сокращение. Собственное объяснение этого явления Гальвани было неверным. Но результаты его опытов и наблюдений помогли его соотечественнику Алессандро Вольта в последующих исследованиях.

Вольта изложил в своих трудах теорию возникновения электрического тока в результате химической реакции между двумя металлами при контакте с мускульной тканью лягушки. Первый химический источник тока выглядел как емкость с соляным раствором, с погруженными в него пластинами из цинка и меди.

В промышленных масштабах ХИТ начали производиться еще во второй половине девятнадцатого века, благодаря французу Лекланше, который изобрел первичный марганцево-цинковый элемент с солевым электролитом, названный его именем. Через несколько лет эта электрохимическая ячейка была усовершенствована другим ученым и являлась единственным первичным химическим источником тока до 1940 года.

Литиевые аккумуляторы с полимерным электролитом (LPB, ЛПА)

Как уже отмечалось выше, литий имеет самую высокую теоретическую плотность энергии, однако его использование в виде металла в качестве анода затруднено из-за дендритообразования в процессе циклирования. Дендритообразование рассматривается как один из главных факторов, который делает литиевую вторичную батарею подверженной взрыву и воспламенению. В процессе взаимодействия литиевого металлического анода с органическим апротонным электролитом на его поверхности образуется межфазная пленка. Структура этой пленки определяет безопасность и ресурс литиевой вторичной батареи. Концепция литиевого аккумулятора с твердым полимерным электролитом (ЛПА) заключалась в том, чтобы найти способ использовать литиевый анод настолько безопасно, насколько это возможно. В ЛПА полимерный электролит действует и как сепаратор, и как электролит, обеспечивающий высокое качество пленки на литиевом металлическом аноде. Принцип, лежащий в основе этой концепции ЛПА, состоит в том, что плотный и однородный полимерный электролит является идеальным для межфазной пленки и поэтому может предотвращать формирование и рост дендритов. Было обнаружено, что ряд полимеров, например комплекс полиэтиленоксида (PEO) и литиевой соли, обладают ионной проводимостью. И, таким образом, концепция полимерного электролита стала реальностью. Технология производства подобна таковой для ПЛИА за исключением того, что в качестве материала анода используется металлический литий. Внедрение проходило с трудом, что было связано с низкой ионной проводимостью использованных полимеров и не позволяло производить разряд требуемыми токами. Сейчас многие компании работают в этом направлении и добились ощутимых успехов.

На первых порах ЛИА характеризовались:

  • малыми токами;
  • малыми емкостями;
  • высокими ценами;
  • усложненным аппаратурным использованием, связанным с вопросами обеспечения безопасной эксплуатации.

Поэтому ранее считалось, что ЛИА хороши и перспективны только для малогабаритных систем с относительно низким током разряда, причем в области ценонезависимых применений. Однако в настоящее время ситуация резко меняется.

Прогнозируется, что рынок ставших традиционными применений портативной электроники и послуживший в свое время импульсом для развития литий-ионной системы, будет развиваться не очень интенсивно в стоимостном выражении. Количественное возрастание объемов будет компенсироваться снижением цены за Вт·ч. Рост рынка ЛИА всецело будет определяться возможностями новых поколений этих аккумуляторов. Наиболее существенный рост стимулируется новыми применениями (рис. 5, табл. 5), которые могут учетверить существующий сегодня рынок (на конец 2005 г. он оценивался в $7 млрд).


Рис. 5. Современный и будущий рынок малогабаритных аккумуляторов
Таблица 5. Проникновение ЛИА в массовые сектора рынка (Takeshita market report)

На подходе также решение вопроса о применении ЛИА и в других стратегических областях, требующих больших емкостей и больших разрядных токов (тяговые и стартерные режимы). Это касается в первую очередь электромобилей и железной дороги, стационарных объектов телекоммуникаций, авиационного, космического, подводного и ряда других применений, в частности робототехники, которая, возможно, окажет такую же определяющую роль в развитии аккумуляторной промышленности, как в свое время сотовая телефония.

