Газотурбинный двигатель принцип работы

Принцип работы ГТУ

Атмосферный воздух поступает в компрессор, сжимается и под высоким давлением через воздухоподогреватель и воздухораспределительный клапан направляется в камеру сгорания.

Одновременно через форсунки в камеру сгорания подается газ, который сжигается в воздушном потоке.

Сгорание газовоздушной смеси образует поток раскаленных газов, который с высокой скоростью воздействует на лопасти газовой турбины, заставляя их вращаться.

Тепловая энергия потока горячего газа преобразуется в механическую энергию вращения вала турбины, который приводит в действие компрессор и электрогенератор.

Электроэнергия с клемм генератора через трансформатор направляется в потребительскую электросеть.

Горячие газы через регенератор поступают в водогрейный котел и далее через утилизатор в дымовую трубу.

Между водогрейным котлом и центральным тепловым пунктом (ЦТП) при помощи сетевых насосов организована циркуляция воды.

Нагретая в котле жидкость поступает в ЦТП, к которому осуществляется подключение потребителей.

Термодинамический цикл газотурбинной установки состоит из адиабатного сжатия воздуха в компрессоре, изобарного подвода теплоты в камере сгорания, адиабатного расширения рабочего тела в газовой турбине, изобарного отвода теплоты.

В качестве топлива для ГТУ используется природный газ – метан. В аварийном режиме ГТУ переводится на частичную нагрузку, а в качестве резервного топлива используются дизельное топливо или сжиженные газы (пропан-бутан). 

Турбореактивный двигатель с форсажной камерой

Рис. 2. Схема ТРДФ. 1 – турбокомпрессор; 2 – блок форсажной камеры; 3 – сопло; 4 – форсажная камера; 5 – стабилизаторы пламени.

Турбореактивный двигатель с форсажной камерой (ТРДФ) (рис. 2) широко применяется на скоростных боевых самолётах.

Как и в ТРД, основу внутреннего контура ТРДФ составляет турбокомпрессор (газогенератор), включающий в себя компрессор, камеру сгорания и турбину. Между турбокомпрессором и соплом (обычно регулируемым, т. е. с изменяемой площадью потока) установлена форсажная камера, в которой сжигается дополнительное горючее (керосин), подаваемое через форсунки форсажной камеры. Стабилизаторы пламени обеспечивают устойчивое горение обеднённой кислородом топливной смеси (часть кислорода воздуха использована при горении керосина в камере сгорания турбокомпрессора). За счёт сжигания дополнительного топлива происходит увеличение тяги (форсирование, форсаж – франц. forçage, от forcer – вынуждать, чрезмерно напрягать) на 50% и более, что связано, однако, с резким повышением расхода топлива. Поэтому режим форсажа используется кратковременно на взлёте для сокращения длины разбега и в воздушном бою для увеличения скороподъёмности и скорости полёта. Использование форсажных режимов на крейсерском полёте экономически невыгодно.

Основными характеристиками двигателя любого типа являются: масса двигателя $m_{дв}$ и его габариты; стартовая тяга двигателя $P_{дв0}$; удельная масса двигателя $g_{дв} = m_{дв}/P_{дв0}$ (кг/Н); удельный расход двигателя $C_р$,  показывающий расход массы топлива на создание 1Н  тяги в час, [кг/(Н×ч)]; высотно-скоростные  характеристики  $P = f(H, V)$ и $C_р = f(H,V)$; ресурс двигателя.

Качественный характер высотно-скоростных характеристик ГТД включает тяговые и высотные характеристики, которые определяются главным образом степенью повышения давления в компрессоре, степенью двухконтурности и температурой газа перед турбиной.

Потребная для определённых условий полёта тяга (мощность) обеспечивается выбором соответствующего режима работы силовой установки. Лётчик управляет режимом работы двигателя с помощью рычага управления двигателем (РУД), перемещение которого регулирует, т. е. увеличивает или уменьшает – дросселирует (от нем. drosseln – душить, сокращать), расход топлива.

Большинство современных пассажирских самолётов оборудуются вспомогательной силовой установкой (ВСУ) – небольшим ГТД, вся мощность которого используется не для создания тяги, а для снабжения энергией бортовых систем самолёта. При стоянке на земле ВСУ обеспечивает работу электросистем, радиооборудования, системы кондиционирования самолёта, техническое обслуживание самолёта и его систем, запуск основных двигателей, что делает самолёт независимым от аэродромных источников энергии. ВСУ может применяться и как источник энергии в аварийных ситуациях в полёте.

Разновидность ТРД – турбовентиляторный двигатель.

Двигатель самолёта является основным источником шума в кабине и на местности. Для удовлетворения требований по уровню допустимого шума в конструкции самолёта используют материалы и устройства, изолирующие источник шума или поглощающие шум. Звукоизоляционные прокладочные материалы ограждают источник шума и ослабляют звук при его проникновении через ограждение (см. в статье ).

Принцип работы газовой турбины

Как и дизельный или бензиновый двигатель, газовая турбина — это двигатель внутреннего сгорания с рабочим циклом впуск-сжатие-сгорание (расширение)-выпуск. Но, существенно отличается основное движение. Рабочий орган газовой турбины вращается, а в поршневом двигателе движется возвратно-поступательно.
Принцип работы газовой турбины показан на рисунке ниже. Сначала, воздух сжимается компрессором, затем сжатый воздух подается в камеру сгорания. Здесь, топливо, непрерывно сгорая, производит газы с высокой температурой и давлением. Из камеры сгорания газ, расширяясь в турбине, давит на лопатки и вращает ротор турбины (вал с крыльчатками в виде дисков, несущих рабочие лопатки), который в свою очередь опять вращает вал компрессора. Оставшаяся энергия снимается через рабочий вал.

Циклы газотурбинных установок

Данное оборудование может быть выполнено с разными циклами работы.

Замкнутый цикл газотурбинной установки подразумевает под собой следующее: газ через компрессор подается в калорифер (теплообменник), куда поступает тепло от внешних источников. Затем он подается в газовую турбину, где осуществляется его расширение. Давление газа при этом получается меньше.

После этого газы попадают в холодильную камеру. Тепло оттуда выводится во внешнюю среду. Потом газ направляется в компрессор. Затем цикл возобновляется заново. Сегодня в энергетике аналогичное оборудование почти не применяется.

Производство газотурбинных установок такого типа осуществляется в больших размерах. Также, имеются потери и низкое значение КПД, напрямую зависящее от температурных показателей самого газа до турбины.

Разомкнутый цикл газотурбинной установки используют намного чаще. В этом оборудовании компрессором осуществляет подача воздуха из окружающей среды, который при высоком давлении попадает в специально предназначенную камеру сгорания. Тут происходит сжигание топлива.

Температура органического топлива достигает отметки в 2000 градусов. Это может привести к повреждению металла самой камеры. Чтобы предотвратить это, в нее подается много воздуха, чем это нужно (примерно в 5 раз). Это существенно снижает температуру самого газа и защищает металл.

Обзор моделей

Рассмотрим самые популярные модели газотурбинных энергостанций – от мини-генераторов до крупных установок.