Виды альтернативных источников энергии

1. Солнечная энергия

Солнце — главный источник энергии на Земле, ведь около 173 ПВт (или 173 млн ГВт) солнечной энергии попадает на нашу планету ежегодно, а это более чем в 10 тыс. раз превышает общемировые потребности в энергии. Фотоэлектрические модули на крыше или на открытых территориях преобразуют солнечный свет в электрическую энергию с помощью полупроводников — в основном, кремния. Солнечные коллекторы вырабатывают тепло для отопления и производства горячей воды, а также для кондиционирования воздуха.

Солнечные панели могут вырабатывать энергию и в пасмурную погоду, и даже в снегопад. Для наибольшей эффективности их стоит устанавливать под определенным углом — чем дальше от экватора, тем больше угол установки панелей.

Съедобная упаковка и солнечный парус: новинки космических эко-технологий

2. Энергия ветра

Использование ветра в качестве движущей силы — давняя традиция. Ветряные мельницы использовались для помола муки, лесопильных работ) и в качестве насосной или водоподъемной станции. Современные ветрогенераторы вырабатывают электроэнергию за счет энергии ветра. Сначала они превращают кинетическую энергию ветра в механическую энергию ротора, а затем в электрическую энергию.

Ветроэнергетика является одной из самых быстроразвивающихся технологий возобновляемой энергетики. По последним данным IRENA, за последние два десятилетия мировые мощности по производству энергии ветра на суше и на море выросли почти в 75 раз — с 7,5 ГВт в 1997 году до примерно 564 ГВт к 2018 году.

3. Энергия воды

Еще в древнем Египте и Римской империи энергия воды использовалась для привода рабочих машин, в том числе мельниц. В средние века водяные мельницы применялись в Европе на лесопильных и целлюлозно-бумажных предприятиях. С конца XIX века энергию воды активно используют для получения электроэнергии.

4. Геотермальная энергия

Геотермальная энергия использует тепло Земли для производства электричества. Температура недр позволяет нагревать верхние слои Земли и подземные водоемы. Извлекают геотермальную энергию грунта с помощью мелких скважин — это не требует больших капиталовложений. Особенно эффективна в регионах, где горячие источники расположены недалеко к поверхности земной коры.

5. Биоэнергетика

Биоэнергетика универсальна. Тепло, электричество и топливо могут производиться из твердой, жидкой и газообразной биомассы. При этом в качестве возобновляемого сырья используются отходы растительного и животного происхождения.

Энергия из спирта и навоза: преимущества и недостатки биотоплива

6. Энергия приливов и отливов

Приливы и волны — еще один способ получения энергии. Они заставляют вращаться генератор, который и отвечает за выработку электричества. Таким образом для получения электроэнергии волновые электростанции используют гидродинамическую энергию, то есть энергию, перепад давления и разницу температур у морских волн. Исследования в этой области еще ведутся, но специалисты уже подсчитали — только побережье Европы может ежегодно генерировать энергии в объеме более 280 ТВт·ч, что составляет половину энергопотребления Германии.

Как устроена самая мощная в мире приливная турбина

Аккумуляторы-вторичные химические источники тока

Практическая электротехника — Химич-кое действие тока Источники постоянного тока

Аккумуляторы — вторичные химические источники электрической энергии — обладают способностью накапливать (аккумулировать) химическую энергию под действием электрического тока и затем, по меренадобности, отдавать ее в виде электрической энергии во внешнюю цепь.

При правильной эксплуатации аккумуляторы выдерживают до 500и более циклов заряд — разряд. В буферном режиме, когда аккумуляторвключен параллельно с генератором постоянного тока и служит главным образом для сглаживания колебаний напряжения последнего, срокслужбы исчисляется годами.