Газотурбинная электростанция Мощность
(кВт)
Надежность Уровень шума (дБ) Цель использования Средняя цена ($) Вес (кг) Способ запуска Расход топлива Время работы (полный назначенный ресурс) (ч) Вид топлива Число фаз Число розеток (шт.) Сервис и дистрибьюторы в крупных городах Отзывы
1 ПАЭС-2500 2500–2750 Надежен Не более 85, оснащена шумоглушителями. Основной либо аварийный источник питания. Передвижной вариант. 750000 28500 Автоматический Газ – 1000, жидкое топливо – 1100 кг/час До 100000 Природный газ, дизель, керосин 3 Набор клемм Есть При желании приобрести модель на вторичном рынке нужно проверять, прошла ли она восстановительный цикл на заводе -изготовителе.
2 ПАЭС-2500 Б 2500– 2750 Надежен Не более 85, оснащена шумоглушителями. Основной либо аварийный источник питания. Передвижной вариант. 750000 28500 Автоматический Газ – 1000, жидкое топливо – 1100 кг/час До 100000 Природный газ, дизель, керосин 3 Набор клемм Есть
3 ЭГ-2500 2500–2750 Надежен Не более 90, оснащена шумоглушителями. Основной либо аварийный источник питания. 1300000 34500 Автоматический 836 кг/час До 75000 Природный газ 3 Набор клемм Есть Низкие безвозвратные потери масла.
4 ГТЭС 2,5 2500 Надежен Не более 80 Основной либо аварийный источник питания 1264600 50000 Автоматический Газ – 697, жидкое топливо –799 кг/час До 120000 Природный газ, дизель 3 Набор клемм Есть Возможно размещение в городской черте.
5 SGT-100 4350–5700 Надежен Не более 80 Основной либо аварийный источник питания Договорная 61235 Автоматический 20,6 кг/с До 120000 Природный газ 3 Набор клемм Есть Есть варианты с двухтопливным исполнением.
6 UGT2500С 2500 Надежен Не более 80. Основной либо аварийный источник питания. 1650000 Около 50000 Электростартер 16,5 кг/с До 100000 Природный газ 3 Набор клемм Есть
7 Микротурбина Capstone Turbine Corporation C30 29 Надежен 58 Основной либо аварийный источник питания. 2000 – 3000 за кВт 478 Автоматический 12 м3/час До 60000 Газ, дизель, керосин 3 Набор клемм Есть Дополнительно приобретаются аккумуляторные батареи
8 1000 Надежен 60 Основной либо аварийный источник питания. 2000 – 3000 за кВт 15875 Автоматический 325 м3/час До 60000 Газ, дизель, керосин 3 Набор клемм Есть Отличное устройство, но только для богатых людей.
9 Микротурбина Elliott TA-100 (Calnetix) 100 Надежен 75 Основной либо аварийный источник питания. 3000 за кВт 1900 Автоматический 39 м3/час До 72000 Природный газ 3 Набор клемм Есть
10 ГТЭС «Урал – 6000» 6140 Надежен Не более 80. Основной либо аварийный источник питания. 1700000 58000 Автоматический 33,9 кг/с До 100000 Природный газ, дизель 3 Набор клемм Есть Комплектуется котлом- утилизатором по желанию заказчика.

На видео показаны промышленные решения

При выборе газотурбинных электростанций учитывают их предназначение и габариты, а также вырабатываемую мощность.

В большинстве своем их приобретают для промышленного использования. Минитурбины пока являются оборудованием будущего, для домашнего использования они доступны лишь обеспеченным людям.

Типовая схема агрегата

Стандартная газотурбинная установка представляет собой тепловую машину, где используется теплоноситель, находящийся в газообразном состоянии, нагретый до высокой температуры. В результате определенных процессов, которые будут рассмотрены ниже, его энергия превращается в механическую.

Конструкция такой электростанции состоит из следующих частей: компрессора, камеры сгорания и самой газовой турбины. Взаимодействие этих компонентов и управление ими в процессе работы обеспечивается специальными вспомогательными системами, входящими в конструкцию установки. Газотурбинная установка и электрический генератор образуют в совокупности газотурбинный агрегат. Мощностью от нескольких десятков киловатт до показателей, измеряемых в мегаваттах. Электростанция, в зависимости от целевого назначения и количества потребителей, имеет одну или несколько газотурбинных установок.

Сама газотурбинная установка разделяется на две части, размещенные в общем корпусе: газогенератор и силовая турбина. Газогенератор состоит из камеры сгорания и турбокомпрессора. Именно здесь создается газовый поток с высокой температурой, оказывающий воздействие на лопатки турбины. Выхлопные газы утилизируются в теплообменнике, и одновременно производят нагрев паровых или водогрейных котлов. Газотурбинные установки могут работать на жидком или газообразном топливе. В стандартном рабочем режиме используется газ, а в критических ситуациях установка автоматически переходит на жидкое топливо.