В настоящее время широкое применение находят кислотные (свинцовые), щелочные (кадмиево-никелевые, железоникелевые, серебряно-цинковые) аккумуляторы.

В серебряно-цинковых аккумуляторах в качестве активных материалов участвуют серебро и окись цинка. Электролитом служит раствор едкого калия. Эти батареи в 6 раз легче и в 5 раз меньше по размерам, чем свинцово-кислотные того же заряда. Онииспользуются в ответственных электроустановках.

В свинцовых аккумуляторах в качестве активного вещества на положительном электроде служит двуокись свинца Рb02.на отрицательном электроде — губчатый металлический свинец Рb.Электролит — раствор серной кислоты H2S04 плотностью 1,18…1,29 г/см3. При разряде свинцового аккумулятора происходит химический процесс, описываемый уравнением Pb02 + Pb + 2H2S04 — 2PbS04 + 2Н20.                                         (3.3) При заряде процесс идет в обратном направлении.

В кадмиево-никелевых аккумуляторах активными веществами положительного электрода являются окислы никеля, смешанные для увеличения электропроводности с графитом, а отрицательного электрода — губчатый металлический кадмий в смеси с губчатым железом. Электролитом служит раствор едкого кали или едкого натра, иногда с добавлением едкого лития.

В железоникелевых аккумуляторах вместо кадмия использован мелкий порошок железа, поэтому их стоимость значительно ниже. Недостаток железоникелевых аккумуляторов — значительный саморазряд.

В обозначении аккумуляторов первое число показывает, сколько аккумуляторных банок в батарее, последнее — каков электрический заряд* батареи в ампер-часах или кулонах: 1 А • ч = 3,6 кКл. Буквы в маркировке кислотных аккумуляторов означают: С — стационарный для продолжительных режимов разряда, СК- стационарный для Кратких и продолжительных режимов разряда с усиленными соединительными полосами, СЭ — стационарный в эбонитовом баке, СЗ — закрытого исполнения, СТ — стартерный для автомобилей и других машин, МТ — мотоциклетный, А — авиационный, РА — радиоанодный, РН — радионакальный и т. д.

В щелочных аккумуляторах буквы в маркировке означают: КН — кадмиево-никелевый, ЖН — железоникелевый, ТЖН — тяжелый железоникелевый и т.д.

Основной характеристикой аккумуляторов является их электрический заряд измеряемый в ампер-часах. Его вычисляют как произведение силы тока при разряде на продолжительность этого режима. Так, если электрический заряд равен 100 Ач, то при силе тока 10 А обеспечивается работа токоприемника в течение 10 ч, при силе тока 5 А — в течение 20 ч и т. д. Электрический заряд зависит от конструкции аккумулятора, от качества его зарядки, а также от силы разрядного тока.

Для питания транзисторных приборов промышленность выпускает миниатюрные-герметичные кадмиево-никелевые аккумуляторы серии Д, ЦНК, КНГ с электрическим зарядом от 0,06 до 1,5 Ач, рассчитанные более чем на 100 циклов разряд — заряд.

* Термин «электрическая емкость» устарел.

< Предыдущая   Следующая >
Похожие материалы:
  • Химические источники тока. Гальванические элементы
  • Постоянный ток в электролитах. Электролиз. Гальванотехника

Химические источники

Получение положительных и отрицательно заряженных частиц в химических источниках постоянного тока осуществляется за счет химических реакций. По классификации химических источников они делятся на 3 группы:

  • гальванические элементы, являющиеся первичными источниками ;
  • электрические аккумуляторные батареи (АКБ), или вторичные ХИТ;

*ХИТ — химические источники тока.

Гальванические элементы используют принцип действия, основанный на взаимодействии двух металлов через среду электролита. Вид и характеристики ХИТ зависят от выбранной пары металлов и состава электролита. Два металлических электрода источника тока по аналогии с прибором односторонней проводимости получили название анода («+») и катода («-«).