В нормальных условиях ГТЭС осуществляет комбинированное производство электричества и тепловой энергии. Как правило, они работают в базовом режиме, но при необходимости успешно перекрывают пиковые нагрузки. Вырабатываемое тепло, в количественном отношении существенно выше, чем производимое обычными поршневыми устройствами.

Сферы применения и отличительные особенности

Турбины на газу используются в разнообразных областях: от снабжения электроэнергией зданий гражданского и аграрного предназначения до запитки индустриальных объектов и мест добычи нефти и газа. Также помимо возможности электроснабжения отдельных объектов оборудование такого типа способно снабдить энергией целые поселения и жилые районы.

Все подобные электростанции можно подразделить на несколько видов со своими конструктивными особенностями и предназначением:

  • Автономные стационарные агрегаты. Могут быть разной мощности, но обычно она начинается от 2,5 кВт. Их пакетируют в контейнеры и ставят в отдалении от жилых помещений. Однако есть и турбогенераторы экологического типа, которые можно смонтировать и в городской черте. Автономные ГТЭ в определенных вариациях устанавливают даже на крышах зданий.
  • Передвижные мобильныегазотурбинные электростанции. Их возможно доставить в самые отдаленные уголки страны, например, для обеспечения энергией и теплом шахтерского либо нефтедобывающего поселка.
  • Мини-энергостанции. Главная их функция состоит в производстве тепловой и электроэнергии. Отличительная черта станций малой мощности – сравнительно малые габариты и низкий уровень шума, что способствует расположению подобной установки поблизости от энергопотребителя.

Помимо подачи электричества, минитурбины могут использоваться в системах отопления, при этом агрегат вырабатывает горячий пар и воду, и в вентиляционных системах.

Выставка «Электро»

Большой уровень спроса, новая высокопроизводительная аппаратура, передовые технологии – всё это и многое другое невозможно остановить в данной сфере. Благодаря этому газотурбинные установки в России, применяемые для производства электроэнергии и тепла, сегодня являются актуальными. Из-за своей специфики найти необходимую информацию о современных разработках в достаточном объёме либо же сделать своё собственное открытие в этой отрасли популярным бывает просто невозможно. В этом случае будет полезно посетить профильное мероприятие – выставку «Электро», проходящую в ЦВК «Экспоцентр». Тут ежегодно собираются тысячи специалистов, представителей ведущих компаний и производители газотурбинных установок со всего мира, готовых к активной работе, и решать самые актуальные вопросы в электротехнике.

Что даст вам данное мероприятие?

  • Поиск новых заказчиков, поставщиков и партнёров.
  • Проведение расширенных эффективных маркетинговых исследований.
  • Презентация собственных разработок и достижений.
  • Ознакомление с самыми передовыми достижениями и инновационными технологиями.
  • Изучение новых устройств.

Если грамотно воспользоваться всеми этими возможностями, то можно всего за несколько дней сделать наработки, на которые в обычных условиях у вас бы ушёл не один месяц. Это сможет сделать вашу компанию и продукцию конкурентоспособной. Все специалисты не рекомендуют пропускать данные мероприятия. Тем более что возможностей в случае с газотурбинными и парогазовыми установками не так-то уж и много.

Техническое обслуживание и ремонт ГТУ. Безопасность труда при обслуживании газотурбинных установок

Техническое обслуживание, текущий и капитальный ремонты ГТУ проводятся по планам, которые составляются в соответствии с требованиями инструкций заводов-изготовителей. Периодичность технического обслуживания и ремонтов зависит также от режима работы ГТУ, количества пусков, вида топлива

Кроме того, принимается во внимание состояние основного и вспомогательного оборудования ГТУ

Операции по техническому обслуживанию проводятся в определенной последовательности и в установленные сроки. На каждой станции утверждается регламент технического обслуживания ГТУ и оговаривается технология выполнения регламентных работ. В регламентные работы входят, например, периодическая очистка турбин, компрессоров и теплообменников, осмотр лопаток турбин и компрессоров, проверка плотности газового и воздушного трактов, трубопроводов, шиберов и арматуры. Важным этапом регламентных работ является проверка исправности системы автоматического регулирования и защиты ГТУ.