Материалом для изготовления анода могут служить свинец, цинк, кадмий и другие. Катод изготавливают из оксида свинца, графита, оксида марганца, гидрооксида никеля. По составу электролита гальванические элементы разделяются на 3 вида:

  • солевые или «сухие»;
  • щелочные;
  • литиевые.

В элементах первых двух видов графито-марганцевый стержень (катод) помещен по оси цинкового цилиндрического стаканчика (анода). Свободное пространство между ними заполнено пастой на основе хлорида аммония (солевые) или гидрооксида калия (щелочные).

В литиевых элементах цинковый анод заменен щелочным литием, что привело к значительному увеличению продолжительности работы. Материал катода в них определяет выходное напряжение батарейки (1,5-3,7) В. Первичные ХИТ являются источниками одноразового действия. Его реагенты, расходующиеся в процессе работы, не подлежат восстановлению.

Аккумуляторы представляют собой устройства, в которых производится преобразование электрической энергии внешнего источника тока в химическую энергию при заряде и ее накопление. В процессе работы (разряд) происходит обратное преобразование — химическая энергия служит источником постоянного электрического тока.

К основным видам аккумуляторов относятся:

  • свинцово-кислотные;
  • никель-кадмиевые щелочные;
  • литий-ионные.

Для создания химических процессов набор пластин помещен в раствор электролита. В АКБ, созданных по современным технологиям, раствор представляет собой не жидкость, а гелиевый состав (GEL) или сотовые сепараторы, пропитанные электролитом и помещенные между свинцовыми пластинами (AGM).

Свинцово-кислотные и никель-кадмиевые щелочные аккумуляторы для работы в качестве источников постоянного тока для запуска двигателей автомобилей собирают из набора отдельных аккумуляторных элементов («банок»). Каждая «банка» обеспечивает на своих клеммах напряжение 2,1 В. Соединенные последовательно 6 элементов и помещенные в ударопрочный корпус, имеют на выходных клеммах аккумулятора необходимые для запуска двигателя 12 В.

В литий-ионных аккумуляторах носителями электрического тока служат ионы лития. Они образуются на катоде, изготовленному из соли лития. Анод может быть изготовлен из графита или оксидов кобальта. Напряжение постоянного тока на выходе аккумулятора может варьироваться в пределах (3,0-4,2) В в зависимости от используемых материалов. Эти аккумуляторы имеют низкое значение тока саморазряда и допускают большое количество циклов заряд/разряд. Благодаря этому все современные гаджеты используют аккумуляторы этого вида.

Способы утилизации химических источников энергии


Проблема утилизации разных по габаритах химических источников напряжения является экологической проблемой всей планеты. Современные источники содержат в себе до тридцати химических элементов которые могут нанесите ощутимый вред природным ресурсам, поэтому для их утилизации разработаны целые программы и построены специализированные цеха по переработке. Некоторые методы позволяют не только качественно перерабатывать эти вредные вещества, но и возвращать в производство, тем самым защитив окружающую среду. В целях извлечения цветных металлов из батарей и аккумуляторов в настоящий момент разработаны и применены в цивилизованных странах, следящих и заботящихся об окружающей среде, целые пирометаллургические и гидрометаллургические комплексы. Самый же распространённый способ утилизации отработанных химических источников тока является метод, работающий на соединении этих процессов. Главным его достоинством считается высокая степень извлечения с минимальным количеством отходов. Этот метод пирометаллургической, гидрометаллургической и механической переработки включает в себя восемь основных стадий:

  1. Измельчение;
  2. Магнитная сепарация;
  3. Обжиг;
  4. Дополнительное измельчение;
  5. Выделение крупных и мелких элементов с помощью грохочения;
  6. Водное очищение и выщелачивание;
  7. Сернокислотное выщелачивание;
  8. Электролиз.

Организация правильного сбора и утилизации ХИТ позволяет максимально уменьшить негативное влияние как на окружающую природу, так и на здоровье самого человека.