Проверку работы автомата безопасности с увеличением частоты вращения ротора проводят после каждой его разборки, перед испытанием ГТУ на сброс нагрузки и после длительного его простоя (более 1 месяца). Не менее одного раза в 4 месяца проверяют исправность защиты от превышения температуры газа перед турбинами.

В программу регламентных работ входят также контрольные пуски ГТУ, при которых измеряют параметры, позволяющие определить соответствие режима пуска заданному режиму.

Система регулирования при мгновенном сбросе нагрузки должна удерживать ГТУ в режиме, при котором не срабатывала бы ни одна из защит, а ГТУ автоматически выходила бы на холостой ход. Регламентными работами предусмотрена проверка системы регулирования мгновенным сбросом максимальной нагрузки отключением генератора от сети.

Для диагностирования состояния ГТУ при ее остановах проводят осмотры, целью которых является непосредственное обнаружение неисправностей (износа форсунок, трещин в лопатках, короблений пламенных труб и др.) или установление их по косвенным признакам (например, по наличию кусочков металла, частей лопаток, или поврежденных деталей на выхлопе). Осмотры могут проводиться как без разборки, так и с частичной или полной разборкой ГТУ.

Целью ремонтов, является проведение плановых восстановительных работ или устранение результатов аварий и неполадок. Примером восстановительных работ является замена рабочих лопаток, отслуживших свой срок по запасу длительной прочности, перезатяжка фланцев турбины, замена пламенных труб, отработавших ресурс, перезаливка баббита подшипников. Характер ремонтных работ после аварий зависит от вида разрушений и их последствий. В некоторых случаях восстановительные работы приходится выполнять на заводе-изготовителе.

Все работы по оперативному и техническому обслуживанию ГТУ должны выполняться качественно, в срок, без ущерба для безопасности и здоровья обслуживающего и ремонтного персонала. Обслуживание ГТУ, проведение регламентных и ремонтных работ должны быть организованы так, чтобы производственные травмы и несчастные случаи были исключены. Каждый работник должен знать и строго выполнять правила безопасного обслуживания и проведения ремонтных работ. Администрация обязана обеспечить организационные и технические мероприятия по созданию безопасных условий труда.

Регулярный инструктаж, обучение персонала и постоянный контроль за соблюдением правил техники безопасности на электростанциях обязательны. Ответственность за несчастные случаи несет как администрация, не обеспечивая соблюдение правил безопасного производства работ, так и лица, нарушившие эти правила.

Производственный персонал должен уметь освобождать попавшего под напряжение и оказывать ему первую помощь, а также оказывать первую помощь пострадавшим при других несчастных случаях.

По характеру производственных процессов ГТУ являются агрегатами повышенной пожаро- и взрывоопасности и требуют обеспечения электробезопасности. В этих условиях строжайшее соблюдение правил техники безопасности является насущной и ежедневной необходимостью.

Реализованные проекты в данной сфере

В настоящее время в России планируется к сооружению и вводится множество проектов ГТУ. Одним из таких проектов станет теплоэлектростанция в Каширском районе Московской области суммарной мощностью 1,4 ГВт с объемом инвестиций около 100 млрд руб.

Газотурбинная электростанция мощностью 24 МВт планируется к постройке в Нижневартовском районе Ханты-Мансийского автономного округа. Она предназначена для обеспечения электрической и тепловой энергией нужд месторождения и других потребителей в пределах промышленной зоны нефтегазового предприятия.

В Крыму ведется строительство двух электростанций установленной мощностью по 470 МВт каждая.

В США ряд газотурбинных установок строится на основе новой технологии, по которой сырьем для электростанции будет газ, синтезированный из угля (не природный). Эта технология несколько дороже с точки зрения инвестиций и эксплуатационных расходов, но позволяет использовать местное сырье. Решение спорное, так как в США в настоящее время многократно растет добыча сланцевого газа.

Что касается европейского рынка энергетики, то на нем все большее внимание уделяют зеленым технологиям производства. Все больше стран отказывается от развития энергетики, основанной на ископаемых источниках энергии

Производители оборудования сообщают о 80%-ном спаде продаж новых газотурбинных установок большой мощности за последние несколько лет. Вместе с тем основой энергетики всего мира по-прежнему остается технология, основанная на использовании ископаемых источников (в основном газа).

Парогазовая установка на Кировской ТЭЦ-3

Электрическая мощность парогазовой установки — 230 МВт, тепловая — 136 Гкал/ч.

Вводимая парогазовая установка — самое экономичное и экологичное генерирующие оборудование в Кировской области.

Отличительная особенность станции — использование первой в регионе градирни вентиляторного типа. 

Теперь пройдемся по этапам получения энергии.

Топливо для ПГУ (газ) подается сначала на пункт подготовки газа, а потом по эстакаде попадает в турбину.

Сверху к газовой турбине подводится очищенный воздух от комплексного очистительного устройства. При этом требования к чистоте воздуха такие, что внутрь воздуховода персонал может войти только в халатах и без обуви. Этот воздух после специальной обработки намного чище того которым мы дышим.

Конструкция внутри здания по размерам сопоставима с двумя грузовыми Ж/Д-вагонами.

Идут работы по монтажу коммуникаций.

Принцип работы этой турбины аналогичен работе двигателя авиалайнера. Воздух очищается, сжимается в компрессоре, затем к нему подводится природный газ. Газы, образующиеся при его сжигании, вращают турбину, а она, в свою очередь, генератор.

Чтобы снизить вибрацию, турбину установили на специальные пружины.

Полученное электричество по токопроводам поступает на трансорматоры.

Далее, продукты сгорания попадают в котел утилизатор. Он также изготовлен отечественной фирмой ОАО «ЭМАльянс». Этот уникальный котлоагрегат спроектирован специально для этого объекта и не имеет аналогов. Его высота составляет 30 метров, он имеет два контура, в которых вырабатывается пар низкого и высокого давления.

Коммуникации наверху.

Труба дымоудаления.

Пар из котла утилизатора вращает паровую турбину Т-63 с генератором мощностью 80 мегаватт. Она изготовлена на Урале специально для этого проекта и предназначена для работы только в составе парогазового блока. В эту турбину вложены последние передовые разработки отечественного турбостроения.

В качестве бонуса. Сосед — ЗМУ КЧХК.

ПРОИЗВОДИТЕЛИ ОБОРУДОВАНИЯ ДЛЯ ГТУ

На рынке России представлены десятки отечественных и зарубежных производителей оборудования для газотурбинных электростанций. Среди отечественных можно выделить ОАО «Сатурн» (г. Москва), АО «ОДК-Пермские моторы», ОАО КПП «Авиамотор» (г. Казань), НПО «Сатурн» (г. Рыбинск) и др. К одному из лидеров этого рынка среди зарубежных компаний можно отнести Siemens. Впрочем, прямые поставки газотурбинного оборудования от зарубежных поставщиков могут оказаться под вопросом из-за увеличения санкционного давления на РФ.

Что касается качества оборудования и его стоимости, то традиционно мнения экспертов в данном вопросе расходятся. Как правило, полностью импортные установки ГТУ дороже отечественных, отличаются большей степенью автоматизации и надежностью. С другой стороны, обслуживание импортной техники зачастую обходится дороже, чем отечественной. В связи с большим количеством производителей и поставщиков газотурбинного оборудования для энергетики поставка оборудования и комплектующих не представляет никакой проблемы.

Экономика ГТУ

На первый взгляд, цены на газотурбинные установки довольно высоки, но при объективной оценке возможностей этого энергетического оборудования все аспекты встают на свои места. Высокие капиталовложения на старте энергетического проекта полностью компенсируются незначительными расходами при последующей эксплуатации. Кроме того, значительно снижаются экологические платежи, уменьшаются затраты на покупку электрической и тепловой энергии, снижается влияние на окружающую среду и население. Вследствие перечисленных причин ежегодно приобретаются и устанавливаются сотни новых газотурбинных установок.

Поговорим о самом главном: газопоршневые установки против газотурбинных силовых агрегатов — КПД

КПД силовой установки более чем актуален — ведь он влияет на расход топлива. Средний удельный расход газового топлива на 1 выработанный кВт/час значительно меньше у газопоршневой установки, причем при любом режиме нагрузки (хотя длительные нагрузки менее 25% противопоказаны для поршневых двигателей).

Электрический КПД поршневых машин составляет 40–44%, а газовых турбин — 23–33% (в парогазовом цикле турбина способна выдать КПД достигающий 59%).

Парогазовый цикл применяется при высокой мощности электростанций — от 50-70 МВт.

Если Вам надо изготовить локомотив, самолет или морское судно, то можно считать одним из определяющих показателей именно коэффициент полезного действия (КПД) силовой установки. Тепло, которое получается в процессе работы двигателя локомотива, самолета (или судна) не используется и выбрасывается в атмосферу.

Но мы строим не локомотив, а электростанцию и при выборе типа силовых агрегатов для автономной электростанции подход несколько иной — здесь необходимо говорить о полноте использования сгораемого топлива — коэффициенте использования топлива (КИТ).

Сгорая, топливо производит основную работу — вращает генератор электростанции. Вся остальная энергия сгорания топлива — это тепло, которое можно и нужно использовать. В этом случае так называемый, «общий КПД», а вернее коэффициент использования топлива (КИТ) электростанции будет порядка 80-90%.

Если потребитель рассчитывает использовать тепловую энергию автономной электростанции в полном объеме, что обычно маловероятно, то коэффициент полезного действия (КПД) автономной электростанции не имеет практического значения.

При снижении нагрузки до 50% электрический КПД газовой турбины снижается.

Кроме того, турбинам требуется высокое входное давление газа, а для этого обязательно устанавливают компрессоры (поршневые) и они также повышают расход топлива. Сравнение газотурбинных установок и газопоршневых двигателей в составе мини–ТЭЦ показывает, что установка газовых турбин целесообразна на объектах, которые имеют равномерные электрические и тепловые потребности при мощности свыше 30-40 МВт.

Из вышесказанного следует, что электрический КПД силовых агрегатов разных типов имеет прямую проекцию на расход топлива.

Газопоршневые агрегаты расходуют на четверть, а то и на треть меньше топлива, чем газотурбинные установки – это основная статья расходов!

Соответственно, при схожей или равной стоимости самого оборудования более дешёвая электрическая энергия получается на газопоршневых установках. Газ — это основная расходная статья при эксплуатации автономной электростанции!

Типы газовых турбин по конструкции и назначению

Самый основной тип газовой турбины — создающий тягу реактивной струей, он же самый простой по конструкции.
Этот двигатель подходит для самолетов, летающих на высокой скорости, и используется в сверхзвуковых самолетах и реактивных истребителях.

У этого типа есть отдельная турбина за турбореактивным двигателем, которая вращает большой вентилятор впереди. Этот вентилятор увеличивает поток воздуха и тягу.
Этот тип малошумен и экономичен на дозвуковых скоростях, поэтому газовые турбины именно этого типа используются для двигателей пассажирских самолётов.

Эта газовая турбина выдает мощность как крутящий момент, причем у турбины и компрессора общий вал. Часть полезной мощности турбины идет на вращение вала компрессора, а остальная энергия передается на рабочий вал.
Этот тип используют, когда нужна постоянная скорость вращения, например — как привод генератора.

В этом типе вторая турбина размещается после турбины с газогенератором, и вращательное усилие передается на нее реактивной струей. Эту заднюю турбину называют силовой. Поскольку валы силовой турбины и компрессора не связаны механически, скорость вращения рабочего вала свободно регулируется. Подходит как механический привод с широким диапазоном скоростей вращения.
Этот тип широко используется в винтовых самолетах и вертолетах, а также в таких установках, как приводы насоса/компрессора, главные судовые двигатели, приводы генератора и т.п.